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Aligning Bag of Regions for Open-Vocabulary Object Detection

Size Wu!  Wenwei Zhang!

Abstract

Pre-trained vision-language models (VLMs) learn to
align vision and language representations on large-scale
datasets, where each image-text pair usually contains a bag
of semantic concepts. However, existing open-vocabulary
object detectors only align region embeddings individually
with the corresponding features extracted from the VLMs.
Such a design leaves the compositional structure of semantic
concepts in a scene under-exploited, although the structure
may be implicitly learned by the VLMs. In this work, we
propose to align the embedding of bag of regions beyond in-
dividual regions. The proposed method groups contextually
interrelated regions as a bag. The embeddings of regions
in a bag are treated as embeddings of words in a sentence,
and they are sent to the text encoder of a VLM to obtain the
bag-of-regions embedding, which is learned to be aligned
to the corresponding features extracted by a frozen VLM.
Applied to the commonly used Faster R-CNN, our approach
surpasses the previous best results by 4.6 box APsy and 2.8
mask AP on novel categories of open-vocabulary COCO
and LVIS benchmarks, respectively. Code and models are
available at https://github.com/wusize/ovdet.

1. Introduction

A traditional object detector can only recognize categories
learned in the training phase, restricting its application in
the real world with a nearly unbounded concept pool. Open-
vocabulary object detection (OVD), a task to detect objects
whose categories are absent in training, has drawn increasing
research attention in recent years.

A typical solution to OVD, known as the distillation-
based approach, is to distill the knowledge of rich and
unseen categories from pre-trained vision-language mod-
els (VLMs) [23, 40]. In particular, VLMs learn aligned
image and text representations on large-scale image-text
pairs (Fig. 1(a)). Such general knowledge is beneficial for
OVD. To extract the knowledge, most distillation-based ap-
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Figure 1. (a) Typical vision-language models (VLMs) learn to align
representations of images and captions with rich compositional
structure. (b) Existing distillation-based object detectors align each
individual region embedding to features extracted by the frozen
image encoder of VLMs. (c¢) Instead, the proposed method aligns
the embedding of bag of regions. The region embeddings in a bag
are projected to the word embedding space (dubbed as pseudo
words), formed as a sentence, and then sent to the text encoder
to obtain the bag-of-regions embedding, which is aligned to the
corresponding image feature extracted by the frozen VLMs.

proaches [11, 16,55] align each individual region embed-
ding to the corresponding features extracted from the VLM
(Fig. 1(b)) with some carefully designed strategies.

We believe VLMs have implicitly learned the inherent
compositional structure of multiple semantic concepts (e.g.,
co-existence of stuff and things [1, 25]) from a colossal
amount of image-text pairs. A recent study, MaskCLIP [60],
leverages such a notion for zero-shot segmentation. Existing
distillation-based OVD approaches, however, have yet to
fully exploit the compositional structures encapsulated in
VLMs. Beyond the distillation of individual region embed-
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ding, we propose to align the embedding of BAg of RegiONs,
dubbed as BARON. Explicitly learning the co-existence of
visual concepts encourages the model to understand the
scene beyond just recognizing isolated individual objects.

BARON is easy to implement. As shown in Fig. 1(c),
BARON first samples contextually interrelated regions to
form a ‘bag’. Since the region proposal network (RPN) is
proven to cover potential novel objects [16,61], we explore a
neighborhood sampling strategy that samples boxes around
region proposals to help model the co-occurrence of a bag of
visual concepts. Second, BARON obtains the bag-of-regions
embeddings by projecting the regional features into the word
embedding space and encoding these pseudo words with
the text encoder (TE) of a frozen VLM [40]. By projecting
region features to pseudo words, BARON naturally allows
TE to effectively represent the co-occurring semantic con-
cepts and understand the whole scene. To retain the spatial
information of the region boxes, BARON projects the box
shape and box center position into embeddings and add to
the pseudo words before feeding them to TE.

To train BARON, the bag-of-regions embeddings are
learned to be aligned to the embeddings obtained by feed-
ing the image crops that enclose the bag of regions to the
teacher, i.e., the image encoder (IE) of the VLM. We adopt
a contrastive learning approach [49] to learn the pseudo
words and the bag-of-regions embeddings. Consistent with
the VLMSs’ pre-training (e.g., CLIP [40]), the contrastive loss
pulls close corresponding student (the detector) and teacher
(IE) embedding pairs and pushes away non-corresponding
pairs.

We conduct extensive experiments on two challeng-
ing benchmarks, OV-COCO and OV-LVIS. The proposed
method consistently outperforms existing state-of-the-art
methods [11,55,61] in different settings. Combined with
Faster R-CNN, BARON achieves a 34.0 (4.6 increase) box
APs of novel categories on OV-COCO and 22.6 (2.8 in-
crease) mask mAP of novel categories on OV-LVIS. It is
noteworthy that BARON can also distill knowledge from
caption supervision — it achieves 32.7 box APsq of novel cat-
egories on OV-COCO, outperforming previous approaches
that use COCO caption [14,56,59,61].

2. Related Work

Vison-Language Pretraining and Its Applications.
Vision-language pre-training aims to learn aligned image
and text representations [13, 22-24, 40] on large-scale
image-text pairs. There are many studies [24, 27, 28, 35]
that pre-train vision-language models (VLMs) to improve
the performance of downstream recognition and generation
tasks. There are also studies that learn aligned vision-
language representation so that the images can be classified
with arbitrary texts [13, 37]. Recent attempts [23, 40, 57]
push forward this direction by conducting contrastive

learning in VLMs on billion-scale image-text pairs. These
models show impressive zero-shot performance when they
are transferred to image classification tasks.

Inspired by the success of VLMs [40], some works try
to exploit the alignment of vision-language representations
for dense prediction tasks, e.g. segmentation [26,42,60] and
detection [11,16,29,46]. In particular, MaskCLIP [60] shows
that the image encoder in VLMs [40] captures the stuff and
things in a complex scene, where the pixel embeddings of
each concept are naturally aligned with the corresponding
text representations, although the original CLIP [40] model
does not explicitly learn this target. This implies that VLMs,
after trained on a massive amount of image-text pairs, have
implicitly learned the compositional structure of multiple
semantic concepts, which naturally exist in image-text pairs.
This motivates us to explore the representation alignment
between bag of regions and bag of words, different from pre-
vious works [16,26] that focus on aligning the representation
of individual pixels, regions, or words in VLMs.
Open-Vocabulary Object Detection. Traditional object de-
tectors [3, 5, 34, 44, 62] are limited to pre-defined object
categories. To detect objects of unseen categories, zero-shot
object detection (ZSD) [2,9, 19,41, 58] is proposed to align
individual region embeddings with the text embeddings of
categories through different strategies. Recent attempts fur-
ther explore open-vocabulary object detection (OVD) [56], a
more general form of ZSD that leverages weak supervisions
like visual grounding data [29], image captions [14,56,59],
and image labels [61]. Large-scale pre-trained VLMs [40]
are also exploited for their remarkable zero-shot recognition
ability. These VLMs can generate conditional queries [55]
or serve as a good teacher for knowledge distillation [16].
Specifically, distillation-based approaches [11, 16] extract
embeddings on pre-computed region proposals and individu-
ally align them to the corresponding features obtained from
the VLMs. To our best knowledge, BARON is the first at-
tempt to lift the learning from individual regions to the bag
of regions for OVD.

3. Method

Our method makes the first attempt to align embedding of
bag of regions beyond individual regions for OVD. We call
our method BARON. In this work, we instantiate the idea
of BARON based on the commonly used Faster-RCNN [44]
and modify it for OVD (Sec. 3.1). We design a simple strat-
egy to form the bag of regions from the region proposals
(Sec. 3.2). The bag of regions is treated as a bag of words to
obtain the bag-of-regions embedding (Sec. 3.3), which are
then aligned with the corresponding features from VLMs
(Sec. 3.4). BARON is general that it can align the bag-of-
regions embeddings to not only image representations but
also text representations (Sec. 3.5).
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Figure 2. Overview of BARON. (a) BARON is based on a Faster R-CNN whose classifier is replaced by a linear layer to map region features
into pseudo words. (b) BARON takes region proposals and its surrounding boxes to form bags of regions. (¢) BARON obtains student and
teacher embeddings for the bag of regions from the pre-trained VLMs. (d) BARON learns the alignment by the InfoNCE loss and maintains
queues of embeddings to provide sufficient negative pairs for InfoNCE loss.

3.1. Preliminaries

In this paper, we instantiate the idea upon Faster R-
CNN [44] for simplicity. The idea can also be used for other
architectures [3, 32] applicable for OVD. To enable Faster
R-CNN to detect objects from arbitrary vocabularies, we
replace the original classifier with a linear layer that projects
the region features into the word embedding space (dubbed
as pseudo words) (Fig. 2(a)). In practice, the linear layer
maps a region feature to multiple pseudo words to repre-
sent the rich semantic information of each object, similar
to those category names consisting of multiple words (e.g.,
horse-driven trolley). Finally, we feed these pseudo words
into the text encoder and then calculate the similarity with
the category embeddings to obtain final classification results.

As shown in Fig. 2(a), given C' object categories, we
obtain the embedding f. for the c-th category by feeding the
category names with a prompt template, e.g., ‘a photo
of {category} in the scene’ to the text encoder
T. For a region and its pseudo words w, the probability of
the region to be classified as the c-th category is

= Cxp(r - (T(w). £) 0
TS e (T(w), )
where (, ) denotes the cosine similarity and 7 is the tempera-
ture to re-scale the value.
During training, only the boxes of base categories are an-
notated and the learning on base categories follows the con-
vention of Faster R-CNN with regression and classification

losses [44]. To learn to detect novel categories that do not

have box annotations in training, previous distillation-based
approaches [11, 16] individually align region embeddings
(e.g., T (w)) to the corresponding features obtained from the
VLMs. To further exploit the power of VLMs that capture
the compositional structure of multiple concepts, we lift the
learning from individual regions to the bag of regions.

3.2. Forming Bag of Regions

Our framework is inspired by existing OVD approaches
that distill knowledge from the image encoder of VLMs.
Specifically, we choose the image encoder of the VLMs as
the teacher and expect it to teach the detector. But different
from existing approaches, we wish the detector to learn the
co-existence of multiple concepts, especially the potential
existence of novel objects. To effectively and efficiently learn
such knowledge from the VLMs, we consider the following
two properties of regions inside a bag: 1) the regions need to
be close to each other because an image crop enclosing dis-
tanced regions will include a larger proportion of redundant
image contents, distracting the image encoder from repre-
senting the bag of regions; 2) the regions should have similar
sizes, as an imbalanced size ratio among regions will make
the image representations dominated by the largest region.

According to these two requirements, we adopt a sim-
ple neighborhood sampling strategy to form the bag of re-
gions based on the region proposals predicted by the region
proposal network (RPN) [44]. Concretely, for each region
proposal, we take its surrounding eight boxes (neighbors)
as the candidates, which are spatially close to each other
as shown in Fig. 2(b). We also allow these candidates to



Figure 3. Visualization of sampled bags of regions. Green boxes
denote the region proposals and blue boxes are sampled neighbors
(candidates). Areas exceeding image boundary are cropped out.

overlap slightly at a specific Intersection over Foreground
(IOF) to improve the continuity of regional representations.
To balance the sizes of regions inside the bag, we simply let
the eight candidate boxes have the same shape as the region
proposal. In practice, candidates that exceed the boundary of
the image over a certain proportion, e.g., more than % of their
area out of the image, will be discarded. The remaining can-
didates are independently sampled, and the sampled boxes,
together with the region proposal, form a bag of regions.
We sample G groups for each region proposal to obtain
rich bag-of-regions representations. At each time of sam-
pling, the probability of a candidate being sampled is ad-
justed to prevent the box enclosing the grouped regions from
having an extreme aspect ratio. Assuming a base probabil-
ity pp and a scaling factor «, the probability to sample the
left and right candidates is p = p, x min{(Z)~, 1} and
the probability to sample upper and bottom candidates is
p = pp x min{ (%)%, 1}, where H and W are the height
and width of the region proposal box. « is 3.0 by default.
We show some sampling results of bags of regions on
COCO dataset [33] in Fig 3. The grouped regions in a bag
can cover objects (in blue) co-occurring with the object in the
region proposal (in green). The context of the co-occurring
objects leads BARON to get a scene-level understanding of
the regions, e.g. ‘a horse pulling the carriage’ and ‘a man
surfing on the wave’. Novel object categories occasionally
appear in the bag of regions, e.g. the ‘carriage’ in the top left
image of Fig 3 and the ‘cup’ in the top right. In the following
Sec 3.3 and Sec 3.4, these potential novel object categories
would be learned in the context of the bag of regions.

3.3. Representing Bag of Regions

With the sampled bags of regions, BARON obtains
the bag-of-regions embeddings from both the student (i.e.,
the open-vocabulary object detector) and the teacher (i.e.,
VLMs). We denote the j-th region in the ¢-th group as b;
and the pseudo words after the projection layer as w; For
the pre-trained VLM, we use 7 to denote the text encoder
and V to denote the image encoder.

Student Bag-of-Regions Embedding. Because the region
features are projected to word embedding space and learned
to be aligned with the text embedding of category, a straight-
forward way to obtain the embedding of a bag of regions is
to concatenate the pseudo words and feed them to the text
encoder 7. However, the spatial information of the regions
will be lost in such a process, including relative box center
positions and relative box shapes. The center position and
shape indicate the spatial relationship among the regions in
a bag, which is essential to induce a sentence-like interpre-
tation for the bag of regions. And they are also encoded in
the teacher (image encoder of VLMs) through positional
embeddings in the input [40]. Therefore, BARON encodes
the spatial information into positional embeddings p;'- that
have the same dimension with wé, following the practices of
Transformers [10, 50]. The positional embeddings are added
to the pseudo words before concatenation. Assuming the
group size is N, this representation can be formulated as
ft=T(wh +ph,wi + i, Wiy +Plyi_y)-

Teacher Bag-of-Regions Embedding. The image embed-
ding of the grouped regions can be obtained by feeding the
image crop that encloses the regions to the image encoder
V. The image crop may contain redundant contents that are
outside the grouped regions; we mask out them in the at-
tention layers of V. The image feature can be formulated as

fo=V(bh, b, ... by ).
3.4. Aligning Bag of Regions

BARON aligns the bag-of-regions embeddings from stu-
dent and teacher to make the student learn to encode the co-
existence of multiple regions, which potentially contain mul-
tiple concepts. We adopt the contrastive learning approach
used in vision-language pre-training [40]. Specifically, given
G bags of regions, the alignment InfoNCE loss [38] between
bag-of-regions embeddings is calculated as

161
Lo = —5 Y (log(pf,) +log(pf,). @)

k=0

N}

The pfiv and pfyt are calculated as

e exp(r - (fFFR)

Py = - 3)
" ol exp(r! - (fF, fL))
/., k rk
pﬁjt _ GeXp(T <f’u ’ ft >) (4)

il exp(r - (5 f)

respectively, where 7/ is the temperature to re-scale the co-
sine similarity. The loss pulls positive pairs { fF, f*} close to
each other and pushes away negative pairs { f, . }(k # 1).

In practice, the number of groups G is small for a single
image. We maintain two queues to save the image and text
embeddings in previous iterations during training to provide
sufficient negative pairs [20].



Table 1. Comparison with state-of-the-art methods on OV-COCO benchmark. We separately compare our approach with methods distilling
knowledge from CLIP and approaches using COCO caption. T means using proposals produced by MAVL [36].

Method Supervision Backbone Detector APIYl APYSC APy,
ViLD [16] CLIP ResNet50-FPN FasterRCNN 27.6 595 512
OV-DETR [55] CLIP ResNet50 DeformableDETR | 29.4 61.0 527
BARON (Ours) CLIP ResNet50-FPN FasterRCNN 340 0604 535
OVR-CNN [56] Caption ResNet50-C4 FasterRCNN 22.8 46.0 399
RegionCLIP [59] Caption ResNet50-C4 FasterRCNN 26.8 548 475
Detic [61] Caption ResNet50-C4 FasterRCNN 27.8 51.1 450
PB-OVD [14] Caption ResNet50-C4 FasterRCNN 30.8 461 42.1
VLDet [30] Caption ResNet50-C4 FasterRCNN 32.0 50.6 458
BARON (Ours) Caption ResNet50-C4 FasterRCNN 331 548 491
Rasheed et al. [43]T | CLIP + Caption | ResNet50-C4 FasterRCNN 36.6 540 494
BARON (Ours)f CLIP + Caption | ResNet50-C4 FasterRCNN 427 549 517

“There is a white horse pulling
a trolley behind it.”

Pseudo words

Figure 4. The caption-version BARON. We align the text embed-
dings of the bag of regions to the caption embeddings.

Aligning Individual Regions. The alignment between indi-
vidual regions’ student and teacher embeddings is comple-
mentary to that of a bag of regions. Therefore, we also adopt
the individual-level distillation in our implementation. For
computational efficiency, we obtain the teacher embeddings
from the feature map of the image encoder’s last attention
layer by RoiAlign [21] instead of repeatedly passing image
crops to the image encoder. Similarly, the student embed-
dings are extracted from the text encoder’s last attention layer
by averaging pseudo-word embeddings of the same region.
We apply the InfoNCE loss and keep queues of embeddings
to calculate the individual-level loss Lindividual-

3.5. Caption Supervision

It is noteworthy that BARON can be applied to caption
supervision. As shown in Fig. 4, the core idea is to replace
the image embedding f,, with embedding obtained by feed-
ing the image captions to the text encoder 7. To obtain the
region groups, we randomly sample some region propos-
als generated by the RPN. As an image can have multiple
captions, we follow the practice in UniCL [53] to apply a
soft cross entropy loss that simultaneously aligns the student
bag-of-regions embedding to multiple caption embeddings.
The alignment of individual regions is discarded since we
cannot get the correspondence between pseudo words of
regions and the actual words in a caption without grounding.
In this way, BARON now learn to align the bag-of-regions

embedding of the image caption, which also describes the
existence of multiple concepts of the image.

4. Experiments

Datasets. We evaluate our method on the two popular object
detection datasets, i.e., COCO [33] and LVIS [17]. For the
COCO dataset, we follow OV-RCNN [56] to split the object
categories to 48 base categories and 17 novel categories.
For the LVIS dataset, we follow ViLD [16] to split the 337
rare categories into novel categories and the rest common
and frequent categories into base categories. For brevity, we
denote the open-vocabulary benchmarks based on COCO
and LVIS as OV-COCO and OV-LVIS.

Evaluation Metrics. We evaluate the detection performance
on both base and novel categories for completeness. For OV-
COCO, we follow OV-RCNN [56] to report the box AP at
IoU threshold 0.5, noted as AP5. For OV-LVIS, we report
both the mask and box AP averaged on IoUs from 0.5 to
0.95, noted as mAP. The APsq of novel categories (APESVe!)
and mAP of rare categories (AP,.) are the main metrics that
evaluate the open-vocabulary detection performance on OV-
COCO and OV-LVIS, respectively.

Implementation Details. We build BARON on Faster R-
CNN [44] with ResNet50-FPN [31]. For a fair comparison
with existing methods, we initialize the backbone network
with weights pre-trained by SOCO [51] and apply synchro-
nized Batch Normalization (SyncBN) [39] following Det-
Pro [11]. We choose the 2x schedule (180, 000 iterations)
for the main experiments on COCO and LVIS [6,52]. For the
pre-trained VLM, we choose the CLIP [40] model based on
ViT-B/32 [10]. For the adaptation to caption supervision, we
base our method on Faster R-CNN with ResNet50-C4 back-
bone [44] and adopt the 1 x schedule. For the prompt of cat-
egory names, we use the hand-crafted prompts in ViLD [16]
for all our experiments by default. We use learned prompt
only when comparing with DetPro [11].



Table 2. Comparison with state-of-the-art methods on OV-LVIS. * denotes the re-implemented ViLD [16] reported in DetPro [11].

Method Ensemble | Learned Prompt Object Detection Instance segmentation

AP, AP. AP, AP |AP, AP. AP; AP
ViLD [16] - - 163 21.2 31.6 244|16.1 20.0 28.3 225
OV-DETR [55] - - - - - |17.4 250 325 26.6
BARON (Ours) - - 17.3 256 31.0 26.3]18.0 24.4 289 25.1
ViLD [16] v - 16.7 26.5 342 27.8(16.6 24.6 303 255
ViLD* [16] v - 174 275 319 275(16.8 25.6 285 252
BARON (Ours) v - 20.1 284 322 284(19.2 268 294 265
DetPro [11] v v 20.8 27.8 324 28.4(19.8 25.6 289 259
BARON (Ours) v v 23.2 293 325 29.5(22.6 27.6 29.8 27.6

Table 3. Comparison of the transfer ability of the model trained on OV-LVIS. * denotes the re-implemented ViLD [16] reported in DetPro [11].
1 denotes that we use hand-crafted prompts for a fair comparison with ViLD.

Method Pascal VOC COCO Objects365
APso AP75 | AP APso AP7s AP; AP, AP, | AP APso AP7s APs AP, AP,
Supervised [11] ‘ 78.5 49.0 |46.5 67.6 509 27.1 67.6 777|256 386 28.0 16.0 28.1 36.7
VILD* [16] 739 579 [34.1 523 365 21.6 389 46.1|11.5 17.8 123 42 11.1 17.8
BARON (Ours)* | 74.5 57.9 [36.3 561 39.3 254 39.5 482|132 20.0 140 4.8 12.7 20.1
DetPro [11] 74.6 579|349 538 374 225 39.6 463|121 188 129 45 115 18.6
BARON (Ours) | 76.0 58.2 |36.2 55.7 39.1 24.8 40.2 47.3|13.6 21.0 145 5.0 13.1 20.7
4.1. Benchmark Results ViLD [16] implemented in DetPro. The comparison is fair

OV-COCO. We report the comparison with previous meth-
ods in Table 1. BARON surpasses previous state of the arts
with either pre-trained VLMs or COCO captions [7], indicat-
ing its effectiveness and flexibility. Note that OV-DETR is
based on the Deformable DETR [62], which is stronger than
the Faster R-CNN [44] with higher performance on base
categories. But BARON still outperforms OV-DETR by 4.6
APs5( on novel categories. When using caption supervision,
BARON even outperforms PB-OVD [14] that uses sophis-
ticated pseudo-labeling. Combining CLIP image features,
COCO captions, and MAVL [36] proposals, BARON signifi-
cantly outperforms Rasheed et al. [43] by a large margin.
OV-LVIS. We compare BARON with other methods on
the OV-LVIS benchmark in Table 2. Because VIiLD [16]
is trained with large-scale jittering [15] and a prohibitive
32 x schedule, DetPro [11] re-implemented it with backbone
weights pre-trained by SOCO [51] and a regular 2x sched-
ule. DetPro also proposes learned prompts for the category’s
names. Besides, an ensembling strategy for classification
scores is adopted in ViLD and DetPro. For fair comparison,
we respectively implement our method on OV-LVIS with
and without the these tricks. BARON achieves the best per-
formance in all the scenarios and can even surpass ViLD that
adopts the ensembling strategy without these tricks.
Transfer to Other Datasets. We transfer the open-
vocabulary detector trained on OV-LVIS to three other
datasets, including Pascal VOC 2007 [12] test set,
COCO [33] validation set and Objects365 [45] v2 valida-
tion set. We compare our results with DetPro [11] and the

since all the models are based on the same object detector
and training schedule. As shown in Table 3, our approach ex-
hibits better generalization ability on all of the three datasets.

4.2. Ablation Study

In this section, we ablate the effectiveness of components
in BARONon OV-COCO benchmark.
Effectiveness of Aligning Bag of Regions. We start from a
baseline that only uses the individual-level loss Lidividual- AS
shown in Table 4(#1), the individual-level baseline achieves
25.7 mAPs; on novel categories. We then replace Liydividual
with the loss for bag of regions Ly, (Table 4(#2)). With-
out considering the spatial information of region boxes, the
performance on novel categories is compatible with aligning
individual regions. When adding the positional embedding
of the region boxes’ spatial information, the performance
on novel categories (Table 4(#3)) dramatically increases
by 7.1 mAPsy. This means that the spatial information is
essential to effectively exploit the compositional structure of
co-occurring visual concepts in a bag of regions. Finally, in
Table 4(#4), we find that the individual-level loss is comple-
mentary to the bag-of-regions alignment, which brings 1.2
mAPs, performance gain on novel categories.
Sampling Strategies. We explore two baselines to sample
bags of regions to support the rationale of our neighbor-
hood sampling strategy. The first is to equally split an image
into grids (dubbed as grid sampling) like the pre-training
stage in OVR-CNN [56] such that the fixed grids form a
bag of regions. And the second is to randomly sample re-
gion proposals to form a bag of regions (dubbed as random



Table 4. Effectiveness of main components
of BARON

Table 5. Exploring sampling strategies to
obtain bag of regions

Table 6. Overlap (IOF) between regions

# ‘ Lindividual ‘ Lpag ‘ PE ‘ APLY® AP APso

# | Sampling strategy | AP3Y® APES® APso

#| Overlap | AP33™ APYS® APso

-0.1 325 597 526

1 v - - | 257 59.6 50.6 1 Grid

2 - v | -] 257 594 505 2 Random

3 - v | v | 328 60.1 53.0 3 | Ours (reduced)
4 v vV | v | 340 604 535 4 Ours

0.0 336 602 532
0.1 340 604 535
0.2 338 598 53.0
0.3 337 600 53.1

254 580 495
273 533 465
322 583 515
340 604 535

[ O R S

Table 7. Ablation study on the sampling

probability py proposal

Table 8. Number of sampled bags per region

Table 9. Number of pseudo words

# | #words | AP APESS APso

p» | AP33 APYS APso

#bags | AP APSSS APso

0.1 33.7 598 529 1
03] 340 604 535 3
05| 332 60.0 53.0 5

1 2 316 595 522
585 517 2 4 33.1  60.1 53.0
60.4 535 3 6 340 604 535
60.0 53.0 4 8 335 599 530

sampling). For a fair comparison, we keep the number of
sampled regions in each sampling strategy roughly the same.
Concretely, we split the images to 3 x 3 = 9 grids for the
grid sampling strategy and sample 9 region proposals for the
random sampling strategy. For these two strategies, we take
4 permutations of the regions to obtain richer bag-of-regions
embeddings so that there would be 36 regions for each im-
age. For the neighborhood sampling, we introduce a reduced
version of the strategy that restricts the number of region
proposals per image to 12 and takes 1 bag per proposal. This
is because we record that the average number of regions in
a bag is 3 with p, = 0.3 and a = 3.0, meaning the aver-
age sampled regions for each image in the neighborhood
sampling strategy is close to 3 x 12 = 36.

The grid sampling strategy, whose fixed regions may ei-
ther contain too many objects or only small parts of an object,
achieves 25.4 mAPs5( on the novel categories as shown in
Table 5(#1). For the random sampling strategy, regions in a
bag have different sizes and shapes and the distance between
the regions can be large, which hinders the image encoder to
exactly represent the bag of regions. It achieves 27.3 mAP5q
as shown in Table 5(#2). While our neighborhood sampling
strategy utilizes the same amount of regions, we record 32.2
mAP on the novel categories in Table 5(#3). Compared to
these two baselines, our neighborhood sampling strategy
captures potential objects in the vicinity of region proposals
and ensures the teacher embedding exactly represents the
bag of regions by sampling the neighboring boxes of region
proposals. Note that our result in Table 5(#4) is achieved
with 3 groups per region proposal and no limitation on the
number of region proposals. More details on how we develop
the sampling strategy are in the appendix.

Box Overlap between Regions in a Bag. We let the sam-
pled regions in a group overlap at a certain IOF. In Table 6,
we show how the overlap between boxes affects the perfor-
mance. The scalar smaller than 0.0 in Table 6(#1) means
that we keep an interval between the sampled boxes. The
best performance (34.0 mAPsy) comes with an overlap of

0.1. Table 6(#1 — 3) indicate that the regions in a group need
to have a continuity of semantics. Table 6(#3 — 5) indicate
that the regions also need to cover diverse image contents.
Sampling Probability. We study the effect of the probability
pp to sample the candidate boxes, which affects the number
of regions in a bag. The details are in Sec. 3.2. Note that the
pp will be adjusted by the aspect ratio scaled with the scale
factor ae. We fix «v as 3.0 and sample 3 bags for each region
proposal. We observe that the best result on novel categories
(34.0 mAPs5g) is achieved with p, = 0.3 in Table 7.
Number of Bags Per Proposal. We show the effect of the
number of sampled bags (#bags) for each region proposal in
Table 8. For details, please refer to Sec 3.2. We fix « as 3.0
and the sampling probability p;, as 0.3. We observe that the
best result on novel categories (34.0 mAPs5() is achieved with
three bags of regions for each region proposal in Table 8.
Number of Pseudo Words Per Region. As an object cate-
gory often needs many words to reach a precise description,
we study the number of pseudo words (#wordss) predicted
for each region of interest. Table 9(#1 — 3) show that the
performance on novel categories increases with the num-
ber of pseudo words, indicating that stacking more pseudo
words to a certain extent can strengthen the detector’s abil-
ity to distinguish object categories. However, the results in
Table 9(#1 — 3) show that further increasing the number of
pseudo words does not bring performance gain, and redun-
dant words can even do harm to the performance.

4.3. Further Analysis

We show qualitative results in this section to further ana-
lyze the effectiveness of our method.
Co-occurrence of Objects. We first illustrate how a pre-
trained VLM [40] captures the co-occurrence of objects by
comparing the image-text similarity in Fig. 6. We use the
CLIP-ViT-B/32 model pre-trained on more than 400 million
image-text pairs to obtain the image and text embeddings.
For each image, we incrementally add the object categories
that appear to the text description. We observe that the simi-
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Figure 5. Qualitative comparisons of BARON and the individual-level baseline in Table 4(#1). Top: Red boxes are for the novel categories
and blue for the base categories. Bottom: Feature map’s responses to the queried novel object categories. From (a) to (c), the queried novel
categories are ‘skateboard’, ‘airplane’ and ‘dog’, respectively. BARON detects objects of novel categories that are missed by the baseline.

“There is a desk.” (0.265)

“There is a desk with a monitor.” (0.277)

“There is a desk with a monitor and keyboard.” (0.283)

“There is a desk with a monitor, keyboard and mouse.” (0.294)

“There is a black motorcycle.” (0.272)

“There is a black motorcycle parked on the road.” (0.279)

“There are a black motorcycle and a car parked on the road.” (0.295)
“There is a black motorcycle parked on the road in front of a car.” (0.304)

Figure 6. For each image, we incrementally add the object cate-
gories that appear in it to the text description. The similarity score
between the image and text embeddings increases as the text de-
scription becomes more complete and precise.

larity score between the image and text embeddings increases
as the text description includes more concepts as shown in
Fig. 6. The examples reveal that the large-scale VLMs could
capture the co-occurrence of multiple concepts in an im-
age, although they are not explicitly trained to do so. We
believe this is because each image-text pair naturally con-
tains multiple concepts and the VLMs could implicitly learn
the underlying connections when training on massive-scale
image-text pairs. We also find simple relationship between
objects can also be captured by the VLMs, e.g., the similarity
increases when we add the relation ‘in front of” to the text
description in the second example of Fig 6.

Visualization. We further visualize the predictions of de-
tectors learned through BARON and the individual-level
baseline in Fig. 5. The images are from COCO’s validation
set. We visualize the feature map’s response to the novel cat-
egories using the Grad-CAM++ [4]. We find that the model
learned through BARON generates responses at locations of
novel categories while the individual-level baseline induces
weaker, incomplete or diffused responses. We also notice
that semantically related objects can respond to the queried
object category. For example, in Fig 5(c) the location of a
flock of sheep chased by a dog responds to the queried ob-

ject ‘dog’. Note the ‘dog’ and the ‘flock of sheep’ are not in
neighboring regions and the ‘dog’ is much smaller in size.
Even though we form bags of regions by neighboring regions
of equal size in training, the model has the ability to capture
the relationship between objects with imbalanced sizes or
large distance. This phenomenon resembles the generaliza-
tion ability of human language, where learned concepts can
be applied to describe or recognize new things.

5. Discussion and Conclusion

This paper goes beyond the learning of individual regions
to bag of regions in OVD, exploring the ability of large-scale
VLMs to represent the compositional structure of multiple
concepts that naturally exists in image-text pairs. We develop
a neighborhood sampling strategy to group contextually re-
lated regions into a bag and adopt the contrastive learning
approach to align the bag-of-regions representations of the
detector and pre-trained VLMs, which achieves new state-
of-the-art performance on multiple OVD benchmarks.

The compositional structure explored in this paper is
mainly about the co-occurrence of objects, and behaves like
bag of words [48, 54]. The more complex compositional
structure in the language is still under-explored and whether
modern pre-trained vision-language models capture such
structure still remains an open problem for the community.
We look forward to further unveiling the behavior of the
VLMs, and more importantly endowing the VLMs with
human-like compositional representation to move to more
generalized intelligence.
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Al. Implementation Details

We provide more details of the implementation of

BARON on OV-COCO [33] and OV-LVIS [18] benchmarks.

Sampling. For neighborhood sampling strategy, we obtain
top K region proposals from the RPN and filter out those
with an objectness score lower than 0.85. We also discard
regions with an aspect ratio smaller than 0.25 or larger than
4.0. And regions with an area ratio smaller than 0.01 are
also discarded. Then we apply NMS on the region proposals
with IOU threshold 0.1. The region proposals after NMS
are used for neighborhood sampling. We sample G bags of
regions for each region proposal with a probability 0.3 to
sample each surrounding candidate box. For OV-COCO, we
set X = 300 and G = 3. For OV-LVIS, we set X = 500
and G = 4 due to the denser spatial distribution of object
boxes in the LVIS dataset.

Classification Loss.We use CE loss as the classification loss
L1s on base categories. Given C' object categories, we obtain
the embedding f; for the name of the i-th category by the
text encoder (7") of the VLM. We also learn a background
embedding for non-object regions. If a region is labeled as
the c-th category, the classification loss is

eXp(Tcls ’ <T(w)v fc>)

S exp(ras - (T(w), fi))
where 7.5 is the temperature to re-scale the cosine similarity,
fco is the background embedding and w is the embedding
(pseudo words) of the region. On OV-COCO, we set 7.5 =
50.0. And on OV-LVIS, we set 7.;c = 100.0 since there are
orders of magnitude more categories defined in the LVIS
dataset.

Alignment Loss. Assuming there are G bags of regions and
the image (teacher) and text (student) embeddings for the
k-th bag of regions are f¥ and f}, the alignment loss Ly
on bag of regions is calculated as

Ecls = - log

®)

1 G-1

Loag = =5 Y _(log(pf,) +1og(®},)- (6
k=0

The p,, and pf , are calculated as

! exXP(Thag - (5 f3))
v = = @)
P S exp(Thag - (£, 1))
p,]:;) . eXp(Tbag ) <f’L])€) ftk>) (8)

T ST L exp (g - (F5, 1))

respectively, where 7y,,¢ is the temperature to re-scale the
cosine similarity. Assuming there are totally /V regions and
the image (teacher) and text (student) embeddings for the
k-th region are g’vc and gf , the alignment 10ss Lipdividual ON
individual regions is calculated as

Table A1. Number of linear layers (#Layers) mapping region fea-
tures to pseudo-words

#Layers | AP35 APYS® APso

1 340 604 535
2 339 605 535
3 341 608 538

N-1

£individua1 =5 Z (log(qiv) + 1Og(q§,t)) €))
k=0

N —

The qﬁ » and qﬁt are calculated as

ko eXp(Tindividual ) <gf7g§>)
Gtv = SN-1 k (10)
Ym0 eXDP(Tindividual * (9¢ 95))
qf t eXp(Tindividual ) <gqlf7 gf» , (11)

T YL exp(Tindividua - (95, 1))
respectively, where Tindividual 1S the temperature to re-scale
the cosine similarity.

On OV-COCO, we set e = 30.0 and Tindividual =
50.0. Since there are finer-grained definition of categories
and denser distribution of object boxes in the LVIS dataset,
we set Thag = 20.0 and Tindividual = 30.0 on OV-LVIS to
make the contrastive learning harder.

Mapping Region Features to Pseudo