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Abstract

Unlike most previous HOI methods that focus on learn-
ing better human-object features, we propose a novel and
complementary approach called category query learning.
Such queries are explicitly associated to interaction cat-
egories, converted to image specific category representa-
tion via a transformer decoder, and learnt via an auxil-
iary image-level classification task. This idea is motivated
by an earlier multi-label image classification method, but
is for the first time applied for the challenging human-
object interaction classification task. Our method is sim-
ple, general and effective. It is validated on three rep-
resentative HOI baselines and achieves new state-of-the-
art results on two benchmarks. Code will be available at
https://github.com/charles—xie/CQL.

1. Introduction

Human-Object Interaction (HOI) detection has attracted
a lot of interests in recent years [3,8—10,21,33]. The task
consists of two sub-tasks. The first is human and object de-
tection. It is usually performed by common object detection
methods. The second is interaction classification of each
human-object (HO) pair. This sub-task is very challenging
due to the complex appearance variations in the interaction
categories. See Fig. | for examples. It is the focus of most
previous HOI methods, as well as this work.

Most previous HOI methods focus on learning bet-
ter human-object features, including modeling relation
and context via GNN [7, 29, 34, 37] or attention mecha-
nism [8, 34, 46], decoupling localization and classification
[22,41,48], leveraging vision-language knowledge [6,22]
and introducing multi-scale feature to transformer [16].
However, for interaction classification they all adopt the
simple linear classifier that performs the dot product of the

*Corresponding author.
*Work done during internship at MEGVII technology.
#Work done while worked at MEGVIL

OSR \
(b) person hold fork person hold elephant
Figure 1. Interaction classification is inherently challenging. In
(a), “fly” is semantically polysemic, resulting in different objects,
poses and relative positions. In (b), when “hold” is associated with
different objects, the appearance, scene background, and human
poses are largely different.

human-object feature and a static weight vector, which rep-
resents an interaction category.

In this work, we propose a new approach that enhances
the above paradigm and complements most previous HOI
methods. It is motivated by the recent work Query2label
[25], a transformer-based classification network. It pro-
poses a new concept we call category-specific query. Unlike
the queries in other transformer methods, each query is as-
sociated to a specific and fixed image category during train-
ing and inference. This one-to-one binding makes the query
learn to model each category more effectively. The queries
are converted to image specific category representations via
a transformer decoder. This method achieves excellent per-
formance on multi-label image classification task.

We extend this approach for human-object interaction
classification. Essentially, our approach replaces traditional
category representation as a static weight vector in previ-
ous HOI methods with category queries learnt as described
above. The same linear classifier is adopted. Such cate-



gory queries are more effective, and adaptive for different
images, giving rise to better modeling of the complex vari-
ations in each interaction category. This is the crucial dif-
ference between this work and a simple adaption of [25] to
HOI. Notably, this work is the first to address the category
weight representation problem in the HOI community.

Note that our proposed category specific query is differ-
ent and not related to those queries in other transformer-
based HOI methods [4, 15, 33,49]. Specifically, category
queries extract image-level features as the category repre-
sentation. The queries in other methods are human-object
instance-level features and category-agnostic.

Our method is simple, lightweight and general. The
overview is in Fig. 2. It is complementary to any off-the-
shelf HOI method that provides human-object features. The
modification of both inference and training is small. The in-
curred additional cost is marginal.

In experiments, our approach is validated on three
representative and strong HOI baseline methods, two
transformer-based methods [22, 33] and a traditional two-
stage method [42]. They are all significantly improved by
our approach. New state-of-the-art results are obtained on
two benchmarks. Specifically, we obtain 36.03 mAP on
HICO-DET. Comprehensive ablation studies and in-depth
discussion are also provided to verify the effectiveness of
implementation details in our approach. It turns out that our
method is more effective on challenging images that con-
tain more human-object instances, a property that is rarely
discussed by previous HOI methods.

2. Related Work
2.1. Instance Query Learning in HOI Detection

DETR [2] firstly proposes the concept of object instance
query for object detection task. Such queries essentially
learn the priors of both object appearance and spatial lo-
cation. DETR leverages those queries to probe image fea-
tures through a transformer [35] and localize unique ob-
jects in the image. Motivated by its great success, many
works [15,22, 33,41, 48, 49] adapt such detection trans-
former framework to HOI detection by simply treating the
HOI triplet [33,49] or H-O pair [4, 15] as an object. A few
of them [6,30,45] pay attention to adapting the plain query
to this task. DOQ [30] proposes a knowledge distillation
model using oracle queries to facilitate the representation
learning of a transformer-based detector; HQM [45] ex-
plicitly constructs hard positive queries from ground truth
to train the model to be less vulnerable to spacial varia-
tions; CATN [6] utilizes the object category prior gener-
ated from external object detector and language model for
query initialization. In summary, these transformer-based
methods use each query to aggregate context information
not restricted to one interaction category, in order to predict

a potential HOI instance at a specific location.

In DETR [2] and its variants [4,15,22,33,41,49] in HOI,
as the queries are category-agnostic, their association to ob-
ject categories are dynamic and unstable during training.
This could be problematic. For example, it is well known
that the convergence of DETR training is slow. In contrast,
our proposed query is category-specific. The learning is
guided by image-level classification task and stable. Such
queries learn category-specific priors and are good repre-
sentation for interaction categories.

2.2. Feature Learning in HOI Detection

Early methods. Based on two-stage detection framework,
early works make many efforts to help feature learning,
including employing architectures effective in modeling
relation and context like GNN [7, 29, 34, 37] and atten-
tion module [8, 34, 46], leveraging fine-grained visual fea-
tures [11, 17,19, 20, 36] like human pose and introducing
language prior [1,7,17,27,46].

Transformer-based methods. Motivated by DETR [49],
many methods [4, 15, 33, 49] leverage transformer archi-
tecture [35] and extend the object query in DETR to HOI
query. With the help of HOI query and transformer’s built-
in attention mechanism, those methods learn effective fea-
ture representation for HOI triplet or H-O pair.

Based on those pioneer transformer-based methods, re-
cently, many methods are proposed to further help feature
learning, by decoupling H-O pair localization and interac-
tion classification [22,41,48] or exploiting multi-scale fea-
ture in transformer architecture [16]. Some works [0, 22]
leverage vision-language knowledge in CLIP [31] or de-
sign a pretrained model [40] specifically for HOI; others
utilize information like human poses [39] or spatial config-
urations [13] that has been used in early HOI detectors.
Relation to the proposed method. Previous methods learn
the H-O feature while ours learns the category query as the
category representation feature. Thus, they are complemen-
tary. The interaction classification is simply by measuring
the similarity between the two types of features. The inte-
gration of our method to previous HOI methods is simple.

3. Our Method

The overview of our method is in Fig. 2. It consists of
two components, the image-level category query learning
(top block) and human-object interaction classification (bot-
tom right block).

The first component is detailed in Sec. 3.1. It is briefly
summarized here. A number of queries (embedding vec-
tors) are associated to human-object interaction category, in
a one-to-one manner. Such queries interact with image fea-
tures (provided by a baseline HOI method) through a trans-
former decoder [35] and become image-specific queries.
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Figure 2. Overview of our method. It consists of two components (top and bottom right). It can be integrated with any baseline HOI
method (bottom left) that provides image feature / and human-object instance features F;. See Sec. 3 for details.

Learning of both the queries and decoder weights is super-
vised by an auxiliary image-level classification task. In this
way, the queries are learnt to capture category-specific fea-
ture and become good feature representation for these cat-
egories. Besides some minor details, this step is the same
as the previous work Query2label [25], which is for multi-
label image classification task.

The second component is detailed in Sec. 3.2. For the
first time, we adopt the category query learning method for
human-object interaction classification tasks. The cosine
similarity between the category query and human-object
feature is used for interaction classification. Thus, it works
with any HOI method that provides human-object features.
Besides, the image-level classification results turn out mod-
erately helpful in an score integration step, which is an extra
technique that benefits the performance.

Overall, the proposed method is simple, effective,
lightweight and general. It can be combined with most pre-
vious HOI detection methods (bottom left block in Fig. 2),
with small modification, as elaborated in Sec. 4.

3.1. Image-level Category Query Learning

Similar as in Query2Label [25], for K human-object in-
teraction categories, we define their one-to-one correspond-
ing category queries, which are learnable embedding vec-
tors, {Qr} € REXP where D is the vector dimension.

Each query Q}, aggregates image features I € R xWxD
through a transformer decoder and is updated to image spe-
cific query Q,,

{Q}.} = decoder({Qy}, I). (D)

Note that the decoder structure has several variants,
which are studied in [5]. Our experiments show that the

structure is of minor importance, as discussed in Sec. 5.4.
Specifically, our decoder consists of two layers, each of
which consisting of a cross-attention layer, a self-attention
layer and a FFN layer, in order.

Then, each image-level classification probabilities py is
computed by applying a category-specific fully-connected
layer and a sigmoid activation on the updated query @)}

pr = sigmoid(FC(Q},)) 2)

Learning of the category query {Q} and the decoder
weights is supervised by common image classification
losses. To deal with the label imbalance problem, focal
loss [23] and asymmetric loss (ASL) [32] are used. Asym-
metric loss is a variant of focal loss. It is more robust
for high label imbalance and noises. Our experiments (see
Sec. 5.4) show that it is slightly better.

Specifically, with the classification probability p; and
the shifted probability p, = max (py —m,0), the asym-
metric loss is

ng K Z {

where the binary label y; indicates the existence of cate-

gory k in the image, and v+, y— as well as m are hyper-

parameters. We use the default values in ASL [32], v+ = 0,
— =4 and m = 0.05.

In this way, the category queries are learnt to encode
the category priors. Figure 3 is the visualization of the
heatmaps in the cross-attention layer of the decoder. Each
category query learns to locate the human body parts re-
lated to discriminative feature of its corresponding interac-
tion category, e.g., in Fig. 3c, the query of “hold” highlights

1—pk )" log (px), yk =1, 3)
) log (1 —pp), wk=0,



the hand region, while in the same image the query of “ride”
highlights the foot region. It qualitatively demonstrates
that the query learning is effective in encoding category-
specific information.

The updated queries adaptively extract category-related
features for each image, with the help of the transformer
decoder’s built-in multi-head cross-attention layer.

3.2. Interaction Classification with Category Query

In this step, we apply the updated category queries {Q} }
as the weights for interaction classification. Given the i-th
human-object instance, its classification probability score
for k-th interaction category is simply the cosine similarity
between its feature F; and the category query feature @),

!
Sik = Slgmmd(@?"“>< 2 ). )
k %

There are no restrictions or assumptions on the human-
object feature F;. Most previous HOI methods should be
applicable here.

In this step, the traditional classification weight from
static parameters is replaced with the category query adap-
tive on each image. This behavior is essentially different
from [25], which uses category queries as image feature.

By “adaptive”, we mean that the queries are updated dy-
namically according to the image contents. As exemplified
in Fig. 3a and Fig. 3c, the queries of “hold” learn to high-
light different interactive areas in different images and up-
date themselves with features from these areas via attention.
This shows the query learning is adaptive to image.

As discussed in Sec. 5.4, the classification step in Eq. (4)
is crucial to make the category query learning effective on
human-object interaction classification. Without this step,
the image-level category query learning using only image-
level classification from Query2label [25] is of little use.
Score integration step. The segmentation method in [12]
discards certain categories during pixel classification that
have low image classification scores. Motivated by this
method, we take a similar score integration step. The
image-level classification score {p;} is used to enhance the
human-object instance classification. The idea is that, the
instance score should be higher if the image-level proba-
bility is higher. Our implementation is similar as in [12].
During both training and testing, for each image, the top-x
categories (k = 70 in this work) with higher image classi-
fication scores {p; } are selected. The instance score s, j, is
slightly modulated such that it becomes higher if the rank
of category k is higher. This strategy gives rise to moderate
improvement, as verified in Tab. 4. We left the implementa-
tion details in the supplementary materials.

(c) Image with “person-hold-horse” and “ride-horse”.

Figure 3. From left to right: image, attention maps of the cross-
attention layer in the decoder for different interaction categories.

4. Integration to Off-the-shelf HOI Detectors

As shown in Fig. 2, our method is ready to integrate with
any baseline HOI method that provides image feature I and
human-object instance feature { F; }. The integration is sim-
ple. During inference, the human-object instance interac-
tion classification part is replaced by our method in Sec. 3.2,
the top and bottom right block in Fig. 2.

During training, the original loss in the baseline HOI
method Lpqse is added to our image classification loss in
Eq. (3). The final loss L for training is

L= Lbase + A Limga )

where the weight ) is 1.0 by default. All other hyper pa-
rameters and details during training remain the same as in
the baseline HOI method.

Thus, our method is general and applicable to most ex-

isting HOI methods. In this work, we select three represen-
tative yet different baseline methods to verify the effective-
ness of our approach, as described below.
QPIC [33] is the first to introduce transformer method
into HOI task. It is also the baseline for many recent
works [13,28,41,45,48]. Its performance is much better
than early one-stage [14,21, 38] and two-stage [7, | 1, 17]
methods while keeping a simple and end-to-end architec-
ture. It consists of a CNN backbone as well as a transformer
encoder and decoder.

During our integration, the feature map in its transformer
encoder is used as the image feature I. The human-object
feature { F;} is the query feature in its decoder.

SCG [42] is a traditional two-stage method and the best
in this category. It is also one of the best method that



HICO-DET V-COCO Efficiency
Method Pipeline E2E Full Rare  Non-Rare S1 S2 #Params FPS
QPIC [33] transformer v 28.93 21.62 31.12 61.39 63.65 41M 19.5
+ Ours transformer v | 31.08(+2.15) 23.90 33.22 63.67(+2.28) 65.49 | 46M(+5M) 18.3(-6.2%)
SCG [42] two-stage X 31.28 24.16 33.40 56.93 62.51 5T 4.5
+ Ours two-stage X 32.74(+1.46) 26.25 34.68 59.14(+2.21)  65.61 | 64AM(+7M)  4.1(-8.9%)
GEN-VLKT [22] transformer X 33.69 29.94 34.81 64.89 66.74 42M 21.7
+ Ours transformer X 35.36(+1.67) 3297 36.07 66.40(+1.51) 69.17 | 4TM(+5M)  20.6(-5.1%)

Table 1. The performance numbers of three different baseline HOI methods with and without integration of our method, on two datasets.
“E2E” denotes whether a HOI detector is end-to-end. All models are tested on Tesla V100.

does not use transformer. It uses a multi-stream graph neu-
ral network(GNN) for interaction classification. In our ex-
periment, the detection boxes are from a fine-tuned detec-
tor provided by DRG [7] for HICO-DET and a fine-tuned
DETR for V-COCO.

During our integration, the CNN feature map in the back-
bone of SCG is used as image feature I. The human-object
feature { F; } is generated through Rol pooling with detected
human and object boxes and fused with the GNN.
GEN-VLKT [22] is also transformer-based, but not end-
to-end as pairwise NMS [4 1] is used for post-processing. It
is the current state-of-the-art method. It uses two parallel
decoders for object detection and interaction classification,
namely instance decoder and interaction decoder.

During our integration, the feature map in its transformer
encoder is used as image feature I. The query feature in
the interaction decoder is used as the human-object feature
{F;}. Note that, unlike the majority of HOI detection meth-
ods, the original GEN-VLKT uses HOI categories rather
than interaction categories during interaction classification.
Our experiments still use interaction categories, in order to
be consistent with most other methods.

5. Experiments

In this section, we verify the applicability and effec-
tiveness of the proposed method through experiments. In
Sec. 5.1, we introduce the experimental settings. Then we
demonstrate the effectiveness of the proposed method over
3 baselines in Sec. 5.2, and show it achieves SOTA results
on major benchmarks in Sec. 5.3. Next, in Sec. 5.4 we con-
duct comprehensive ablation studies on the key components
as well as detailed technical designs. Lastly, we provide
some analysis and visualization in Sec. 5.5.

5.1. Datasets

HICO-DET [3] and V-COCO [10] are two widely-used
HOI benchmarks. HICO-DET contains 47,776 images,
with 38,118 for training and 9,658 for testing. There are
600 HOI categories in HICO-DET, consisting of 117 inter-
action classes and 80 object classes. Each HOI category
is composed of an interaction and an object. V-COCO is

a subset of MS-COCO [24] with HOI annotations, includ-
ing 10,346 images (2,533 for training, 2,867 for validation
and 4,946 for testing). It has 80 object categories same with
HICO-DET and 29 interaction categories.

Evaluation metrics. For HICO-DET, we adopt the com-
monly used mAP metric [3]. Each prediction is a (human,
interaction, object) triplet. A prediction is a true positive
only when the human and object bounding boxes both have
IoU >0.5 w.r.t. ground truth and the interaction classifica-
tion result is correct. We evaluate the performance in two
different settings following [3]. In the known object setting,
for each HOI category, we evaluate the prediction only on
the images containing the target object category. In default
setting, the detection result of each category is evaluated on
the full test set. In each setting, we report the mAP over (1)
all 600 HOI categoryies (Full), (2) 138 categories with less
than 10 training samples (Rare), and (3) the remaining 462
categories (Non-rare). For V-COCO, we use the role mAP
following [10], under both scenario #1 (including objects)
and #2 (ignoring objects). The performance is evaluated us-
ing its official evaluation toolkit.

5.2. Improvement on Three Different Baselines

Tab. 1 summarizes the performance of the three baseline
HOI methods before and after integration of our method.
Backbone is ResNet50. All these methods are signif-
icantly improved. Specifically, QPIC [33] is improved
by 2.15 mAP, making it competitive with those more re-
cent works [16,41,43]. SCG [42] is improved by 1.46
mAP, demonstrating that our method is not limited to
transformer-based baselines. The current SOTA method
GEN-VLKT [22] is improved by 1.67 mAP, producing the
new SOTA result (also refer to Tab. 2).

On the V-COCO dataset [10], the performance improve-
ment is similar, which is 2.28, 2.21 and 1.51 mAP on QPIC,
SCG and GEN-VLKT, respectively.

Notably, for SCG [42], as the object detector is fixed dur-
ing the training of its interaction classification network, the
improvement by our method is purely due to better interac-
tion classification, not a better fine-tuned CNN backbone or
a better object detector. This further consolidates that the
category query learning is effective.



Default Known Object
Method Detector Backbone Full Rare Non-rare | Full Rare  Non-rare
DRG [7] HICO-DET ResNet50-FPN | 24.53 19.47 26.04 2798 23.11 29.43
GG-Net [47] HICO-DET  Hourglass104 | 2347 16.48 25.60 27.36 20.23 29.48
IDN [18] HICO-DET ResNet50 26.29 22.61 27.39 28.24 24.47 29.37
QPIC [33] HICO-DET ResNet50 29.07 21.85 31.23 31.68 24.14 33.93
SCG [42] HICO-DET ResNet50-FPN | 31.33 24.72 33.31 3437 27.18 36.52
CDN [41] HICO-DET ResNet50 31.78 27.55 33.05 34.53 29.73 35.96
DT [48] HICO-DET ResNet50 31.75 27.45 33.03 3450 30.13 35.81
STIP [44] HICO-DET ResNet50 31.60 27.75 32.75 3441 30.12 35.69
HQM [45] HICO-DET ResNet50 3247 28.15 33.76 - - -
MSTR [16] HICO-DET ResNet50 31.17 25.31 32.92 34.02 28.83 35.57
RLIP [40] COCO+VG ResNet50 32.84 26.85 34.63 - - -
IF [26] HICO-DET ResNet50 3351 30.30 34.46 36.28 33.16 37.21
GEN-VLKT-B [22] HICO-DET ResNet50 3375 29.25 35.10 36.78 32.75 37.99
GEN-VLKT-M [22] HICO-DET ResNet101 3478 31.50 35.77 38.07 34.94 39.01
GEN-VLKT-L [22] HICO-DET ResNet101 3495 31.18 36.08 38.22 34.36 39.37
BodyPartMap [39] HICO-DET ResNet50 35.15 33.71 35.58 37.56 35.87 38.06
GEN-VLKT-B + Ours | HICO-DET ResNet50 3536 3297 36.07 38.43 34.85 39.50
GEN-VLKT-M + Ours | HICO-DET ResNet101 35.83 32091 36.70 38.79 35.28 39.84
GEN-VLKT-L + Ours | HICO-DET ResNet101 36.03 33.16 36.89 38.82 35.51 39.81

Table 2. The proposed method achieves state-of-the-art on HICO-DET [3]. The best results are marked in bold.

Method Backbone ‘ Scenario #1  Scenario #2
DRG [7] R50FPN 51.0 -
SCG [42] R50 54.2 60.9
GG-Net [47] HG104 54.7 -
QPIC [33] R50 58.8 61.0
HQM [45] R50 63.6 -
CDN [41] R50 61.7 63.8
GEN-VLKT-B [22] R50 62.4 64.5
GEN-VLKT-M [22] R101 63.3 65.6
GEN-VLKT-L [22] R101 63.6 65.9
MSTR [16] R50 62.0 65.2
BodyPartMap [39] R50 63.0 65.1
IF [26] R50 63.0 65.2
DT [48] R50 66.2 68.5
STIP [44] R50 65.1 69.7
GEN-VLKT-B + Ours R50 66.4 69.2
GEN-VLKT-M + Ours R101 66.8 69.8
GEN-VLKT-L + Ours R101 66.5 69.9

Table 3.
COCO [

Comparison with state-of-the-art methods on V-
] dataset. The best results are marked in bold.

To verify that the performance improvement is not due
to a larger model, we also compare the model size and run-
ning speed. Our method increases the model parameters
by a few millions, which is small compared to the original
model size. The running speed, measured by FPS, is only
decreased by a few percent. The marginal additional cost
shows that our method is quite lightweight.

5.3. Comparison with State-of-the-art

Tab. 2 and Tab. 3 compare our method with many previ-
ous methods for HICO-DET and V-COCO datasets, respec-

Cl C2 (C3 Full Rare  Non-Rare
a - - - 33.69 29.94 34.81
b vV - - 3386 (+0.17) 31.12 34.68
c v Vv - 3498 (+1.29) 31.73 35.95
d v v v 3536(+1.67) 3297 36.07

Table 4. Ablation study of several variants of our method, starting
from the baseline (a) to our approach (d). C1, C2 and C3 are
described in Sec. 5.4. The best results are marked in bold.

tively. GEN-VLKT [22] is used as our baseline.

On HICO-DET, our result with ResNet50 backbone al-
ready outperforms all previous methods under both default
and known object settings. With the stronger ResNet101
backbone, our method achieves the new state-of-the-art
36.03 full mAP under default settings and 38.82 under
known object settings.

On V-COCO dataset, our method achieves the new state-
of-the-art performance on Scenario 1, with an AP of 66.4
for ResNet50, surpassing [48]. For scenario 2, it is compa-
rable with the state-of-the-art [44].

5.4. Ablation Experiments

We perform various ablation experiments to validate
the effectiveness of different components in our method.
HICO-DET dataset and GEN-VLKT [22] baseline are used.

The proposed method can be divided into 3 components:
C1 means applying Query2Label [25] to the baseline detec-
tor as a multi-task learning (with feature extractor shared).
In detail, it adds the queries, the decoder and image classi-
fication loss (Eq. (1), Eq. (2) and Eq. (5)). C2 means using
the learned query in C1 as adaptive interaction classification



loss type A Full Rare Non-Rare
- 0 | 3421 30.15 3542
focal loss [23] 0.5 | 3443 31.06 35.44
1.0 | 3451 31.08 35.53
1.5 | 3435 31.54 35.19
2.0 | 3429 31.18 35.22
ASL [32] 0.5 | 3457 31091 35.36
1.0 | 3498 31.73 35.95
1.5 | 3477 32.08 35.57
2.0 | 3441 3192 35.15

Table 5. Ablation on the type and weight A of the image classifi-
cation loss. The best results are marked in bold.

Layer structure | Full ~Rare Non-Rare
S—C—F 34.73  32.09 35.52
C—S—=F 3498 31.73 35.95

C—F 34.63 31.34 35.61

Table 6. Ablation on structure of each layer in the category de-
coder. Here “S”, “C” and “F” stands for the self-attention, cross-
attention and FFN in a standard transformer [35].

L | Full Rare
1 | 34.66 31.47 35.61
2 | 3498 31.73 35.95
3 | 3486 31.56 35.85

Non-Rare

Table 7. Ablation on the number of layers in the category decoder.

weight (Eq. (4)). This is the key component of the proposed
method, which makes a distinction between the proposed
method and a simple adaption of Query2label [25] to HOI
task. C3 denotes the score integration step in Sec. 3.2.

To validate our approach in Fig. 2, several variants with
these components in our approach are experimented and
summarized in Tab. 4. First, (b) is a simple combination
of Query2label [25] and the baseline detector (a) in a multi-
task setting. (b) is only slightly better than (a), showing that
simply applying Query2Label to HOI is barely helpful.

Second, variant (c) significantly boosts (b), indicating
using the queries as adaptive classification weights is the
key to the performance improvement. This shows the ef-
fectiveness of our most crucial technical design in C2: ap-
plying the learned category queries as adaptive interaction
classification weights.

Finally, the complete approach is (d). It further adds the
integration step of image classification and instance clas-
sification score on (c). This technique produces moderate
improvement over (c), i.e., 1.67 mAP vs. 1.29 mAP.

Image classification loss. Tab. 5 compares different loss
functions and weights. First, when A = 0, which means no
image-level supervision is applied, the improvement over
the baseline (33.69 mAP) drops to only 0.52 mAP. This
demonstrates the image classification supervision is essen-

image labels

GT  Prediction
* ride ride 0.49
drive  drive 0.46
siton siton 0.41
exit exit 0.29
board 0.06

GT  Prediction
+ dribble dribble 0.32
carry 0.12
hold 0.09

GT  Prediction
* hold hold 0.59
0 carry carry0.56
set set 0.27
stand under
0.12

person set umbrella person stand under umbrella

Figure 4. Some qualitative comparison between the baseline and
the proposed method on HICO-DET. From left to right, column 1:
true positive (TP) detection results, whose interaction score is in-
creased by our method; column 2: false positive (FP) detection re-
sults, whose interaction score is decreased by our method; column
3: corresponding image-level GT and predictions by our method.
Scores on the left and right of an image are the interaction classifi-
cation scores of the visualized instance from the baseline and our
method. Best viewed in color. More in supplementary materials.

tial to make the category query learning effective, with ei-
ther focal loss or ASL. Additionally, ASL is slightly better
than focal loss. By default, A = 1.0 is adopted.
Is asymmtric loss the key? In the ablation above, we
can see that ASL does help our image-level query learning.
However, it is not the major reason for the performance im-
provement. To figure out this, we replace focal loss in the
plain baseline GEN-VLKT with ASL and the result is only
slightly better by 0.08 mAP.
Decoder structure. Tab. 6 compares several structures
of the decoder. Compared to the standard decoder [2,
35] (S—C—F in the table), putting cross-attention first
(C—S—F) is slightly better (by 0.25 mAP) without extra
computation. If we remove self-attention (C—F), the per-
formance drops by 0.35 mAP compared with the S—C—F
setting. This is probably because self-attention helps to
learn the dependencies between different category queries.
Tab. 7 compares different numbers of decoder layers, de-
noted as L. We find that L = 2 is sufficient. More layers do
not help the performance.

5.5. Discussions and Analysis

To understand why the category query learning is effec-
tive for human-object interaction classification, we provide
some analysis and qualitative results.
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Figure 5. Performance evaluated on image partitions with differ-
ent n = 1,2,3,4,5,> 5 instances for an interaction category.
Top: mAP numbers for three baselines (dashed) as well as our in-
tegration (solid). Bottom: relative mAP ratios for improvement
produced by our method (solid) and between two arbitrary previ-
ous methods (dashed).

The attention maps in the cross-attention layer of the de-
coder is visualized in Fig. 3. For different category queries,
the corresponding attention maps show they learn to cap-
ture the semantics of the category, while being adaptive to
different images. For example, in Fig. 3a, the broken part
of the bat in the air is highlighted for “break” while the left
part in the hand is highlighted for “hold”. This is similar
for Fig. 3b. In Fig. 3c, the attention map highlights many
instances with corresponding action “hold” and “ride”.

To qualitatively demonstrate how our method helps, we
visualize some cases of the baseline and the proposed
method in Fig. 4. In the first case, the baseline predicts a
TP of “person sit on bus” with a low score 0.15, and a FP
of “person board bus” with a high score 0.29. Our model
also predicts the same TP and FP, but lowers the FP score
to 0.07 and lifts the TP score to 0.38. Besides, our model
correctly predicts image-level scores: the wrong category
“board” is given a low score of 0.06 while the four correct
categories are given high scores. In the second case, our
model successfully predicts the TP “person dribble” missed
by the baseline and suppress the FP “person hold sports”
from 0.6 to 0.11 with the help of correct image-level classi-
fication result. This is similar for the third case.

Last, as our category query learning is performed on im-
age level, we conjecture that it is more helpful for images
with dense human-object interactions. In such images, an
human-object instance is relatively small and hard to learn
good feature on its own. However, it may benefit more from
the global image level category query feature, which aggre-
gates more information from other similar instances in this

image. To validate this conjecture, we partition the images
according to their “interaction density” and check whether
our method produces larger improvement on images that
are “denser”. Specifically, for each interaction category, its
mAP is evaluated separately on six different image partition
subsets, where each image contains different numbers (n=1,
2,3,4,5 and > 5) of human-object instances of this cate-
gory. The mAP results of the three baseline methods and
their integrated versions (as in Tab. 1) are shown in Fig. 5
(top, dashed vs. solid lines). It shows that: 1) the mAP is
lower for larger n, indicating the “denser” images are more
challenging; 2) our method improves the baselines consis-
tently on all different partitions.

To check whether the proposed method is more effec-
tive on “denser” images, we use the relative mAP improve-
ment, which is a ratio, AL j;;’z‘;;bmAf baseline - for analysis.
The ratio curves of the three baselines are shown in Fig. 5
(bottom, solid lines). It is clear that the relative improve-
ment becomes larger for larger n. This indicates that the
image-level category query learning is more effective on
these challenging dense images.

To further verify that this behavior is not commonly true,
we also compute the relative ratio of three more compar-
isons, “gen-vlkt vs. gpic”, “gen-vlkt vs. scg” and “scg vs.
gpic”, in which the former outperforms the latter. These
curves are also shown in Fig. 5 (bottom, dashed lines).
There is no clear pattern in these curves, indicating that the
performance gap between two arbitrary HOI methods are in
general not related to the image “density”.

6. Conclusion

This work proposes a novel approach for the human-
object interaction classification sub-task in HOI detection.
We study the problem of interaction category modeling,
in contrast to most previous methods focusing on human-
object feature learning. We adopt the concept of category
query in a previous method [25] for HOI, for the first time,
and show that it is simple, general and highly effective.

Clearly, this idea of category query modeling is not lim-
ited to multi-label image classification and HOI detection.
We hope it is useful for other vision tasks.
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1. Overview
In this supplemental file, we provide more details of our work to supply the main paper. Specifically,
» Score integration technique used in our paper are explained in Sec. 2;
» Implementation details are summarized in Sec. 3;
» Additional ablations are presented in Sec. 4, which includes the ablations on the score integration technique;

» Additional qualitative results are presented in Sec. 5.

2. Score Integration Technique

We introduce the score integration step briefly in Sec. 3.2 of the main paper, which leverages the image-level classification
scores to stress or suppress certain categories during instance-level interaction categories. As the score integration step is not
the major contribution of the proposed method, and brings minor improvement (as in Tab. 4 of the paper), we did not
elaborate on its details in the paper.

Before applying this score integration step, based on Eq. (4) in the paper, we can compute the classification scores for the
1-th human-object instance over K interaction categories as

(F,Q4)  (F.Qk) ])
I IEI@«]])

s; = sigmoid ( €))]

where the sigmoid operation is applied on the vector element-wise.
Next, we provide the detailed design of this score integration step. It includes a hard integration and a soft one.

2.1. Hard Score Integration

This hard score integration is motivated by the rank-adaptive pixel classification in RankSeg [4]. It consists of two
steps: the first is to use the image classification results to sort and select some interaction categories, and perform H-O
pair classification only on the selected categories, namely, category selection; the second is to adopt a series of temperature
parameters that ranks the interaction classification results of sorted and selected categories, namely, category ranking.
Category selection. Instead of choosing the labels for an H-O pair from all K predefined categories, based on the previous
multi-label image classification prediction {py, } for the image, we perform a selected-label classification. First, the top x of
the classification weights {Q)}.} is selected according to the descending order of image classification predictions as

[@17"' 7@5} = TOp_“([Q/lf" ’Q/K] Apk}) s 2

and H-O pair classification is performed as
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where [@1, S @,J denotes the top  selected category queries (classification weights) associated with the largest x image
classification scores, s denotes the classification scores with hard score integration, and & represents the number of selected
category queries, chosen as a much smaller value than K.

Category ranking. On top of category selection, we apply a set of learnable temperature parameters [y, 7o, - - - , T, to adjust
the classification scores over the selected top « categories, so Eq. (3) is changed to
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We analyze the influence of  choices and the benefits of such a ranking adjustment in the ablation study. Note that this
is similar to the rank-adaptive pixel classification performed in RankSeg [4] for image and video segmentation tasks, though
their classification is a single-label problem and softmax is applied while ours are multi-label and sigmoid is used.



hard integration soft integration Default
selection ranking Full Rare Non-Rare
- - - 3498 31.73 35.95
v - - 35.09 3298 35.72
v v - 3524 32.67 36.01
- - 4 35.18 32.23 36.06
v v 4 35.36 3297 36.07

Table 1. Ablation on the techniques (soft and hard score integration) that we elaborate in Sec. 2 to utilize image-level classification scores.
The best results are marked in bold.

k|- 30 50 70 9 117
mAP | 3498 3504 3519 3524 3508 3503

Table 2. Ablation on the number of interaction categories in the hard score integration step, i.e., x. The metric for comparison is the full
mAP under default setting on HICO-DET dataset. “-” denotes the hard score integration is not used. The best results are marked in bold.

2.2. Soft Score Integration

Another way to utilize the image-level classification scores is to directly multiply the instance classification scores s; with
the image classification probabilities {py, }, as

Sf: [\/Si,l*plv"'7\/Si,K*pK]7 (5)

where s; denotes the interaction classification scores of the i-th H-O instance, with soft sore integration.

Compared with the hard score integration, no interaction class is deprecated during instance classification. They are just
stressed or suppressed in a soft way. Therefore, we call this soft score integration.

Note that hard and soft score integration can be applied together, as

h — —
S? = [\/sﬁl*plv"‘a\/sﬁn*pn}a (6)

where [Dy, - ,P,] is the top  in {pg }. Through experiments in Tab. 1, we find both soft and hard integration bring a small
improvement and the best result is achieved when both is used.

3. Implementation Details

Most of the implementation details have been provided in the paper. Here we summarize these details. In the proposed
category query learning, transformer decoder with 2 layers is used by default. The structure of each decoder layer in the
proposed decoder consists of a cross-attention module, a self-attention module and a FFN in order. The weights of the
existing losses in the baselines are not changed, and an image loss with loss weight A = 1.0 is added to the final loss. For the
asymmetric loss in image classification, we adopt v+ = 0, v— = 4 and m = 0.05. Both hard and soft score integration are
used. For category selection and ranking in hard score integration, we set x as 70 for HICO-DET [1]. Hyper-parameters like
learning rate, weight decay, batch size and input image size follow the baseline settings by default.

Following the baseline detectors, the feature extractor is frozen for SCG [7], and updated for QPIC [6] and GEN-VLKT [5].
For the experiments on GEN-VLKT, we change its classification classes from 600 HOI categories to 117 interaction cate-
gories for HICO-DET and from 263 to 29 for V-COCO, following most HOI detection methods. For the experiments on
SCQG, the detection boxes are from a fine-tuned detector provided by DRG [2] for HICO-DET and a fine-tuned DETR for
V-COCO [3]. The experiment is conducted on 8 Tesla V100 GPUs.

4. Additional Ablations

In this part, we perform some additional studies on technical details.



4.1. Integration of Image-level Classification Scores

As mentioned in Sec. 2, the score integration process is proposed to utilize the image-classification scores in the proposed
method, with two strategies: the hard score integration, consisting of category selection and category ranking, and the soft
score integration, which is a score multiplication operation between instance-level and image-level classification scores. As
shown in Tab. 1, each of them brought a marginal improvements: the model with hard score integration achieves 35.24 mAP
while the one with score integration achieves 35.18 mAP. Together, a performance of 35.36 is obtained. We use this two
techniques together by default.

4.2. Different « in Hard Score Integration

In this part, we study to influence of the number of the selected categories, denoted as «, in the hard score integration
step. As shown in Tab. 2, the selection and ranking on interaction categories works best when x = 70. For a smaller «, some
categories may be filtered by mistake, like when x = 30, the performance is only 35.04 mAP, falls behind the optimal setting
by 0.15 mAP. When x = 117, none of the categories are filtered and only ranking operation is still effective. This results in
a little performance drop of 0.16 mAP. We use x = 70 by default.

5. Additional Qualitative Results

In Fig. 1, we provide more qualitative results in addition to the cases in the paper.

The first case shows the proposed method uses the feature of other instances in the image to help the recognition of a
small and challenging instance. The image contains multiple instances of person directing and inspecting an airplane. The
TP instance visualized is associated with a small and occluded person, which the baseline fails to discover (the score is
denoted as “-””). The proposed method successfully predict this instance with a high score of 0.46. This is consistent with the
quantitative discussion on Fig. 5 in the paper.

In the second case, the proposed method discovers an interaction category “repair” neglected by the baseline, possibly
with the help of correlations between categories (“inspect” and “repair’”’). The “repair” interaction is semantically abstract,
but the existence of “inspect” may help. This may explain why removing the self-attention from our decoder with cause
performance drop in Tab. 6 of the paper: it may learns the dependencies between different interaction categories. In the
forth case, the learning of “cut with” interaction may also benefit from the recognition of “hold”. Additionally, there is an
obvious annotation mistake in the second case: interactions like “ride” and “sit on” are not labeled though they exists (in the
background). The proposed method still produces relatively high image-level classification scores for these two categories.
Actually, such annotation mistakes exists widely in HICO-DET dataset, and the increase on mAP may not fully show the
effectiveness of the proposed method.

In the third and forth cases, our method shows its ability to distinguish whether instances belonging to an interaction
category existing in the image. In the third image, though it produce a relatively high “hold” score of 0.36 at image level, it
does not take all the H-O pairs in the image as “hold”, which would be very wrong. It successfully discovers the TP “hold”
instance that the baseline missed, and suppresses the FP “hold” from 0.31 to 0.16. This is consistent with the quantitative
results in Tab.4 of the paper that shows the proposed method benefits more from the adaptive instance classification weight
rather than simply an image classification task. Notably, these two are challenging images with “dense” interaction instances,
especially the third case, which corresponds to the discussion in Fig. 5 and Sec 5.5 of the paper.

6. Potential Limitation and Social Impact

The proposed method focuses on the interaction classification sub-task in HOI detection. It does not improve H-O pair
detection directly. In the future, we will try to extend this idea to the classification of human and objects in HOI to improve
H-O pair detection.

The proposed algorithm has no evident negative impact to society. However, someone might use this method for malicious
usage, e.g., to attack people in military usage or invasion of privacy with surveillance. Therefore, we encourage well-intended
application of the proposed method.
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