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Abstract

Self-supervised learning in vision—-language processing
(VLP) exploits semantic alignment between imaging and
text modalities. Prior work in biomedical VLP has mostly
relied on the alignment of single image and report pairs
even though clinical notes commonly refer to prior im-
ages. This does not only introduce poor alignment be-
tween the modalities but also a missed opportunity to ex-
ploit rich self-supervision through existing temporal con-
tent in the data. In this work, we explicitly account for
prior images and reports when available during both train-
ing and fine-tuning. Our approach, named BioViL-T, uses
a CNN-Transformer hybrid multi-image encoder trained
jointly with a text model. It is designed to be versatile
to arising challenges such as pose variations and miss-
ing input images across time. The resulting model excels
on downstream tasks both in single- and multi-image se-
tups, achieving state-of-the-art (SOTA) performance on (I)
progression classification, (Il) phrase grounding, and (I1I)
report generation, whilst offering consistent improvements
on disease classification and sentence-similarity tasks. We
release a novel multi-modal temporal benchmark dataset,
MS-CXR-T, to quantify the quality of vision—language rep-
resentations in terms of temporal semantics. Our experi-
mental results show the advantages of incorporating prior
images and reports to make most use of the data.

1. Introduction

Self-supervision from image—text pairs has enabled the
development of flexible general-purpose vision—language
models both in the general domain [40, 53, 77] and for
specialised domains such as biomedicine and radiology
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Figure 1. (a) Existing visual-language pre-training approaches
[9, 32, 81] often use only a single image for contrastive learning
(e.g., InfoNCE [49]). (b) In such settings, discarding the temporal
connectivity of images limits the alignment of image—text pairs as
shown with the affinity matrix, leading to suboptimal pre-training
and missed opportunity to create additional model supervision for
free. (c, d) Our approach exploits this domain knowledge by learn-
ing to incorporate a series of images and correlate them to reports,
leading to pre-trained models that can generalise to a wider range
of downstream tasks whilst achieving SOTA performance.

[9,32,81]. Vision—language processing (VLP) has shown
that cross-modal supervision can provide a richer signal for
training both image [19] and text [9] models. However, the
success of VLP relies on paired samples sharing semantics,
i.e., given an image and text pair, the text should describe
the image with minimal extraneous detail [15, 16,35].

In this regard, VLP in biomedicine and radiology poses
a distinctive challenge, as reports routinely include compar-
isons to prior imaging studies [3,47,57]. Without knowl-



edge of this prior image', temporal information in the text
modality, e.g. “Pneumonia is improving”, could pertain to
any image containing ‘“‘Pneumonia”, producing ambiguity
during contrastive training (Figure 1). Despite this, the ex-
isting VLP work to date considers alignment between only
single images and reports [9,32,46,81], going so far as to re-
move temporal content from reports in training data to pre-
vent ‘hallucinations’ in downstream report generation [54].
However, temporal information can provide complementary
self-supervision, solely by exploiting existing structure, and
without requiring any additional data.

In this work, we neither ignore nor remove temporal in-
formation in the text modality, but explicitly account for it
during pre-training. Rather than treating all image-report
pairs in the dataset as independent, we exploit temporal cor-
relations by making prior images available for comparison
to a given report. To learn from this structure, we develop
a temporal VLP pre-training framework named BioViL-T.
A core component is its new multi-image encoder that can
handle the absence of prior images and potential spatial
misalignment between images across time. BioViL-T takes
into account prior images where available, removing cross-
modal ambiguity as illustrated in Fig. 1. Linking multi-
ple images during pre-training proves beneficial to both im-
age and text models: we report state-of-the-art (SOTA) per-
formance on both temporal image classification and report
generation. In the latter case, we show that prefixing the
prior report substantially increases performance, again re-
flecting the value of prior information. We emphasise that
the benefit is not restricted to temporal downstream tasks:
our approach also achieves SOTA on non-temporal tasks of
pneumonia detection [60] and phrase grounding [10], un-
derscoring the value of a cleaner learning signal during VLP
without needing to modify or add to the training dataset.
Our contributions can be summarised as follows:

* We introduce a novel pre-training framework called
BioViL-T. It leverages the temporal relationship of sam-
ples to self-supervise VLP models, making commonly
used biomedical VLP models (e.g., [9,32,81]) more ap-
plicable to a wider range of downstream tasks without
compromising performance on existing benchmarks.

* We develop a generic multi-image encoder that handles
missing image inputs and incorporates longitudinal in-
formation without requiring explicit image registration.

* We achieve SOTA results in chest X-ray (CXR) report
generation, temporal image classification, and phrase
grounding downstream benchmarks by accounting for
prior context in self-supervised training and fine-tuning.

e We release a new multimodal benchmark dataset,
MS-CXR-T, curated by an expert radiologist. It enables

IIn the MIMIC-CXR v2 dataset [36], around 40% of reports explicitly
reference a previous image. See Appendix B for details.

benchmarking of CXR VLP models in terms of tempo-
ral semantics extracted from image and text data.

2. Related work

Vision-language processing Self-supervised VLP can
significantly reduce the need for manual labels required for
the training of image encoders [19, 53]. The availability of
large-scale paired image—text datasets has thus led to rapid
development of general-purpose VLP models. Objectives
include contrastive and discriminative image—text matching
[40,53,69] including local variants [32,76], auto-regressive
(AR) captioning [4, 39, 77] and multi-modal masked mod-
elling objectives [13,40,61].

Biomedical vision—language processing Paired medical
image—report datasets were originally used for supervised
learning via (typically) automated label extraction from
clinical reports [33,63,70]. Using such datasets, advances
in general-domain self-supervised VLP have been demon-
strated to benefit biomedical imaging applications [9, 32,
81]. Work has incorporated ideas from general-domain
VLP such as the original CLIP-style cross-modal con-
trastive objective [81], multi-modal masking with merged
co-attention on image—text representations [46], and adap-
tations to the data of the domain. For example, a radiology
report may have sparse image-specific details, prompting
a local modification to the contrastive loss enabling align-
ment between text tokens and image patches [32]. Domain-
specific pre-training of the text model is shown to benefit
biomedical VLP [9], and preferential masking of medical
terms during masked language modelling (MLM) was ex-
plored [75]. Here we use a local loss and domain-specific
pre-training of the text model, but did not find a benefit to
preferential masking. Similarly, cross-attention [22] is used
rather than merged co-attention for image-guided MLM.

Longitudinal modelling of medical images While prior
images are used in unimodal supervised longitudinal analy-
sis of medical images [37, 58, 68,74], temporal information
has not directly been employed for self-supervision. The
closest work exploits patient metadata to select positive or
negative examples in unimodal contrastive learning [67,79].

Existing models typically employ either late fusion of
global image representations [58,64,68,74], which can miss
fine-grained localised changes [32], or explicit spatial cor-
respondence of features, using fixed spatial grids [48] or
object detection [37]. Registering image pairs is commonly
used for change detection in other contexts [17,52,59], and
has been applied to medical imaging [5, 23]. For CXRs
however, registration entails the ill-posed problem of align-
ing 2D projections of 3D geometry, which inevitably re-
sults in residual misalignment. Our approach does not rely
on bounding boxes or explicit graph construction as it uses



self-attention of visual tokens across time to handle any spa-
tial misalignment.

Self-supervision across time Self-supervision has found
applications on densely-sampled time series data (e.g.,
video) to capture temporal information [30, 55,78, 80]. Our
problem setting involves sparsely and sporadically sampled
data where temporal pretext tasks are less applicable [2].
Similarly, it requires text supervision to enable both static
and temporal learning, when temporal structure is present.

3. BioViL-T training framework

Our approach comprises a multi-image encoder designed
to extract spatio-temporal features from sequences of im-
ages (Section 3.1) and a text encoder incorporating optional
cross-attention on image features. The models are trained
jointly with image-guided MLM and cross-modal global
and local contrastive objectives (Section 3.2). The resulting
image and text models are later adapted for uni- or multi-
modal downstream tasks as described in Section 3.3. Im-
plementation details are presented in Appendices E and F.

For a given image and report pair (xicr‘;l’g, xih), the re-
port x¢i " describes the current image content and changes
in reference to prior images. Our proposed formulation fo-
cuses on a single prior image; however, it can be gener-
alised to multiple prior images depending on the applica-
tion. Hence, we construct datasets by including the prior
image whenever it exists’: (X{hg + Ximg »Xixt ) € Dy or
(xﬁ‘;fgr,ax‘t’,?{r) e D, with the resulting dataset being a
union of single and multi-image examples: D = D,,, U D;.

3.1. Extracting spatio-temporal image features

Clinical findings are often observed across different im-
age regions and co-occur simultaneously, which requires
dense level visual reasoning across time to capture both
static and temporal features. In contrast to late global fusion
[64] and bounding-box based approaches [37], BioViL-T
leverages local correspondences between image regions
across time using transformer self-attention blocks [21].
Thus our method does not require an explicit image reg-
istration step between time points.

We propose a hybrid CNN-Transformer encoder
model due to its data efficiency and spatial flexi-
bility of cross-attention across time points: Ejye
RW*H _ RW'*H'*Dins (e g, ResNet-50 [31]) and Ajpg :
RT*LxDimg  _, RL*Dimg (e.g., transformer [21]), where
W, H, and T correspond to spatiotemporal dimensions,
L = W'H' is the number of visual tokens per image, and
Dipg is the embedding dimension. Here Ej,,, serves as a
stem network [51] to provide visual token features of in-
dividual images. The CNN’s inductive biases [24, 51] en-

2The prior report is not included during pre-training as it may further
reference an earlier study, reintroducing temporal ambiguity.

sure data efficiency of our hybrid model, making it ideal
for smaller scale biomedical datasets. Ejy,g is initialised
with BioViL weights [9]. The main purpose of Aj,g is to
capture patch embedding interactions across time when a
S prior . .
prior image x; .~ is available and to aggregate them into
a fixed-length token representation. Input visual tokens,
H{"™ = PO o= Eimg(xfé‘l’g), Hy" = Eimg(xi"ggr) are
augmented with spatio-temporal positional encodings and
flattened across the spatial dimensions. They are then pro-
cessed by K transformer encoder [66] layers A as follows:

Hp ] ([HET S+ 1, o0 0
Hzrlor = 4k Hgl;li)r +S+ 1L ® tpPrior ’

fork=1,..., K, where S € RE*Pims denotes 2D sinusoidal
positional encodings [12] and T = [t°%; tPrior] ¢ R2*Pime
is its temporal counterpart, which is learnt (Fig. 2) [4]. The
layer-normalised (LIN) [6] output of the final transformer
encoder block P4 := LN(HS¥™) is an ‘aggregated’ repre-
sentation of patch-level progression information anchored
on the current image. Figure 3 shows attention roll-out [1]
applied to PUf after pre-training, showing how the prior
image contributes to the fused representation. Figure A.3
further highlights the robustness to variations in pose un-
derlining that registration is not necessary for this encoder.

Static-temporal feature decomposition When a prior
image is available the final image representation V :=
peurr g pdiff ¢ RW'xH'x2Dims ig formed by concatenating
two sets of features (similar to [7]): those from the current
image alone (P°"") and the temporal features from cur-
rent and prior images (P9f). In this way, self-attention
is mainly required to cope with pose variations and patch
comparisons across time in extracting temporal content, re-
moving the need for registration or explicit spatial feature
alignment. When no prior scan is available (x e D),
Ajmg is not used and P34 s replaced by a learnable to-
ken p™s ¢ RPims  replicated across the spatial dimen-
sions. Section 4.5 later demonstrates that A;,, highlights
the value of feature decomposition for tasks such as phrase
grounding which require well-localised features [10].

Hereafter, downstream tasks that require solely single
image features, P°"'", are referred to as static tasks, and the
ones that benefit from additional progression information,
PAiff 4 temporal tasks, e.g., report decoding.

3.2. Text-supervision for spatio-temporal learning

Let w = (wy,...,wys) denote a vector of M tokens of
a report Xy after tokenisation. We first obtain contextu-
alised token features Eyy(w) € RM*Pext by passing a se-
quence of text tokens w = (wy, ..., wys) through a BERT
encoder Eiy [20]. The input sequence is prepended with
either a [CLS] or [MLM] token associated with a down-
stream training objective, conditioning the output features
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Figure 2. The proposed self-supervised VLP training framework BioViL-T: Image representations V are extracted from single and
multiple input scans (whenever available) using a hybrid CNN and transformer encoder [24,51]. This design choice is to increase the data-
efficiency and enable the fusion of temporal content without requiring image registration. They are later matched with their corresponding
text representations obtained with CXR-BERT [9] using local [32] and global InfoNCE [49] training objectives. As an additional model
supervision, multi-modal fused representations, obtained with cross-attention, are used for image-guided masked language modelling.

similar to [39,42]. During training, we do two forward
passes through Fi.¢: once with masking at 45% probabil-
ity (for the MLM objective) and once without masking for
contrastive learning, as shown in Figure 2. The text encoder
is initialised with the weights of CXR-BERT? [9] canonical
model, trained on domain-specific vocabulary and corpora.

Both text and image features are later projected into a
joint latent space with ¢ : RPor - RP, and similarly
VE;(;LJ = Gimg(Vw,n) Where Gipg : RPme — RP with ¢
being a two-layer perceptron in our experiments.
Contrastive objectives Let r := [Eyy(W)] cLs; denote
the global representation of w, with rP™J := ¢ (r) its pro-
jected version. Given projected patch embeddings vﬁi(}’j, we
can compute a global cosine similarity S (VP*J, rP*J) and
a local similarity using weighted pairwise cosine similari-
ties across text tokens and projected patch embeddings [32,
76]. These similarities are used in both global and local
contrastive objectives with the InfoNCE loss [49, 53]. The
local loss proves crucial both for static phrase-grounding
and temporal image classification (see Table 7), highlight-
ing the importance of localised self-supervision.

Image-guided masked language modelling Prior work
[9,46] has shown that biomedical visual-language learning
benefits from an auxiliary task such as MLLM since captur-
ing the joint distribution of tokens can stabilise and improve

3https : / /huggingface . co/microsoft / BiomedVLP —

CXR-BERT-general

language understanding during joint learning. Given a batch
B of token vectors w, it is often defined as the cross-entropy
for predicting the randomly sampled masked tokens, m c
{1,....,M}, Lyum = _\Tls| Y wes 10g po (Wi, | Wy, ), where
0 are the weights of the text encoder Fiy¢.

In the absence of image information, however, certain
masked findings and attributes are not readily predicted,
e.g., “[MASK] is worsening”. As shown in the general do-
main [13], visual information can help disambiguate such
masked predictions and provide additional cross-modal su-
pervision. Thus, we use cross-attention [22,66] to the image
features vy ") during this task. Specifically, for our image-

proj

guided MLM objective we model pg (W, | Wy, Vi

3.3. Adaptations to downstream tasks

BioViL-T can be adapted to various downstream tasks.
For phrase-grounding and zero-shot inference, we rely
on S (rProl, vir",?) similar to [9, 32]. For multiple-text
prompts, projected text embeddings are marginalised prior
to {y-normalisation [53]. To enable language decoding,
vy, inputs are cross-attended by text queries w, and
causal-attention is utilised between text tokens [39,66]. Dif-
fering from [9,32,81], we show that report generation tasks

can greatly benefit from temporal joint latent space.

Conditioning on prior reports In contrast to existing

work, we incorporate the prior report as a prompt to contex-

tualise the report generation task: pe (Wit | Whee s Vi 27),
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where @ are the multi-modal encoder—decoder network’s
weights, and wili", whe”" denote text tokens for current
and prior reports respectively. This is analogous to fine-
tuning GPT-3 [11] with prompts and instructions [71], but
conditioning on both images and the previous report. A
dedicated separation token [SEP] is added into the input

sequence [wiy, ', [SEP], win"].

Curation of imaging datasets CXR datasets [36] often
contain multiple image acquisitions Z = {x]"®,...,x;"*}
in a single visit due to data quality issues such as a lim-
ited field-of-view or scanning the wrong body part (Fig-
ure A.4). Unlike [9,32,81], we conduct curation to choose
higher quality images among the potential candidates in-
stead of performing a random selection. For this step, a
separate BioViL-T is trained on ‘clean’ studies with sin-
gle acquisitions and later used in a zero-shot setting to de-
tect out-of-distribution samples [26,27] arising from the re-
imaging process. The candidate Z is selected as follows:
2 =argmax .z Sc(VE™, rP™) st |s; - sz\5| > 6 fora
margin §. This approach is applied to enhance the quality
of the temporal classification dataset given its limited size.

4. Datasets & experiments

Here, we demonstrate BioViL-T’s data efficiency and
adaptability to a wide range of applications, and show how
the model achieves SOTA performance on various down-
stream tasks by learning from data instances linked across
time, making effective use of domain priors and the avail-
able training data. Specifically, our model is evaluated on
a diverse set of downstream tasks including zero- and few-
shot static and temporal image classification, report genera-
tion, phrase-grounding [10], and sentence similarity.

MS-CXR-T benchmark We release a new multi-modal
benchmark dataset*, MS-CXR-T, to evaluate chest X-ray
VLP models on two distinct temporal tasks: image clas-
sification and sentence similarity. The former comprises
multi-image and ground-truth label pairs (/V = 1326) across
5 findings, with classes corresponding to 3 states of disease
progression for each finding: {Improving, Stable,
Worsening}. The latter quantifies the temporal-semantic
similarity of text embeddings extracted from pairs of sen-
tences (N = 361). The pairs can be either paraphrases or
contradictions in terms of disease progression. The data for
both tasks was manually annotated and reviewed by a board
certified radiologist. Appendix C provides further details on
its data distribution and annotation protocol.

Datasets For pre-training, we use the MIMIC-CXR v2
[28, 36] chest X-ray dataset, which contains longitudinal
imaging studies with corresponding radiological reports,

4MS-CXR-T benchmark dataset can be accessed through PhysioNet:
https://aka.ms/ms—cxr—t
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Figure 3. Attention rollout maps [1] from the reference patch
(marked with ) to the current and prior images. The bounding
boxes, annotated by a radiologist, show the extent of consolida-
tion. Note that the reference patch attends to its anatomical neigh-
bourhood in the prior image despite the misalignment between
prior and current images. The grid (14 x 14) represents the patch
tokens processed in the transformer encoder blocks.
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see Fig. B.1 for the distribution of studies. We only use
frontal view scans and discard samples where reports do not
contain an IMPRESSION section. From this data, we gather
174.1k and 4.9k text-image pairs for training and validation
respectively, with a majority of pairs including a prior im-
age: |Dain| = 118.8k, |Dain| = 55.3k. The text consists
of the IMPRESSION section and, for MLM additionally the
FINDINGS section if available. Note that no manual labels
are used during pre-training and no additional data is used
for the methods that leverage the link between current and
prior images. For early stopping we track the validation
loss, see Appendix E for implementation details.

Downstream evaluations are performed on a disjoint
held-out test set shared across all tasks, |[D'**| = 2971.
For report generation, we extend this test set with samples
from healthy subjects (N = 815) to match the prevalence
of pathological studies used in prior work [14,25,45]. For
fine-tuning on temporal image classification, we use labels
from the Chest ImaGenome dataset [72] as in [37] (statis-
tics in Table F.2). In detail, we use the following bench-
mark datasets: (I) MS-CXR [10] for phrase grounding, (II)
the RSNA Pneumonia dataset [60, 70] to test zero-shot and
fine-tuned classification, (III) MS-CXR-T for temporal sen-
tence similarity and temporal image classification.

Comparison approaches We compare our approach to
other domain-specific SOTA pre-training frameworks [9,
32] specifically on phrase-grounding and zero-shot predic-
tive performance. The non-temporal BioViL framework [9]
is most similar to our approach and provides insight into
non-temporal pre-training. We additionally compare to in-
ternal ablations such as removing the past report during re-
port generation and masking prior images during phrase
grounding. For SOTA performance comparison, various
AR and nearest-neighbour (NN) based language decoding
approaches are used as baselines: IFCC [45], R2Gen [14],
CXR-RePaiR-2 [25], and CXR-RePaiR-Select [25].

For the temporal classification task, we compare against
a baseline exploiting the BioViL image encoder [9], and an
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Table 1. Results for report generation task: Predictions are
evaluated in terms of lexical (BLEU-4, ROUGE) and factual-
ity metrics (CHEXBERT, TEM). Approaches are grouped into
two broad categories: nearest-neighbour (NN) and auto-regressive
(AR). BioViL-T pre-training consistently yields improved decod-
ing. Further, the consistent performance gains of using prior im-
age and report demonstrate the importance of such domain priors.
‘PI/ PR’ indicate usage of prior image and report, respectively.

Method Pre-training PI/PR BLEU-4 ROUGE CHEXBERT TEM
CXR-RePaiR-2 [25] BioViL X1x 2.1 14.3 28.1 12.5
%\ Baseline (NN) [9]  BioViL Xix 37 20.0 283 111
Proposed (NN) BioViL-T VI X 4.5 20.5 29.0 13.0
Baseline (AR) [9] BioViL X1x 75+0.1 27.9+0.1 293+0.3 13.8+0.1
%‘ Proposed BioViL-T VI X 8201 287+0.1 302+07 16.0+03
Proposed BioViL-T I 92+03 29.6+01 31.7+£1.0 17.5:0.1

Table 2. Temporal image classification results (repeated for 4
random seeds) on the MS-CXR-T benchmark for fully-supervised
and zero-/few-shot (Z&F) learning settings, in terms of macro-
accuracy across the three classes for each finding. Affine regis-
tration is performed for the baseline method (denoted with suffix
‘w/reg’), to partially address the pose variations across scans.

Method (% of labels) Pre-train Consolidation Pl. effusion Pneumonia Pneumothorax Edema

| BioViL-T prompt (0%) Temporal — 53.6+1.9 59.7+2.1 58.0+3.9 349+10 64215

N| BioViL-T (10%) Temporal ~ 59.7 +2.4 624+14 60.1+2.1 353+26 62617
CNN + Transformer ImageNet 44.0+2.0 61.3+1.6 451+3.5 31.5+3.1  655+1.1

2| CheXRelNet [37] ImageNet 47 47 47 36 49

“Z| BioViL [9] Static 56.1+1.5 623+1.1 59410 41.7+28 67508

g BioViL w/reg [9] Static 56.0+1.5 63.0+09 60.2£0.7 425£27  671.5+09

| BioViL-T wout curation Temporal ~ 58.9 + 1.7 655+0.7 61.5+22 44421 674£08
BioViL-T Temporal  61.1+24  67.0:0.8 61.9+1.9 426+1.6 685+0.8

approach that makes use of graph convolutions across re-
gions of interest extracted from bounding boxes [37]. For
BioViL, we perform affine image registration (with 4 DoF)
for each pair of scans to cope with pose variations, and the
encoded images are concatenated along the feature dimen-
sion and classified via a multilayer perceptron. For [37],
we compare to the three-class setting. Lastly, we bench-
mark our final text model in isolation against domain spe-
cific SOTA models in a temporal sentence similarity task:
CXR-BERT [9] and PubMedBert [29].

Metrics Due to class imbalance, we report macro-
accuracy for temporal image classification. For phrase
grounding, we use mean Intersection-Over-Union (mloU)
and Contrast-to-Noise-Ratio (CNR) [9]. The latter mea-
sures the discrepancies between cosine similarities inside
and out of the bounding box region without requiring hard
thresholds. To evaluate the quality of generated reports,
we use both the standard lexical metrics, e.g., BLEU [50],
ROUGE-L [41], and also domain-specific factuality metric:
CheXbert® [62]. To directly probe the generation of change-
related information, we introduce a new metric called tem-
poral entity matching (TEM) to compute the match score of
a fixed set of temporal entities (see Appendix D).

SThe average of the weighted-F) score across 14 pathological observa-
tions labelled by CheXbert.

Table 3. Report generation results using the same train/test
splits from [25], measured by lexical (BLEU-2) and factuality
(CHEXBERT) metrics. Baseline results were also collected from
[25]. Note the CHEXBERT score covers all 14 observations.

Method Decoded sections BLEU-2 CHEXBERT
R2gen [14] Findings & Impression ~ 21.20 + 0.10 14.80 + 0.30
IFCC [45] Findings 21.70 £ 0.10 27.00 + 0.40
CXR-RePaiR-Sel [25]  Impression 5.00 £ 0.10 27.40 £ 0.30
BioViL-T Impression 15.86 £ 0.14 3483 £0.73
BioViL-T Findings & Impression ~ 21.31 £0.19 35.86 + 0.35

4.1. Temporal pre-training yields data efficiency

‘ Downstream tasks are enabled with minimal labels.

The sections ‘NN’ and “Z&F’ on Tables 1 and 2 report
zero- and few-shot performance on tasks benefitting from
temporal information: temporal image classification and re-
port generation. Here we measure the quality of the learnt
joint latent space and the extent to which BioViL-T enables
efficient use of raw data. For zero-shot classification we
prompt the AR fine-tuned model with prefix: “[FINDING]
is” and compare the next-token probability of words mean-
ing ‘improving’, ‘stable’, and ‘worsening’ (Appendix F.4).

Without using any labelled data, Table 2 shows that the
proposed AR-based approach already yields performance
superior to prior fully-supervised work [37] on temporal
image classification. With only 10% of labels, classifi-
cation fine-tuning provides a further boost, indicating that
BioViL-T produces a multi-image encoder readily adapted
to temporal tasks. Similarly, in a zero-shot report-retrieval
setting, the findings show that compared to temporally-
agnostic pre-training, BioViL-T leveraging prior images
improves across all metrics. Consistent with prior work
[25], the retrieved reports already preserve factuality with
high CheXbert scores, more-so than the other metrics which
measure fine-grained specifics of phrasing. This demon-
strates that the latent space captures the high-level seman-
tics of the clinical features. Fine-grained phrasing however
will be substantially improved by AR fine-tuning.

4.2. Achieving SOTA performance with BioViL-T

A wide range of downstream tasks benefit substantially
Jfrom temporally-aware pre-training.

Through downstream adaptations and fine-tuning our
model, we report SOTA performance on report generation
and temporal image classification tasks. For the former, us-
ing both prior images and reports during fine-tuning sub-
stantially improves across metrics (Table 1). In particular,
TEM metric results show that temporal context is key for
accurately describing change in the generated report while
avoiding hallucinations (see Table A.1 for examples). Com-
paring to published results on a comparable test split and



Table 4. Image classification results on RSNA Pneumonia Detection
Benchmark [60] for train and test splits of 70% — 30% respectively.

Table 5. Results on MS-CXR benchmark [10] (5-runs with different
seeds), “Multi-image” column indicates the input images used at test time.

Method % of Labels  Supervision  Acc. F1 AUROC
GLoRIA [32] X Zero-shot 0.70 0.58

BioViL [9] X Zero-shot 0.732 0.665 0.831
BioViL-T X Zero-shot 0.805  0.706 0.871
BioViL [9] 1% Few-shot 0.805 0.723 0.881
BioViL-T 1% Few-shot 0.814  0.730 0.890

metrics (Sec. 4.1), we conclude that BioViL-T with fine-
tuning achieves SOTA on report generation, producing re-
ports that are lexically on par with prior work but substan-
tially more factually accurate. Note that we do ‘vanilla’
AR fine-tuning to focus on the impact of the pre-trained
encoders, so application-specific supervision [45] could be
used in conjunction to further boost performance.

In temporal image classification (Tab. 2), BioViL-T pre-
training outperforms the non-temporal baseline (BioViL)
and improves on previously-reported results [37] by up to
20 percentage points (pp). Furthermore, baseline meth-
ods that rely on image registration (BioViL w/reg), under-
perform compared to the proposed approach. Further anal-
ysis reveals that errors tend to be in cases with disagreement
between radiologists (Appendix A.2). We also note that pre-
training is critical for a hybrid CNN-transformer model on
this task, likely due to the small labelled dataset. Lastly, cu-
ration of temporal training data is observed to improve the
classification results by .68 pp aggregated across the find-
ings, see Appendix A.4 for details.

4.3. Static tasks benefit from temporal learning

BioViL-T broadens the range of applicable downstream
tasks whilst contributing to performance on static tasks.

In this section, we demonstrate that performance im-
provements afforded by BioViL-T are not restricted to tem-
poral tasks — static tasks also benefit. Table 4 reports results
on zero- and few-shot pneumonia classification from sin-
gle images [60], where BioViL-T establishes a new SOTA
compared to prior work [9,32].

We see a similar trend on the MS-CXR phrase grounding
benchmark (Tab. 5). This task can be solved with single
images, however we show that the inclusion of the prior
image (where available) does not impair the performance
of BioViL-T. Feature decomposition effectively preserves
localised information from the current image.

4.4. Towards better sentence embedding quality

Language models acquire increased temporal sensitivity.

We hypothesise that text encoders learn temporal seman-
tics through supervision from longitudinal image series. To
verify this, RadNLI [45] and MS-CXR-T datasets are used
in a zero-shot binary classification setting. Cosine similarity

Method Multi-Image  Avg. CNR Avg. mIoU

BioViL [9] X 1.07 £ 0.04  0.229 + 0.005
+ Local loss [9,32] X 1.21 +£0.05 0.202 + 0.010
BioViL-T X 1.33 £+ 0.04  0.243 = 0.005
BioViL-T v 1.32 + 0.04  0.240 + 0.005

Table 6. Results on MS-CXR-T sentence similarity benchmark.

MS-CXR-T (361 pairs) RadNLI (145 pairs)

Text Model Accuracy ROC-AUC  Accuracy ROC-AUC
PubMedBERT [29]  60.39 542 81.38 127
CXR-BERT-G [9] 62.60 .601 87.59 902
CXR-BERT-S [9] 78.12 .837 89.66 932
BioViL-T 8777 +0.5 .933+.003 90.52+1.0 .947 +.003

of sentence pair embeddings [56] are treated as class-logits
to label each pair either as paraphrase or contradiction. See
Appendix F.6 for further details.

Our text model is benchmarked against SOTA domain-
specific BERT models. Table 6 shows that the proposed
framework greatly increases the sensitivity of sentence em-
beddings to temporal content whilst better capturing the
static content (RadNLI). Note that CXR-BERT-Specialised
[9] is learnt through single-images starting from the same
canonical model, illustrating the substantial increase in tem-
poral and static sensitivity due to BioViL-T pre-training.

4.5. Ablation experiments

In Table 7 we report extensive ablations across the multi-
image encoder architecture, pre-training choices, and AR
fine-tuning for report generation.

Image encoder Table 7 shows that decomposition of
static and progression features is essential to ensure good
performance on single-image tasks, such as phrase ground-
ing. For temporal representations, on the other hand, posi-
tional encodings ('T') are essential to disambiguate the order
of scans, i.e., permutation variance across time.

Model pre-training The corresponding results are shown
in the middle section of Table 7. The local contrastive loss
proves crucial to ensure meaningful language supervision
during pre-training, followed by the image-guided MLM
objective. Lastly, use of the FINDINGS section results in
only minor performance gains as the key findings are al-
ready captured in the IMPRESSION section.

Report generation The importance of prior image and
report is demonstrated by the substantial drop in the “no
prior image and report” ablation, confirming our hypothesis
that temporal context is crucial for improving report qual-
ity. While both inputs are crucial for optimal performance,



Table 7. Ablation study on image encoder, pre-training settings,
and report generation (one component at a time, and repeated for
4 random seeds). Note that for temporal classification, linear prob-
ing is applied to frozen image embeddings. In report generation,
the baseline method is fine-tuned with both prior image and report.

Ablation Avg. CNR (mloU) Pl Effusion Acc.
_a;a' Baseline 1.33 £ 0.02 (.248) 64.8 £ 0.6
8| - Temporal pos. encoding 1.32 + 0.02 (.242) 629+ 1.0
5| - Feature decomposition 1.11 £ 0.08 (.203) 64.0 £ 0.6
}_“ Baseline 1.33 + 0.02 (.248) 64.8 £ 0.6
.g — Use of findings section 1.32 + 0.01 (.246) 63.8 +£0.8
=| = MLM loss 1.28 £+ 0.02 (.238) 63.2 £0.7
;‘:) — Local contrastive loss 1.18 £ 0.02 (.236) 60.2 + 0.6

Ablation ROUGE TEM
=.‘ Baseline 29.64 + 0.08 17.54 £ 0.11
g — Prior image 29.35+0.25 16.30 + 0.40
E‘ — Prior report 28.67 £ 0.12 16.00 + 0.30
& — (Prior image and report) 27.78 + 0.09 13.65 + 0.48
& - Separation token 26.00 + 0.40 15.50 + 1.06

the prior report is more so because it summarises the im-
age and provides a clearer signal. The prior image however
cannot be dismissed entirely as it provides granular details
which may not always be documented in a report. Finally,
we found the separation token is crucial in differentiating
between the predicted tokens for the current report and to-
kens from the prior report.

4.6. Which tokens require a prior image in MLM?

We leverage the MLLM objective in an inference setting to
analyse the influence of prior images in predicting masked
tokens. Inspired by the A image loss of [8], we define
A, asthe change in loss by conditioning the estimation
with a prior image for a given token w as follows:

APYT (w) = U(w, x{r, @) = 1w, x{0r, xP0) - (2)

where [(w, xS0 xPror

img > Ximg ) is the cross-entropy of predicting
the masked token w given visual features (MLM loss for a
single token), averaged over sentences in which w appears.
Aps is a measure of how much that token benefits from
access to the prior image, as well as an assessment of the
contribution of the prior image to the image representation.
In Figure 4 we show the distribution of AP/®" as a func-
tion of token category (e.g., Anatomy, Positional; see F.5 for
annotation details). For Progression-type terms in particu-
lar, the model heavily relies on the prior image for image-
guided MLM. We further observe that this effect is specific
to temporal tokens; as expected, those from other semantic

categories do not consistently rely on the prior image.

5. Conclusion

In this paper, we introduced BioViL-T, a vision—
language pre-training framework enabling alignment be-
tween text and multiple images. BioViL-T makes use of
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Figure 4. Mean token-level increase in image-guided MLM loss
when prior image is discarded, grouped by token category. The
prior image is excluded during inference to measure its impact
on masked token predictions. Progression tokens are significantly
better predicted when prior images are incorporated into image
embeddings. The top five Progression tokens are ‘persist’, ‘im-
proving’, ‘remains’, ‘unchanged’, and ‘residual’.

a novel multi-image encoder and explicitly decomposes
static—temporal features to augment the current image rep-
resentation with information from prior images. This en-
ables the grounding of temporal references in the text. To
our knowledge, this is the first method capable of lever-
aging the temporal content commonly present in biomed-
ical text. It addresses an important limitation in existing
VLP approaches, which simply discard such context. Also,
incorporating such multi-modal temporal content provides
strong learning signals to the model, resulting in richer rep-
resentations and improved downstream performance.

We demonstrate the value of this paradigm through ex-
tensive experiments: BioViL-T excels on both static and
temporal tasks, establishing new SOTA on report genera-
tion, temporal image classification, few/zero-shot pneumo-
nia detection, and phrase grounding. Furthermore, we re-
lease a new multi-modal benchmark (MS-CXR-T) to mea-
sure the quality of image and text representations in terms
of temporal semantics, enabling more diverse evaluation
of biomedical VLP models. The corresponding model
weights® and code’ are publicly available.

Further exploration and evaluation are required on di-
verse datasets to characterise what kinds of tasks would
benefit from a temporal modelling approach, and specifi-
cally from the proposed methodology.
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%Models can be found at: https://aka.ms/biovil-t-model
7Code can be found at: https://aka.ms/biovil—t-code
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A. Additional Results and Analyses
A.1. Qualitative analysis of generated reports

Table A.1 shows example reports generated with
BioViL-T and BioViL models, which are compared to the
reference radiologist’s reports. In comparison with BioViL
which only models the current image, BioViL-T shows the
benefit from incorporating prior study information and is
able to provide factually more accurate reports especially
in terms of describing temporal progression of the findings.
This is showcased in the first two examples in the table: In
the first row, BioViL-T is able to comment on not only the
presence of the pleural effusion but also its improvement
while BioViL fails to mention the change. In the second
example, BioViL-T is able to correctly identify that there is
no relevant change by comparing with the previous study,
while BioViL wrongly hallucinates the tube in the current
image as a new placement. BioViL-T can also avoid hallu-
cination of the temporal information when there is no prior
study. For instance, in the third example, BioViL-T cor-
rectly acknowledges that there is no prior image and gen-
erates the report based on information from the single cur-
rent image, while BioViL hallucinates a non-exisistent prior
study and wrongly generates temporal descriptions in the
report.

A.2. Further analysis on temporal classification

A subset of the MS-CXR-T benchmark dataset is re-
annotated by an expert radiologist by blinding them to the
existing ground-truth labels and displaying only pairs of im-
ages obtained from each subject. With the new set of labels,
the analysis focuses on measuring the correlation between
inter-rater agreement and image model’s prediction errors.
Figure A.1 shows the dependency between the two where
the x-axis corresponds to the cross entropy loss between the
MS-CXR-T benchmark labels and model predictions. We
observe lower model performance on cases with smaller
inter-rater reliability for the three classes in the dataset, in-
dicating that the model’s prediction errors occur more often
for the cases where experts may disagree with each other.

A.3. Self-attention visualisation

In Figure A.2, we show examples of self-attention roll-
out [1] maps for pleural effusion and consolidation, includ-
ing radiologist-annotated bounding boxes surrounding the
corresponding pathology in each prior and current image.

To model the attention flow through the transformer en-
coder block, we first average each attention weight matrix
across all heads, subsequently we multiply the matrices be-
tween every two layers. For every block we add the identity
matrix in order to model the residual connections. Last, we
only keep the top 10 % of attention weights per block to re-
duce noise in the final rollout map. In contrast to [21], we
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Figure A.1. Cross entropy between model predictions and

MS-CXR-T temporal classification labels. ‘Disagreement’ indi-
cates cases for which annotations differed amongst radiologists.
Model performance is higher for cases with with low ambiguity
(‘Agreement’).

do not visualize the rollout map with respect to a [CLS]
token. Instead, we choose a reference image patch from the
center of the radiologist-annotated bounding boxes, marked
with * in Figure A.2.

We find that the rollout maps in Figure A.2 are in good
agreement with radiologist-annotated bounding boxes, i.e.,
the reference patch attends to other patches within the
bounding boxes in the prior and current image. In addition,
we find that BioViL-T is robust to pose variations, e.g., in
Figure A.2 (a) we show that despite the vertical shift be-
tween prior and current image, the reference patch attends
to the correct image patches in the prior image.

To further assess the robustness of BioViL-T against
pose variations between prior and current images, we per-
formed multiple rotations to the prior image within a pair
and computed rollout maps from the same reference patch
in the current image. Figure A.3 shows that BioViL-T con-
sistently attends to the corresponding anatomical region in-
dependently of the spatial transformation applied, demon-
strating that registration is not needed.

A.4. Data curation of imaging datasets

Large datasets often contain instances that are misla-
belled or out of distribution [35]. We used BioViL-T to per-
form pairwise ranking of instances in MIMIC-CXR (Sec-
tion 3.3, § = 0.2) and selected representative examples
found in the dataset. Our method is able to select the most
appropriate image for a range of different image-acquisition
or image-processing issues (Figure A.4).

We found that many lateral acquisitions in the dataset
were unexpectedly labelled as frontal (Figure A.4a). Some
images contained only noise (Figure A.4b), non-human
samples (Figures A.4d and A .4e) or incorrect anatomy (Fig-
ure A.4g). Often, acquisitions with an incomplete field of
view (FOV) (i.e., the lungs are not completely visible) were
repeated (Figure A.4c). Lastly, post-processed images were



Reference (by radiologist)

BioViL

BioViL-T

No evidence of acute cardiopul-

monary process. Decreased

right pleural effusion.

Small right pleural effusion.

Small right pleural effusion,

decreased | since _.

No relevant change‘ as com-
pared to the previous image. No
evidence of pneumonia or other
parenchymal pathology. Normal
size of the heart. No pleural
effusions.

with the study of _, there has

been of a right ij port - a - cath that
extends to the lower svc. No evidence of post
procedure pneumothorax. The cardiac silhouette
is within normal limits and there is no vascular
congestion or pleural effusion. There is some
asymmetry of opacification at the bases, more
prominent on the left. In the appropriate clinical
setting, this could possibly represent a develop-
ing consolidation.

As compared to the previous ra-
diograph, | no relevant change | is
seen. The lung volumes are nor-
mal. Normal size of the car-
diac silhouette. Normal hilar and
mediastinal structures. No pneu-
monia, no pulmonary edema, no
pleural effusions.

No previous images | The car-

diac silhouette is within normal
limits and there is no evidence of
vascular congestion, pleural effu-
sion, or acute focal pneumonia.

with the study of _, there is

little change | and no evidence of acute car-

diopulmonary disease. No pneumonia, vascular
congestion, or pleural effusion.

No previous images | The car-

diac silhouette is within normal
limits and there is no vascular
congestion, pleural effusion, or
acute focal pneumonia.

Table A.1. Comparison between reports generated by radiologists, BioViL using only a single current image and BioViL-T using both
the current and previous study. BioViL-T with access to longitudinal information can generate more accurate reports with more precise

details on the progression of findings (as in the first and second example) while avoiding hallucination (in the third example).
highlights the correct temporal information and highlights incorrect temporal information including hallucination.

Prior image Current image

Prior image

Current image Prior image Current image

B i

(a) Example of improving pleural effusion (b) Example of stable pleural effusion (c) Example of worsening pleural effusion

Prior image Current image Prior image Current image

Prior image

Current image

Rer N =

! e
(f) Example of worsening consolidation

(d) Example of improving consolidation

(e) Example of stable consolidation

Figure A.2. Self-attention rollout maps [1] from the reference patch (marked with *) to the current and prior images, overlaid on example
cases of (a) improving, (b) stable and (c) worsening pleural effusion (top row) and consolidation (bottom row). The bounding boxes,
annotated by a radiologist, show the area corresponding to the pathology. The centre patch in the bounding box for the current image was
selected as reference. The grid (14 x 14) represents the visual tokens processed in the transformer encoder blocks.
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Prior image

Current image

Prior image

(a) Previous image rotated -30°

(b) Original pair

Current image

Prior image

Current image

(c) Previous image rotated 30°

Figure A.3. Comparison of roll-out maps computed after applying in-plane spatial rotations to the prior image. The reference visual token
() attends to the corresponding anatomical region annotated by an expert independent of the underlying spatial transformation.

detected by the algorithm such as contrast-enhanced scans
(Figure A.41) that are not often used for diagnostic purposes
in clinical practice.

A.5. Phrase-grounding on external data

We have additionally conducted a robustness analysis on
an out-of-distribution dataset. For this purpose, a small set
of expert labels (N=137 bounding-box—caption pairs) were
collected on Open-Indiana CXR dataset [18] for phrase
grounding on the same set of abnormalities as MS-CXR
benchmark [10]. The dataset differs in terms of text token
distribution, demographics, and disease prevalence. The ex-
periment was performed with the same methods and setup
described in Section 4.3. The results show that the perfor-
mance gains due to temporal pre-training is observed to be
consistent on external datasets.

Table A.2. Multi-modal phrase-grounding results obtained on
a subset of Open-Indiana CXR dataset [18] image-text pairs.
“Multi-image” column indicates the input images used at test time.
The results are reported in terms of micro-averages owing to the
limited number of samples in some classes.

Method Pre-Train  Multi-Image Avg. CNR Avg. mloU
BioViL [9] Static X 1.19 £ 0.04  0.259 + 0.003
BioViL-T Temporal X 1.53 £0.05  0.289 + 0.006

B. Temporal aspects of the MIMIC-CXR v.2
dataset

Subjects in the MIMIC-CXR dataset often have multi-
ple associated studies that happened at different times. A
study, sometimes referred to as an ‘exam’ or ‘procedure’,
refers to “one or more images taken on a single visit to a
medical facility”®. To assess pathology progression, radi-
ologists compare images (also referred to as ‘scans’ or ‘se-
ries’) from different studies. In the MIMIC-CXR dataset,
each study (with one or more images) is accompanied by the
report written by the radiologist. Figure B.1 represents the
distribution of studies per subject within MIMIC-CXR and

8 Adapted from https://ncithesaurus.nci.nih.gov/
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the corresponding cumulative distribution function, show-
ing that 67 % of the subjects have at least two different as-
sociated studies (and therefore at least two images acquired
at different stages of the disease).

Another way to quantify temporal information in
MIMIC-CXR is through the progression labels provided
by the Chest ImaGenome dataset [72]. These progression
labels are extracted from the reports and thus identify the
cases when the radiologist explicitly describes changes. We
found that in MIMIC, around 40 % of the reports are as-
sociated with a progression label from any of the available
findings defined by ImaGenome.

C. MS-CXR-T benchmark
C.1. Temporal image classification

The MS-CXR-T temporal image classification contains
progression labels for five findings (Consolidation, Edema,
Pleural Effusion, Pneumonia and Pneumothorax) across
three progression classes (Improving, Stable, and
Worsening). This benchmark builds on the publicly
available Chest ImaGenome gold and Chest ImaGenome
silver datasets [72] which provide progression labels auto-
matically derived from radiology reports. We collected a set
of studies that are part of the ImaGenome silver dataset, ex-
cluding any studies that had been previously verified as part
of the ImaGenome gold dataset. Additionally, we excluded
studies where there are multiple progression labels for a sin-
gle pathology (e.g. left pleural effusion has increased, right
pleural effusion remains stable). We conducted a review
process of the selected candidates, asking a board certified
radiologist to either accept or reject the label. To inform
their review of the labels, the radiologist was given access to
the radiology report for the current image, and the sentence
from which the auto generated label had been extracted.

After collecting our curated labels and labels from the
ImaGenome gold dataset, we matched the report-based la-
bels to specific image pairs, performing a second data cu-
ration step to create the image dataset. To ensure the di-
agnostic quality of all images in the dataset, if a study had
multiple frontal scans we performed a quality control step
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(a) Incorrect view

(f) Inverted intensities (g) Non-chest sample

(c) Incomplete field of view

(d) Non-human sample

(j) Processing artefacts

(h) Image orientation

(i) Post-processed image

Figure A.4. Pairwise ranking of images performed by the proposed data curation method (see Section 3.3) on images from the MIMIC-
CXR v2 dataset. Images highlighted with dashed green rectangles are automatically selected by our method and used for training to
improve model’s downstream performance. The rejected image samples may not be appropriate for training due to image acquisition or

image processing issues as shown in each subfigure above.
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Figure B.1. Number of studies per subject in the MIMIC-CXR
dataset. A study, sometimes referred to as an ‘exam’ or ‘proce-
dure’, refers to “one or more images taken on a single visit to
a medical facility” (adapted from https://ncithesaurus.
nci.nih.gov/). Note that 67 % of subjects have at least two
studies that happened at different times.

asking a radiologist to select the best image for each study.
Fig. F.1 shows examples from the benchmark across differ-
ent pathologies and progression labels.

The class distribution for the image classification task in
MS-CXR-T is shown in Tab. C.1. As seen in the table, the
class distribution of the dataset skews towards the stable
and worsening classes. This could be explained as pa-
tients are more likely to get a chest X-ray scan when their
condition is stable or deteriorating as opposed to when there
is an improvement in patient condition.

C.2. Temporal sentence similarity

In this section, we describe the process of creating the
MS-CXR-T temporal sentence similarity benchmark, which
consists of pairs of paraphrase or contradiction sentences in
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Table C.1. MS-CXR-T temporal image classification benchmark:
Showing the distribution of multi-image studies across different
clinical findings, distribution of classes { Improving, Stable,
Worsening} per finding, and number of subjects.

Findings # of annotation pairs Class distribution # of subjects
Consolidation 201 14% 1 42% | 44% 187
Edema 266 31%/26% 1 43% 241
Pleural effusion 411 19% /1 49% | 32% 370
Pneumonia 237 8% 125% 1 67% 218
Pneumothorax 211 15% 155% | 30% 148
Total 1326 18% /1 40% | 42% 800

Table C.2. MS-CXR-T temporal sentence similarity benchmark:
Number of paraphrase and contradiction examples in the full
dataset and across the RadGraph and Swaps subsets.

Subset # of paraphrase pairs # of contradiction pairs Total
Radgraph 42 75 117
Swaps 99 145 244
Total 141 220 361

terms of disease progression. We create this dataset using
two different methods, RadGraph where paraphrase and
contradiction sentence pairs are discovered by analysing
graph representations of sentences and Swaps where para-
phrases and contradictions are created by swapping out tem-
poral keywords in the sentence.

To create this dataset, we first collected a set of sentences
from the MIMIC dataset, using the Stanza constituency
parser [82] to extract individual sentences from reports. Us-
ing the CheXbert labeller [63], we filtered this set to sen-
tences that described one of seven pathologies - Atelecta-
sis, Consolidation, Edema, Lung Opacity, Pleural Effusion,
Pneumonia or Pneumothorax. We then filtered to sentences
which contained at least one mention of a temporal key-
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Table C.3. Examples of paraphrase and contradiction sentence pairs from the MS-CXR-T temporal sentence similarity benchmark. The
examples are selected from the RadGraph and Swaps subsets (see Appendix C.2).

Label Sentence 1

Sentence 2

Paraphrase “Unchanged small-to-moderate right pleural effusion.”

Contradiction “Interval worsening of the right-sided pneumothorax.”

“Stable small-to-moderate right pleural effusion.”

“Interval resolution of the right-sided pneumothorax.”

Paraphrase

Contradiction

RadGraph | Swaps

“There has also been a slight increase in left basal consolidation.”

“Right mid and lower lung consolidations are unchanged.”

“There is slight interval progression of left basal consolidation.”

“There has been worsening of the consolidation involving the right
mid and lower lung fields.”

word. Using this sentence pool, paraphrase and contradic-
tion pairs were constructed in two ways. (I) We paired sen-
tences from the sentence pool by matching on RadGraph
[34] entities, relaxing the matching constraint only for tem-
poral keywords and possible mentions of pathologies. (II)
We swapped out temporal keywords in a sentence to cre-
ate sentence pairs, choosing swap candidates from the top 5
masked token predictions from CXR-BERT-Specialized [9]
provided they were temporal keywords. After creating can-
didate sentence pairs, we manually filtered out sentence
pairs with ambiguous differences in terms of disease pro-
gression. A board certified radiologist then annotated each
sentence pair as either paraphrase or contradiction. Sen-
tences were filtered out in the annotation process if (I) they
were not clear paraphrases or contradictions (II) the sen-
tences differed in meaning and this difference was not re-
lated to any temporal information (IIT) they were not gram-
matically correct. The distribution of sentence pairs across
the paraphrase and contradiction classes are described in Ta-
ble C.2, see Table C.3 for examples from the benchmark.

D. Temporal entity matching

To quantify how well the generated report describes
progression-related information, we propose a new metric,
namely temporal entity matching (TEM) score.

D.1. Metric Formulation

We first extract entities (tagged as “observation” or “ob-
servation_modifier”’) from the text by running the named en-
tity recognition model in the Stanza library [82]. Within the
extracted entities, we manually curated a list of temporal
entities that indicate progression (Appendix D.2). The list
is reviewed by an expert radiologist. Given extracted tem-
poral entities &2 in N pairs of reference and generated re-
ports, we calculate global precision (pg) and global recall
(rg), which are later used to compute the TEM score. It is
defined as the harmonic mean of precision and recall (also
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known as the F1 score).

N 7 %
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D.2. List of temporal keywords

The list of temporal keywords used to compute the TEM
score are as follows: {bigger, change, cleared, constant,
decrease, decreased, decreasing, elevated, elevation, en-
larged, enlargement, enlarging, expanded, greater, growing,
improved, improvement, improving, increase, increased,
increasing, larger, new, persistence, persistent, persisting,
progression, progressive, reduced, removal, resolution, re-
solved, resolving, smaller, stability, stable, stably, un-
changed, unfolded, worse, worsen, worsened, worsening,
unaltered}.

E. Architecture and implementation details
E.1. Hyper-parameters

The models are trained in a distributed setting across 8
GPU cards. For pre-training, we use a batch size of 240
(30 * 8 GPUs) and the AdamW optimizer [43]. We use a
linear learning rate scheduler with a warm-up proportion of
0.03 and base learning rate of 2 x 107>, We train for a max-
imum of 50 epochs and use validation set loss for check-
point selection. The overall loss is a sum of components
with weighting factors: global contrastive (1.0), local con-
trastive (0.5), and image-guided MLM (1.0) respectively,
see Sec. 3.1 for further details on their formulation.

Following [9] we use sentence permutation as text-based
data augmentation. Similarly, spelling errors in the reports
are corrected prior to tokenisation of the text data’. For
image augmentations, note that we apply the same augmen-
tation to current and prior images to prevent severe mis-
alignment. We resize the shorter edge to 512 and centre-
crop to (448, 448). We apply random affine transformations

https://github.com/farrell236/mimic-cxr/blob/
master/txt/section_parser.py


https://github.com/farrell236/mimic-cxr/blob/master/txt/section_parser.py
https://github.com/farrell236/mimic-cxr/blob/master/txt/section_parser.py

(rotation up to 30° and shear up to 15°) and colour jitter
(brightness and contrast).

E.2. Training infrastructure

We train with distributed data processing (DDP) on eight
NVIDIA Tesla V100s with 32GB of memory each. To han-
dle inconsistently-present prior images with DDP, we define
a custom batch sampler. This sampler is a mixture of two
samplers, in proportion to their dataset coverage: a sam-
pler which produces batches with only multi-image exam-

curr xPHOT x¢Mr) € D, and one with only single-

ples — (X{ng » Ximg

image examples — (X{1o', @, X¢yp ") € Ds. Each GPU then
processes a batch which is entirely single or multi-image,
avoiding branching logic within the forward pass and en-
abling an efficient single pass through the CNN to process
all input images (current or prior) by concatenating them
along the batch dimension.

We confirmed that although the custom sampler theoret-
ically impacts the order in which the dataset is traversed,
it has a negligible effect on training metrics relative to fully
random sampling. Since we train on eight GPUs and collect
negatives across all GPUs during contrastive training, each
update involves on average a representative mixture of both
single-image and multi-image samples.

Finally, following [9] we use the DICOM images from
MIMIC-CXR to avoid JPEG compression artefacts.

F. Adaptation and experimentation details
F.1. Fine-tuning BioViL-T for report generation

During fine-tuning of BioViL-T for report generation,
we minimise the cross entropy loss to maximise the log like-
lihood of the report in an autoregressive manner given the
input images. The model is initialised from the pretrained
weights of the image encoder and the text encoder. Sim-
ilar to the cross-modal masked language modelling task,
we additionally train a linear projection layer to map the
projected patch embeddings to the same hidden dimension
of the text encoder, and we train cross-attention layers in
each transformer block. The difference from the masked
language modelling task is that we change the bidirectional
self-attention to unidirectional causal attention that can only
access the past tokens. If trained with prior report, we pass
the prior report as prefix to condition the generation of the
current report (the current and prior report are separated by
[SEP]), and we only back-propagate the gradients from
the loss on the tokens in the current report.

For all experiments, we train the model for 100 epochs
and we chose the best checkpoint according to metrics on
the validation set. We performed grid search for learning
rate in [107°,2 x 107°,5 x 107°] and found 2 x 10~° to be
optimal. We ran each experiment with 3 random seeds and
report mean and standard deviation.
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Table F.1. Results for report generation task: Predictions are
evaluated on NEM. The approaches are grouped into two broad
categories: NN (Nearest Neighbour) and AR (Auto-Regressive).
BioViL-T pre-training consistently yields superior decoding per-
formance. Further, the use of prior image and report consistently
yield performance gains demonstrating the importance of such do-
main priors.

Method Pre-training Prior Img/Report NEM
CXR-RePaiR-2 [25] BioViL X1x 13.36
%‘ Baseline (NN) [9]  BioViL XX 16.25
Proposed (NN) BioViL-T I X 17.55
Baseline (AR) [9]  BioViL XX 24.27+0.22
E‘t‘ Proposed BioViL-T /11X 25.50 + 0.04
Proposed BioViL-T I 26.95 +0.17

In addition to the metrics we reported in the main text,
we also evaluate the generated reports by named entity met-
ric (NEM). This metric was defined in [45] to measure the
accuracy of reporting clinically relevant entities in the gen-
erated reports (Similar to how TEM is computed to measure
the match of temporal entities in our study). Following [45],
we extract entities (tagged as “observation” or “observa-
tion_ modifier”’) from the text by running the named entity
recognition model in the Stanza library [82]. The results are
presented in Tab. F.1.

F.2. Nearest-neighbour-based report retrieval

The joint latent space learnt by BioViL-T can also be
used to directly perform report retrieval without requiring
task-specific model fine-tuning. Given the test image, we
retrieve its semantically closest report from the training set
in the joint latent space. Specifically, we encode each test
image with the image model in BioViL-T and collect its
projected image embeddings, and similarly we encode all
the reports in the training data with their projected text em-
beddings. For each test study, we compute cosine similarity
between the test image embedding and all the text embed-
dings from the training set in the joint latent space, and we
retrieve the closest text embedding and use its correspond-
ing report as the prediction. To evaluate the retrieval perfor-
mance, we use the same decoding metrics on the retrieved
reports and report results in the top section of Table 1.
In a separate set of experiments, we also tried performing
nearest neighbour search only within the image embedding
space by retrieving the report associated with the closet im-
age embedding, but this yielded sub-optimal performance
compared with using the joint latent space.

F.3. Fine-tuning for temporal image classification

In this section, we describe the training dataset and fine-
tuning procedure for the fully supervised and few-shot set-
tings of the temporal image classification task. For this task,
we finetune BioViL-T on a subset of the Chest ImaGenome



silver dataset [72] to predict progression labels for 5 differ-
ent pathologies. To create our training dataset, we filter out
image pairs from this dataset where there are multiple di-
rections of progression of a single pathology in the image-
pair. We additionally perform an automatic data curation
step to choose higher quality image pairs when possible, as
described in 3.3. Table F.2 shows the number of training
samples and label distribution for the training dataset.

Table F.2. Statistics of the training dataset used for downstream
fine-tuning on temporal image classification.

Findings # labelled pairs Class distribution # of subjects
Consolidation 7012 15% 1 42% | 43% 3308
Edema 14170 28% /33% /1 39% 4813
Pleural effusion 26320 16% /53% 1 31% 6838
Pneumonia 8471 12% 129% | 59% 4197
Pneumothorax 3795 21% /57% 1 22% 1161

For the fully supervised setting, we add a multilayer clas-
sification head to the BioViL-T image encoder and fine-
tune the model independently for each pathology. We use
weighted cross entropy loss with a batch size of 128 and
the AdamW optimizer [43]. During parameter optimisation,
positional encodings and missing-image embeddings are
exempt from weight decay penalty as in [73]. We train for
30 epochs, with a linear learning rate schedule, a warmup
proportion of 0.03 and a base learning rate of 1 x 10~°. For
data augmentation, we first resize the shorter edge of the im-
age to 512 and centre crop to (448, 448). We apply random
horizontal flips, random cropping, random affine transfor-
mations (rotation up to 30°, shear up to 15°), colour trans-
forms (brightness and contrast) and Gaussian noise.

For the few-shot setting we tune only a single-layer lin-
ear head on the BioViL-T image encoder and freeze the rest
of the encoder. We initialise the weight matrix of the linear
head with values from encoded text prompts [9] for each
of the three progression classes, and the bias matrix is ini-
tialised with zeros. To train, we again use weighted cross
entropy loss, with a batch size of 32 and the AdamW opti-
mizer. We use a learning rate of 1 x 1073 and train for 40
epochs. For data augmentation, we resize the shorter edge
of the image to 448 and center crop to (448, 488). We ap-
ply random horizontal flips, random affine transformations
(rotation up to 45° and shear up to 25°), colour transforms
(brightness and contrast). As in the pre-training step, we
always synchronise image data augmentations to apply the
identical transforms to the current and prior images.

F.4. Auto-regressive prompting for zero-shot tem-
poral image classification

Following the GPT-3 style language prompting [11], we
prompt the fine-tuned AR language decoding model with
the template: “[FINDING] is” and infer the next token
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Table F.3. Prompting the AR language decoding model for zero-
shot image classification. The list above shows the mapping from
decoded tokens to progression classes.

Target class Tokens

Improving better, cleared, decreased, decreasing, im-
proved, improving, reduced, resolved, re-
solving, smaller

Stable constant, stable, unchanged

Worsening bigger, developing, enlarged, enlarging,

greater, growing, increased, increasing,
larger, new, progressing, progressive,
worse, worsened, worsening

to perform temporal classification for each of the five find-
ings. The mapping from the predicted next token to the
three progression classes is characterised by a short list of
tokens provided in Table F.3. After computing the posterior
for each token in the list, the obtained values are normalised
across the three classes, and the class with the highest score
is selected as the prediction. The corresponding results are
reported in Table 2.

F.5. Further analysis of image-guided MLM

In Section 4.6 we used a simplified notation for the
computation of AP (m) for ease of exposition — here

we provide further detail. Recall that w = (w1,...,was)
is a sequence of tokens and wy,, is that sequence
with token m masked. Let pg(Wy, | Wym, X1y, fr;‘g’")

be the text model’s predicted probability of token m

given xicl‘r‘fg,xfr:;r, and wy,,, (0 are the weights of the
model).  Then, I(w,po(Wm |W\m, X{hg Xipe )) is the

cross-entropy loss of predicting token m given those inputs.

It is possible for different sentences in a report to refer
to the same image finding. Since we mask single tokens
at a time, to prevent information leakage from other sen-
tences we consider each sentence in a report independently.
Suppose report xgy;" consists of S sentences, so we have
xSWT = [wl, [SEP],..., [SEP],w”], where w* is the to-
kens of sentence s and [ SEP ] separates sentences.

PUOT XCWT) € Dy, in the test

img

1 curr
For a given sample (x{};

set indexed by ¢, we define

X

di(m) = 3, [L(m, po(wy, | Wi, Xinng - 2))

seS
curr Xﬁ;igr) )]

—l(m,pg(wfn ‘ me’ Ximg )

This is the MM loss for predicting m given each sentence
in the report with and without the prior image. Note that if
m does not appear in a given sentence, its contribution to

the sum is zero. The overall AP " (m) is computed across



Category Description

Examples

Progression Pertaining to change or progression
Support devices  Tubes, lines and implants

‘Other’ No clear category

Stop word ‘Insignificant” words

Positional Localisation (not anatomical)

Meta Pertaining to the report itself or practice of radiology
Anatomy Anatomical locations

Descriptive Qualitative appearance of a finding
Size or degree Quantifying extent or severity
Finding Radiographic finding or pathology
Uncertain Expression of certainty or doubt

bigger, cleared, new
nasogastric, pacemaker, cannula
can, relevant, overall

the, no, of

right, lower, bilateral

evidence, radiograph, study
pulmonary, chest, mediastinal
layering, focal, patchy

extensive, moderate, severe
edema, penumonia, pneumothorax
may, possible, concerning

Table F.4. Semantic categories used in Figure 4.

all samples:

prior _
img

> 5i(m)) (5)

1
Nm ieDtest
test

where IV, is the number of sentences in reports in D,
in which token m appears. This estimate is subject to high
variance when N, is small. Hence, for Figure 4 we filter
to tokens m with IV,,, > 10. We collected 931 tokens with
N,, > 10 from the validation set for manual annotation by
a board-certified radiologist. The categories, shown in Fig-
ure 4 and described in Table F.4 are specific to the radiology
domain.

F.6. Sentence similarity experiment

The text models are evaluated in isolation to observe if
their encoding is sensitive to key clinical observations. To
achieve this, we assess the quality of sentence represen-
tations obtained from our text model by examining how
well the contradiction and paraphrase pairs can be sepa-
rated in the embedding space. Unlike the traditional NLI
task where a model needs to be fine-tuned, here the models
are probed in a zero-shot setting and the BERT output token
embeddings are utilised. To do so, we encode the sentences
from RadNLI and MS-CXR-T sentence similarity datasets
with the [CLS] token from CXR-BERT-Specialised [9]
and BioViL-T. For PubMedBERT [29] and CXR-BERT-
General [9] which did not directly optimise the [CLS] to-
ken during pretraining, we follow [56] to average the token
output embeddings to represent each sentence.

Cosine similarity is computed between the representa-
tions of each sentence pair in the dataset [56] and is used as
logits for the binary classification between paraphrase and
contradiction. Note that for RadNLI, we use the subset of
‘entailment’ and ‘contradiction’ pairs and discard the 'neu-
tral” pairs to unify the task across the two datasets. Given
the similarities for each sentence pair, we report ROC-AUC
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and binary-accuracy. For the latter, a threshold value for
each method is derived by setting aside a validation set.
For this, we perform ten-fold cross validation and tune the
threshold with step size of 0.005 on the validation set.

F.7. Image registration algorithm

In Section 4.2, image registration is applied to pairs of
images as a preprocessing step to enable a fair compari-
son for the baseline approaches (e.g., BioViL [9]). We per-
formed bidirectional multi-scale registration between image
pairs optimising an affine transformation (4 degrees of free-
dom), using mutual information (MI) [65] with 128 bins as
the similarity criterion. In more detail, the spatial transfor-
mation is characterised by four parameters: two for transla-
tion, one for isotropic scaling, and one for rotation. The op-
timisation is repeated five times with different random seeds
for initialisation, and the run with the highest Ml is selected
to determine the final spatial alignment. To better identify
the correspondences between the scans, bilateral filtering is
applied to each image before registration to remove detailed
texture whilst preserving edge information [38]. Our imple-
mentation is based on the SimpleITK library [44].



Prior image Current image Prior image Current image Prior image Current image

Sl

(a) Improving consolidation (b) Stable consolidation (c) Worsening consolidation

Prior image Current image Prior image Current image Prior image Current image
(d) Improving pulmonary edema (e) Stable pulmonary edema (f) Worsening pulmonary edema

Prior image Current image Prior image Current image Prior image Current image

.

(g) Improving pleural effusion (h) Stable pleural effusion (i) Worsening pleural effusion

Figure F.1. Examples of image pairs in our MS-CXR-T benchmark.
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