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Abstract

Segmenting object parts such as cup handles and animal
bodies is important in many real-world applications but re-
quires more annotation effort. The largest dataset nowa-
days contains merely two hundred object categories, imply-
ing the difficulty to scale up part segmentation to an un-
constrained setting. To address this, we propose to explore
a seemingly simplified but empirically useful and scalable
task, class-agnostic part segmentation. In this problem, we
disregard the part class labels in training and instead treat
all of them as a single part class. We argue and demonstrate
that models trained without part classes can better localize
parts and segment them on objects unseen in training. We
then present two further improvements. First, we propose to
make the model object-aware, leveraging the fact that parts
are “compositions”, whose extents are bounded by the cor-
responding objects and whose appearances are by nature
not independent but bundled. Second, we introduce a novel
approach to improve part segmentation on unseen objects,
inspired by an interesting finding — for unseen objects, the
pixel-wise features extracted by the model often reveal high-
quality part segments. To this end, we propose a novel self-
supervised procedure that iterates between pixel clustering
and supervised contrastive learning that pulls pixels closer
or pushes them away. Via extensive experiments on PartIm-
ageNet and Pascal-Part, we show notable and consistent
gains by our approach, essentially a critical step towards
open-world part segmentation.

1. Introduction

Segmenting “objects” from images, such as cup, bird,
vehicle, etc., is a fundamental task in computer vision
and has experienced a series of breakthroughs in recent
years thanks to deep learning [6, 15, 19] and large-scale
data [12, 23, 31]. In many real-world applications like ob-
ject grasping, behavior analysis, and image editing, how-

*This work was done during an internship at Adobe Research.

ever, there is often a need to go beyond “objects” and dive
deeper into their compositions, i.e., “parts”; for example, to
segment cup handle, bird wing, vehicle wheel, etc.

Arguably, the most straightforward way to tackle this
problem is to perform part “instance” segmentation, treat-
ing each object part as a separate class; each appear-
ance as a separate instance. A model then must localize
parts, classify them, and demarcate their boundaries. In
object-level instance segmentation [15], these three sub-
tasks are usually approached simultaneously, or at least,
share a model backbone. Such a multi-task nature enables
the model to benefit from the complementary cues among
sub-tasks to attain higher accuracy. For instance, the shapes
of segments often entail the class labels and vice versa.

Segmenting parts in this way, however, limits their scope
to the closed world. That is, the learned model may not, or
by default should not1, generalize to object categories (and
their corresponding parts) that are unseen during training.
Although the largest dataset nowadays for part segmenta-
tion, PartImageNet [14], has covered more than a hundred
object categories, a scale similar to representative object-
level datasets like MSCOCO [31] and OpenImages [23], it
is arguable not enough to cover the need in the wild.

To equip the model with the open-world capability — the
ability to segment parts for unseen objects — we propose to
chop off the “classification” function from the model, as it is
simply not applicable to unseen parts. Namely, we remove
the pre-defined fences among different object parts and in-
stead assign a single part class to them (i.e., class-agnostic).
At first glance, this design choice may seem like a purely
simplified version of the original problem or an unavoid-
able compromise. However, we argue that it indeed helps
improve the model’s open-world generalizability.

Concretely, in training a model to correctly classify seen
object parts, we implicitly force the model to classify future
unseen object parts into the background, suppressing their
chances to be detected and segmented. By treating all the

1The need to assign a “seen-class” label to every detected segment dis-
courages the model from detecting segments that correspond to “unseen-
class” classes in the first place.
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seen object parts as a single class, we remove the competi-
tion tension among them and in turn encourage the model
to pay more attention to differentiating “parts” and “non-
parts”. As a result, unseen parts appear to be more like the
test data in conventional supervised learning; the model can
more likely detect them. Besides, removing the competition
tension also encourages the model to learn the general pat-
terns of parts, which can potentially improve the segmen-
tation quality on unseen parts. In Sec. 4, we empirically
demonstrate the effectiveness of class-agnostic training in
segmenting parts from unseen objects.

We propose two further improvements towards open-
world class-agnostic part segmentation. First, we incorpo-
rate into the model a unique semantic cue of parts. Com-
pared to objects which are usually considered as “entities”,
i.e., things that can exist and appear distinctively and inde-
pendently, object parts are “compositions”, located within
an object and often appearing together in a functionally
meaningful way. We hypothesize that by making models
aware of this object-part relationship, the resulting segmen-
tation quality can be improved. To this end, we propose to
introduce class-agnostic object masks (e.g., extracted by an
off-the-shelf segmentation model) as an additional channel
to the model. While extremely simple, we found this ap-
proach highly effective, leading to notable gains, especially
on unseen objects. Moreover, it is model-agnostic and can
easily be incorporated into any network architecture.

Second, we propose a novel way to fine-tune the model
using unlabeled data, e.g., data it sees in its deployed en-
vironment, which may include unseen objects. We found
that on unseen objects, pixel-wise features the model inter-
nally extracts often reveal high-quality segment boundaries.
To take advantage of this, we propose a self-supervised
approach to adapt the model backbone, which iterates be-
tween online pixel clustering (e.g., using k-means) and su-
pervised contrastive learning using the cluster assignment.
Concretely, we update the model backbone to pull pixels
of the same clusters closer; push pixels between different
clusters farther away. As will be demonstrated in Sec. 4,
this approach leads to a consistent gain on unseen objects
and can be further improved via a combination with self-
training [2, 24]. Please see Fig. 1 for an illustration.

We validate our proposed approach, which we name
Open Part Segmenter (OPS), on two part segmentation
datasets, PartImageNet [14] and Pascal-Part [5]. We train
the model on PartImageNet, and evaluate it on a PartIma-
geNet out-of-distribution set and Pascal-Part: to our knowl-
edge, we are the first to conduct a cross-dataset study for
part segmentation. Data in these two sets contain a variety
of unseen objects, and we use class-agnostic Average Preci-
sion (AP) as the metric. We show that OPS achieves signif-
icant and consistent gains against the baselines. On PartIm-
ageNet, we improve the AP from 38.21 to 42.61; on Pascal-

Part, we improve from 9.48 to 23.02, almost a 142.8% rel-
ative gain. Importantly, all our proposed components —
class-agnostic segmentation, object mask channel, and self-
supervised fine-tuning — contribute to the gain. Moreover,
if given ground-truth object masks (e.g., form a user in an
interactive setting), OPS can encouragingly improve the AP
to 85.12 on PartImageNet and 25.26 on Pascal-Part, making
it a highly flexible approach. Our analyses further reveal
cases that OPS can segment even finer-grained parts than
the ground truths, essentially a critical step towards open-
world part segmentation.

2. Related Work

Image segmentation aims to divide pixels into semanti-
cally meaningful groups. Semantic segmentation [4, 19, 48,
50] tackles this problem by classifying each pixel into a pre-
defined semantic class, ignoring the fact that pixels of the
same classes may belong to different instances. Instance
segmentation [3, 7, 15, 25], in contrast, aims to group pixels
by semantic instances (e.g., different bird individuals), and
at the same time assigns each instance a class label. Panop-
tic segmentation [22,30] further combines instance segmen-
tation of “things” (e.g., cars, birds) and semantic segmenta-
tion of “stuffs” (e.g., sky, grass) into a unified problem.

Most image segmentation works focus on “objects” as
the basic class labels [15]. Relatively fewer works treat
“parts” as the basic class labels [5, 14, 32, 42, 44, 45]. In
these works, part segmentation is mostly solved as a se-
mantic segmentation problem, despite the fact that an object
may contain multiple part instances of the same class (e.g.,
wheels of a truck). In applications like image editing and
object grasping, it is often more important to localize part
instances that users/robots can directly interact with. In this
paper, we therefore focus on part instance segmentation.

Since parts are essentially “compositions” of objects,
there exists a natural (hierarchical) relationship between
them. Several works have attempted to leverage this in-
formation, mostly in solving hierarchical segmentation over
objects and parts together and requiring specifically devel-
oped model architectures [8, 28]. In our work, we focus
on parts, assuming that we can obtain object-level masks
from an off-the-shelf detector. Without developing a new
model architecture, we propose two fairly simple, model-
agnostic ways to leverage the object-part relationship. Our
approach is particularly suitable for an interactive task like
image editing since the model can directly take input from
users to generate “targeted” part segmentation results.
Open-world recognition. The visual recognition commu-
nity has gradually moved from recognizing a pre-defined
set of classes to tackling classes that are not seen in the
training phases (e.g., rare animals, newly produced prod-
ucts, etc.), e.g., zero-shot learning [13,40,46]. Many recent
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Figure 1. Illustration of our pipeline. We claim that class-agnostic training is the key to the open-world part instance segmentation. In
stage 1, we train the model with labeled data treating all part categories as a single class. We then learn with the unlabeled data in stage 2
with our novel fine-tuning approach: (1) self-training (ST): we use pseudo labels generated for unlabeled data by the base model and jointly
learn with (2) self-supervised (SS): we discover pseudo parts on the feature map and learn the affinity within a part and contrast between
different parts. We also propose object-aware learning including pre-aware and post-aware, which improves the segmentation quality for
parts, especially of unseen objects.

works in an open-world setting aim to “classify” these un-
seen classes, for example, by exploiting external knowledge
such as word vectors [35], CLIP embedding [39], etc.

Another approach, which we follow, is to “localize”
these unseen items while ignoring the need to classify
them [9, 27, 38]. This approach is particularly useful in im-
age editing, manipulation, etc. The closest work to ours
is [38], but there are distinct differences. First, they focused
on objects while we focus on parts. Second, we propose
unique improvements for part segmentation, building upon
the insights that parts are “compositions”, not “entities”,
while they focus on object “entities”. Further, we propose a
novel way to fine-tune our model with unlabeled data.
Semi-supervised learning, domain adaptation, and test-
time training. Our fine-tuning approach on unseen objects
is reminiscent of the tasks of semi-supervised learning [18,
21,36,37], domain adaptation [26,29,33,34,47,49,52], and
test-time training [20,51]. However, our fundamental prob-
lem setup is different: they mostly assume the unlabeled
and labeled data share the same label space; here, we con-
sider the case that our unlabeled data may contain unseen
objects or parts. Nevertheless, we demonstrate that self-
training [2, 24, 52], a strong approach in semi-supervised
learning and domain adaptation performs favorably in our
problem. On top of it, we further propose a novel method
taking insights from the detailed investigation of intermedi-

ate features within the model for self-supervision on unla-
beled data.

3. Approach
3.1. Class-Agnostic Part Segmentation

We consider part instance segmentation. We assume that
every image contains one salient object and the goal is to
segment that object into parts. That is, for each image, I ∈
RH×W×3, we want to identify and segment the parts of the
salient object, {(yn,mn)}Nn=1, where m ∈ {0, 1}H×W is
the binary mask of a part and y is its corresponding part
class, assuming the object contains N parts (some of whom
may share the same class label). Let us denote by S the set
of object classes seen in the training data Dtr.

In a close-world setting, images in the test data Dte are
expected to only contain objects that belong to S. In the
open-world setting we target, this constraint is removed, al-
lowing the test data to contain objects unseen in Dtr. We
denote the set of those unseen object classes by U .

Since the test data Dte may contain unseen objects, their
corresponding part labels are, by default, not fully covered
by Dtr. To address this problem, we define the open-world
part segmentation problem in a class-agnostic way. That
is, we treat all the parts in the test data Dte as a single class
yn = 1. The goal is therefore to localize and segment object
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parts without assigning them class labels.
Class-aware v.s. class-agnostic training. Even though we
define the evaluation protocol to be class-agnostic, it may
still be beneficial to incorporate part classes during train-
ing. To investigate the underlying effect, we compare train-
ing a model in a class-agnostic way (i.e., yn = 1) and a
class-specific way (i.e., using the original yn in Dtr). In
evaluation, we simply replace the part class labels predicted
by the class-specific model with 1.

We leave the detailed experimental setup and results in
Sec. 4. In short, in an open-world setting, we observe a
consistent improvement by training the model in a class-
agnostic way. Specifically, class-agnostic training enables
the model to localize unseen parts with a higher recall and
segment them more accurately.

In the rest of this paper, we will then employ class-
agnostic training to learn the part segmentation model.

3.2. Object-Aware Learning and Inference

Object parts, by definition, are the “compositions” of the
corresponding object. That is, the extent of them should not
go beyond the extent of the object; object parts belonging to
the same object instance should appear closely and be de-
tected within the same object mask. While a conventional
instance segmentation model may learn such prior knowl-
edge from the training data, we argue that directly incorpo-
rating it into the model’s prediction is a more straightfor-
ward way to take advantage of such a strong cue.

In this paper, we propose two simple yet highly effective
ways to incorporate object masks into part segmentation.
Post-aware. The first way is post-processing. That is, af-
ter the model already outputs part segments, we directly re-
move all the portions outside the given object mask.
Pre-aware. We argue that the object-awareness should also
be proactively included before making predictions. Instead
of post-processing afterward, we hypothesize that the model
can learn to incorporate the object-part relationship to di-
rectly generate higher-quality part segments. More specif-
ically, we incorporate the class-agnostic object mask as an
additional channel to the input image I , i.e. appending I
with O ∈ {0, 1}H×W to become I ′ ∈ RH×W×4.

Another potential benefit from this approach is that it
makes predicting the background also object-aware, which
could potentially improve the recall of part segmentation,
especially for unseen objects. Normally, a model predicts
background by P (y = BG|I). When the training data
are not labeled comprehensively and contain unlabeled ob-
jects, the model is forced to predict them as background,
making its prediction more conservative. By incorporating
the object mask as an input, the model is actually learning
P (y = BG|I,O) for each pixel. That is, it can rely on the
input O to determine the background region and focuses
more on how to segment parts within O.

Figure 2. Comparison between pseudo parts for self-
supervised (SS) and pseudo labels for self-training (ST) of our
fine-tuning approach. In this figure we use red arrow to mark bet-
ter parts. When pseudo labels are bad (row 3), we find that pseudo
parts on the feature map can actually reveal good ones. They are
complementary to each other in OPS.

Sources of object masks. There are multiple ways to ob-
tain object masks in practice. Thanks to the large-scale
datasets for object-level instance segmentation, such as
MSCOCO [31], LVIS [12], and OpenImages [23], we can
train an object instance segmentation model to detect more
classes than existing part segmentation datasets contain.

Moreover, considering the application of image editing
in an interactive environment, users can always define the
object region of interest and even refine its boundary. All of
the above suggests that the object-awareness is the feasible
solution for part segmentation.

In this paper, we investigate both scenarios. We call the
object masks obtained by an object detector “imperfect”
masks. We assume that the users are able to provide ac-
curate (almost “perfect”) object masks and simulate such a
scenario by using the “ground-truth” masks provided by the
dataset. In short summary, we obtain huge improvement
with both. We leave more details in Sec. 4.

3.3. Learning with Unlabeled Data

To achieve the goal of part instance segmentation in the
wild, learning with unlabeled data is a more promising route
than waiting for more data to be human-annotated. In this
section, we investigate and present approaches to improve
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the part segmentation model on unlabeled data. In practice,
these unlabeled data may come from existing object-level
datasets (but without the part annotations), from the web,
or even from the deployed environment of the model. In
our experiments, we focus on the last scenario. We assume
that we have access to the images of the test data Dte but
without any labels.

The first way we investigate is self-training (ST). That
is, we generate the pseudo labels on Dte, using the model
trained on the labeled training set Dtr. We then fine-tune
the model using the pseudo-labeled data from Dte and la-
beled data from Dtr jointly. In our experiments, we observe
notable gains with this approach, especially on unseen ob-
jects. However, we also find that the pseudo labels in some
cases are already inferior, for example, the human in the
third row of Fig. 2. Fine-tuning with such pseudo-labels can
hardly improve these cases or sometimes even have negative
effects on the model.
Pseudo parts by pixel-level clustering. We dig deeper into
those inferior cases. We found that the majority of errors
come from either under-segmentation, e.g., the model seg-
ments the whole object, or boundary mis-localization. We
surmise that the model itself just cannot recognize the true
segment boundaries for these unseen objects.

To verify this hypothesis, we perform k-means cluster-
ing on the feature map. Specifically, we look at the fea-
ture map right before the model’s prediction, which has the
pixel-level resolution, and treat the feature vector on each
pixel location as a data point.

To our surprise, for those inferior cases, k-means often
clusters pixels into object parts more accurately than the
model’s prediction. In some cases, the discovered parts are
even finer-grained than the ground truths, for example, the
sofa and boat in Fig. 2. In other words, by comparing pixels
to pixels, the features already capture the relative discrim-
inative information among pixels to group them into parts.
Such information, however, may not be strong enough in an
absolute sense to trigger the model to produce parts.

With this evidence, we propose a novel self-supervised
(SS) fine-tuning approach to strengthen the discriminative
information among pixels. Given an unlabeled image, our
approach starts with k-means on top of the feature map, fol-
lowed by a supervised-contrastive-style loss that pulls fea-
tures of the same cluster closer and pushes features among
different clusters farther away.
Contrast between parts. Intuitively we want the features
from different clusters to be dissimilar. We use a centroid to
represent each cluster and maximize the pair-wise distance
between centroids. Formally,

Lc =
1

K

K∑
i,j

exp(
−||ci − cj ||22

τc
), (1)

where ci and cj is the i-th and j-th centroid from the K
clusters; τc is the temperature.
Affinity within parts. In addition, we want the features
within the same cluster to be similar with the following
affinitative loss,

La =
1

N

1

K

K∑
i

N∑
m

exp(
||ci − pim||22

τa
), (2)

where pim is the m-th pixel feature within i-th cluster; τa is
the temperature.
Overall loss. The overall loss for self-supervised fine-
tuning is a combination of contrastive and affinitative loss:
LSS = λcLc + λaLa, where λc and λa are the weights for
balancing two losses.

3.4. Open Part Segmenter

Finally, we combine our proposed methods in Sec. 3.1,
Sec. 3.2, and Sec. 3.3 into a single pipeline named Open
Part Segmenter (OPS), aiming to achieve open-world part
instance segmentation (cf. Figure 1). We first train the base
part segmentation model in a class-agnostic way on labeled
data Dtr, with object masks. We then perform inference
with the base model on the unlabeled data Dte to obtain the
pseudo labels (predicted by the model directly) and pseudo
parts (via clustering on the features). We then fine-tune the
base model with (i) the contrastive and affinitative losses
and (ii) the supervised loss using the (pseudo) labels on both
Dtr and Dte. The proposed pipeline is simple but effective,
showing dramatic improvements and strong generalizability
to unseen objects and parts. See Sec. 4 for details.

We note that in theory we can perform more rounds of
self-training to improve the results and we investigate such
ideas in the supplementary material. We see consistent im-
provement but eventually, we see a diminishing return.

4. Experiments

4.1. Setup

This paper aims to achieve open-world part instance seg-
mentation. To validate the concept of our problem and
the effectiveness of our approaches, we use the following
datasets. We assume that we have a base labeled dataset
and access to unlabeled data in the model’s deployed envi-
ronment for training.
PartImageNet [14]. This dataset contains 16540 / 2957 /
4598 images and 109 / 19 / 30 object categories in train
/ val / test split which provide high-quality part segments.
The dataset already considers the out-of-distribution (OOD)
setting so the object categories in these three subsets are
non-overlapped. We also hold out a subset of data from
train with a similar size as val to tune the hyper-parameters.
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Pascal-Part [5]. To further extend our study to a more re-
alistic open-world setting for part segmentation, we also
use Pascal-Part for cross-dataset evaluation. This dataset
is a multi-object multi-part benchmark that contains 4998 /
5105 images for train / val, covering 20 object categories.
Following Singh et al. [44], we parse the annotations into
Pascal-Part-58/108, which the number here indicates the
number of part categories. To serve our purpose, we convert
the labels to instance annotations and crop the objects from
scene images to become single-object multi-part as PartIm-
ageNet [14].
Evaluation. We adopt standard evaluation metrics for in-
stance segmentation, average precision AP and AP50 [31].
To measure the segmentation quality of predicted parts on
OOD and different datasets, we evaluate them in a class-
agnostic way. In other words, we treat all the parts as a sin-
gle class during evaluation regardless of whether the model
was trained with or without part classes.

4.2. Implementation

Part Segmentation. We apply Mask2Former [6] for our
part instance segmentation model. The backbone is ResNet-
50 [16] pre-trained on ImageNet-1K [41]. The input image
size is 512 and by default, it applies large-scale jittering [11]
with the minimum and maximum scale of 0.1 and 2.0 re-
spectively. In testing time, the shortest edge of the image
is resized to [400, 666]. We train the base model on Par-
tImageNet [14] with batch size 16 for 90K iterations. The
learning rate starts at 0.0001 and is decreased by 10 at 60K
and 80K. All the experiments are conducted on 8 Nvidia
A100.

We compare the class-aware and class-agnostic training.
The former uses the part classes as annotated while the latter
treats all part classes as a single class. Both models are
evaluated in a class-agnostic way for a fair comparison.
Object mask for object-awareness. We demonstrate that
the part predictions should be object-aware and investigate
two approaches: post-aware and pre-aware. This first ap-
proach is a post-processing method that removes all pre-
dictions that are outside the object masks. In the second
approach, we concatenate the object mask as an additional
channel to the input image and hypothesize the model can
learn such a relationship between parts and objects.

As mentioned in Sec. 3.2, we have multiple ways to ac-
cess the object masks. In the following experiments, we ob-
tain the imperfect object masks by taking the trained model
on MSCOCO [31] from [6] and performing inference on
our data. We also show upper-bound results of using per-
fect object masks.
Learning with unlabeled data. We fine-tune the base
model trained on PartImageNet [14] train data with our
novel self-supervised (SS) + self-training (ST) approach on
unlabeled data. We consider two settings: (1) fine-tuning on

Table 1. Comparison between class-agnostic and class-aware
training. We first study the impact of two on PartImageNet [14]
val set to validate our problem setting and approach. Class-
agnostic consistently performs better than class-aware, with (im-
perfect, perfect) or without (none) object masks.

none imperf. perf.
class AP AP50 AP AP50 AP AP50

agnostic 40.01 70.38 41.94 73.17 85.88 96.08
aware 39.71 69.99 41.45 72.97 84.74 95.50

PartImageNet val and evaluate on test and (2) fine-tuning on
Pascal-Part [5] train and evaluate on Pascal-Part val. Both
measure the generalizability to the OOD data and the sec-
ond is even cross-set.

Each training batch of 32 is an even mix of
labeled/pseudo-labeled data and unlabeled pseudo parts
data. For pseudo labels in ST, we use predictions from the
base model that have confidence scores larger than 0.1. For
pseudo parts in SS, we use K = 10 for online K-Means on
normalized features F ′. We use 1 for τc and τa, 10 for λc

and 0.5 for λa. We fine-tune the model for 30K and 10K it-
erations with learning rate 1e−6 with imperfect and perfect
object masks respectively.

4.3. Main Results on PartImageNet

In this section, we show our results on PartImageNet [14]
val and test set. Both sets are OOD from the train set. Please
see more information in Sec. 4.1. We follow the rationale
of our proposed methods step by step to provide a compre-
hensive study with the empirical results on the open-world
part instance segmentation problem.
Class-aware v.s. class-agnostic. The former trains the base
model with part classes while the latter treats all the part
classes as a single class. In order to investigate the underly-
ing impact of class labels on the quality of part instance seg-
mentation, we evaluate both approaches in a class-agnostic
way. At first glance, we may think the model can leverage
more information from part categories in class-aware train-
ing to refine the predicted part masks accordingly. How-
ever, we find that the class-agnostic training obtains com-
parable or slightly better performance. As shown in Tab. 1,
40.01 from class-agnostic is already better than 39.71 from
class-aware in the plain setting without any other proposed
method. The observation still holds when we further in-
clude the object masks. This suggests that learning the con-
text alone can already achieve high-quality part segmenta-
tion. We hypothesize the model learns more general repre-
sentation about parts and thus performs well on OOD data.
It encourages our proposed method toward the open world.
In all of the following experiments, we will directly use
class-agnostic training unless stated otherwise.
Object-aware part segmentation. We propose post-aware
and pre-aware for object-awareness. While the former uses
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Table 2. Results on post-aware and pre-aware object masks
on PartImageNet [14] val and Pascal-Part-58 [5, 44]. Both
approaches outperform the base models that have no object-
awareness (none).

PartImageNet val Pascal-Part-58
object mask AP AP50 AP AP50

none 40.01 70.38 9.48 19.90
+ post imperf. 42.48 71.03 12.44 24.40
+ post perf. 47.10 75.25 13.06 24.97

pre imperf. 41.94 73.17 20.27 44.24
+ post imperf. 45.40 74.45 23.02 47.21

pre perf. 85.88 96.08 25.24 45.62
+ post perf. 87.61 96.19 25.26 45.67

object masks for post-processing to filter out unreasonable
part predictions, the latter includes them as a cue for train-
ing. In Tab. 2, we show that both approaches outperform the
base model that has no object-awareness (i.e. AP 40.01).
It proves the effectiveness of our proposed methods. Fur-
thermore, the two approaches are complementary to each
other. Simply combining them obtains the further gain, i.e.
AP 41.94 to 45.40 with imperfect masks and 85.88 to 87.61
with perfect masks.

Here we also see a big jump from not using object masks
(AP 40.01) to using perfect ones (AP 87.61) in Tab. 2. This
is an essential finding: considering image editing in an in-
teractive environment, a user can always refine the object
mask until it is satisfying. This encourages the application
of our work to the real world.

Besides the above improvements, our proposed methods
are simple and straightforward. It can be easily plugged into
most existing algorithms and architectures.
Learning with unlabeled data. In this section, we demon-
strate the effectiveness of our novel fine-tuning approaches,
namely self-training (ST) and self-supervised (SS) learning.
We fine-tune the base model with PartImageNet [14] val and
evaluate on the test set. As both val and test are OOD from
train, we aim to investigate the generalizability to unseen
objects and parts in terms of segmentation quality.

In Tab. 3, the performance of the base model on val set is
AP 41.94 with imperfect masks. Fine-tuning on val set with
SS and ST alone can improve to 42.78 and 43.12 respec-
tively. It shows the effectiveness of each individual compo-
nent. By combining them, our proposed OPS model can get
even higher performance.

Fine-tuning and improving on val set assumes we have
access to the unlabeled data without annotations and we
can leverage them in an unsupervised learning way. Here
we still have another test set OOD from both train and val
which is not included in the fine-tuning. In Tab. 3, we also
see notable gains with all approaches (AP 40.17, 40.38,
and 40.43) compared to the base model (AP 38.96). It
explains that the model learns more generalizability to un-

Table 3. Results on PartImageNet [14] We fine-tune the base
model on OOD val set with proposed self-supervised (SS) and
self-training (ST), with imperfect and perfect object masks. Both
outperform the base model.

Val Test
method SS ST AP AP50 AP AP50

imperf.
base 41.94 73.17 38.96 69.07

✓ 42.78 74.62 40.17 70.70
✓ 43.12 75.03 40.38 71.10

OPS ✓ ✓ 43.16 74.96 40.43 71.18
perf.
base 85.88 96.08 83.52 94.66

✓ 86.09 96.35 83.81 94.94
✓ 86.28 96.37 83.97 95.12

OPS ✓ ✓ 86.19 96.43 83.86 95.05

seen parts and objects with fine-tuning only on val set. The
proposed fine-tuning approach is an important step toward
open-world part instance segmentation.

4.4. Main Results on Pascal-Part

In Sec. 4.3, we show notable improvements on PartIm-
ageNet [14]. Here, we further extend our study to a cross-
dataset setting. To this end, we use the same base model
trained on PartImageNet train set, and we measure the gen-
eralizability of the model to the new test data in Pascal-
Part [5]. We evaluate on two sets of ground-truth anno-
tations, Pascal-Part-58 and Pascal-Part-108. We parse the
annotations following [44] (see Sec. 4.1 for more informa-
tion). To the best of our knowledge, we are the first to inves-
tigate cross-dataset scenarios in part instance segmentation.
Object-aware part segmentation. We conduct the same
empirical study as in Sec. 4.3 on Pascal-Part-58. As shown
in Tab. 2, the base model performs merely AP 9.48 and im-
proves to 13.06 even after proposed post-processing with
perfect mask (base + post perf.). With pre-aware imperfect
masks, the performance (AP 20.27) is more than twice as
the base model and also outperforms base + post perf. by
a large margin. We observe similar results with perfect ob-
ject masks. Furthermore, the gain is greater than what we
have seen in Sec. 4.3. This suggests the effectiveness of the
pre-aware approach, which can recognize more high-quality
part segments, especially for data with a larger domain gap.
Learning with unlabeled data. In this section, we follow
the same route as in Sec. 4.3 but fine-tune the base model
using unlabeled data in the Pascal-Part train set. As shown
in Tab. 4, on Pascal-Part-58, SS improves the base model
from AP 20.27 and 25.24 to 20.53 and 27.13 with imperfect
and perfect object masks respectively. With ST, the APs are
further boosted to 24.02 and 27.69. These relative improve-
ments of 18.4% and 9.7% are much greater than 2.9% and
0.3% in Tab. 3 on PartImageNet.
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Figure 3. Visualizations of part segmentation on Pascal-Part-58 [5, 44]. The first row is the ground-truth and the second is predictions
from our proposed OPS model. Our model only uses part segmentation ground-truth from PartImageNet [14]. These high-quality part
predictions demonstrate the feasibility of part segmentation in the wild and the effectiveness of our proposed approach.

Table 4. Results on Pascal-Part-58 and Pascal-Part-108 [5, 44].
We fine-tune the base model on train set with the proposed self-
supervised (SS) and self-training (ST), without using any addi-
tional ground-truth annotations. We show the performance with
imperfect and perfect object masks. All the components in OPS
consistently outperform the base model.

Part-58 val Part-108 val
method SS ST AP AP50 AP AP50

imperf.
base 20.27 44.24 16.36 30.16

✓ 20.53 44.91 17.95 33.03
✓ 23.25 48.81 17.75 32.64

OPS ✓ ✓ 24.02 50.10 18.23 33.72
perf.
base 25.24 45.62 13.40 29.32

✓ 27.13 49.08 13.75 29.76
✓ 27.23 48.58 15.85 33.66

OPS ✓ ✓ 27.69 49.75 16.40 34.60

On the more fine-grained and challenging Pascal-Part-
108, we also observe consistent improvements, i.e. relative
improvements of 11.43% and 22.38% to the base model.
Qualitative results. In Fig. 3, we show visualizations
of part segmentation using our proposed OPS model on
Pascal-Part-58 [5, 44]. Though our model is only trained
using ground-truth annotations from PartImageNet [14] in a
class-agnostic way, it generates high-quality part segments
which align very well with GT.

In short, we demonstrate that our approaches are appli-
cable to not only PartImageNet, OOD but closer domain,
but also even more challenging cross-dataset setting. With
our approach of learning with unlabeled data, OPS is able
to learn better representation for more general parts, which
results in superior performance on unseen objects and parts
from different data domains.

Table 5. Comparison to baselines on PartImageNet test. We
adopt standard metrics for semantic segmentation to compare with
other baselines. OPS outperforms them by a large margin.

imperfect obj. mask perfect obj. mask
mIOU fwIoU mACC mIOU fwIoU mACC

SLIC 38.15 65.10 75.61 41.19 68.09 78.12
NC 40.80 76.87 54.99 43.11 77.44 55.17
Fel. 47.97 83.82 67.70 59.73 88.90 76.10
OPS 64.71 89.41 82.61 91.89 97.97 95.81

4.5. Comparison to Other Baselines

Evaluation metric. We adopt the standard evaluation met-
ric AP for part “instance” segmentation in previous sec-
tions. In this section, we evaluate with mIOU, fwIoU, and
mACC, which are the standard metrics for semantic seg-
mentation, to compare to other baselines. However, directly
applying them without classifying parts will simply merge
all the parts and cannot reflect the segmentation quality. To
resolve this, we consider an oracle scenario, assigning each
segmented part the class label from its highest-overlapped
“ground-truth” part.
Results. We compare OPS to normalized cut (NC) [43],
SLIC [1], and Felzenszwalb (Fel.) [10] as shown in Tab. 5.
OPS outperforms them by a large margin in all metrics on
PartImageNet test. Our method using imperfect masks even
outperforms them when they use perfect masks. We ar-
gue OPS successfully captures semantic cues to attain high
quality. See the supplementary material for more.

5. Conclusion
In this work, we present OPS, a method for part seg-

mentation in an open-world setting. To be robust to unseen
parts, we propose class-agnostic and object-aware learning.
Combining with self-training and clustering on unlabeled
data, we achieve state-of-the-art on unseen categories.
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Supplementary Material
In this supplementary material, we provide details and

results omitted in the main text.

• Appendix A: Pascal-Part-58 to PartImageNet. In
contrast with the main paper Sec. 4.4, we further per-
form the reverse direction of training and evaluation to
validate our proposed method.

• Appendix B: Multiple-Round Self-Training. In
the main paper Sec. 4.3 we report singe round self-
training. In this supplementary, we further explore
multiple rounds.

• Appendix C: Robustness to Imperfect Object Masks
In this section, we visualize more predictions to show
the effect of using imperfect object masks in pre-aware
setting to support discussions in Sec. 3.2 of the main
paper.

• Appendix D: Robustness to Unseen Parts. In this
section, we show more cases of applying OPS to un-
seen objects and unseen parts. Some of our predictions
are more reasonable and fine-grained than GT.

• Appendix E: Comparison to More Baselines. In
this section, we compare to an additional baseline,
SCOPS [17], besides Sec. 4.5 in the main paper.

• Appendix F: Robustness to Multiple Objects in a
Scene. In this section, we show more cases of ap-
plying OPS to an image containing multiple objects.

• Appendix G: More Qualitative Results.

A. Pascal-Part-58 to PartImageNet
As claimed in the main paper, our goal is to improve

the robustness of the part segmentation model to the unseen
parts. Our proposed method, OPS, utilizes the novel self-
supervised (SS) and self-training (ST) fine-tuning approach
to learn with unlabeled data. In Section 4.3 and Section 4.4,
we investigate two settings: (1) train the base model on Par-
tImageNet train, fine-tune the base model on PartImageNet
val without ground-truth labels, evaluate on both PartIma-
geNet val and PartImageNet test; (2) train the base model on
PartImageNet train, fine-tune the base model on Pascal-Part
train without ground-truth labels, evaluate on Pascal-Part
val. In this supplementary, we further provide the result of
using Pascal-Part-58 to train the base model, PartImageNet
train set to fine-tune, and PartImageNet val/test set to eval-
uate.

In Tab. A, we see consistent improvements over the
base models with our proposed SS and ST methods. Both
SS and ST can improve part segmentation when working
alone. By combining SS and ST, our proposed full OPS

Table A. Results on PartImageNet [14] We train the base model
on Pascal-Part-58 [5, 44] and fine-tune it on PartImageNet train
set with proposed self-supervised (SS) and self-training (ST), with
imperfect and perfect object masks. Both outperform the base
model.

Val Test
method SS ST AP AP50 AP AP50

imperf.
base 22.59 48.06 18.58 39.47

✓ 23.60 49.90 19.27 40.64
✓ 24.60 53.17 20.23 43.70

OPS ✓ ✓ 25.14 54.18 20.73 44.46
perf.
base 36.39 63.01 32.08 55.24

✓ 38.40 65.29 33.40 56.90
✓ 36.86 66.83 32.89 59.12

OPS ✓ ✓ 37.93 67.87 33.71 59.93

model achieves further gain, which improves the val set
from AP 22.59 to 25.14 and the test set from 18.58 to 20.73
with imperfect object masks, and val set from AP 36.39 to
37.93 and test set from 32.08 to 33.71 with perfect object
masks. This demonstrates our proposed OPS model indeed
achieves improved robustness for part segmentation on un-
seen objects no matter how it is tested in the cross-dataset
setting.

B. Multiple-Round Self-Training
In the main paper, we report the result of single-round

self-training: we use the base model to generate pseudo la-
bels and perform fine-tuning for a single round. In many
self-training works, multiple rounds of pseudo-label gener-
ation and fine-tuning are usually performed. In this setting,
pseudo labels are updated by the fine-tuned model and ad-
ditional fine-tuning can be applied on top of it. Here, we
explore two rounds of self-training for our proposed OPS
model, and results are shown in Tab. B.

On PartImageNet, we see the result of OPS gets slightly
improved (AP 43.16 to 43.29 on the val set and 40.43 to
40.78 on test set) with imperfect object masks and the per-
formance is nearly the same with perfect object masks. On
Pascal-Part-58, we improve from AP 27.69 to 27.83 with
perfect object masks, but the performance stays almost the
same (AP 24.02 vs 23.96) with imperfect object masks.
Note that the performance on multi-rounds may not be opti-
mal yet because it requires further mining on pseudo labels,
which will be investigated more in our future work.

C. Robustness to Imperfect Object Masks
In the main paper, we propose to apply object-aware

learning which aims to capture the fact that parts are “com-
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Figure A. Imperfect object masks. The red circles indicate the parts missed in the imperfect object masks but recovered by OPS part
predictions. The model can recognize the shape of the objects and their belonging parts even though it is trained in a class-agnostic way.

Table B. Results of multiple rounds for pseudo labels. In the
main paper, we report the result of a single round, which generates
the pseudo labels only once. In the supplementary, we further ex-
plore multiple rounds.

single round multi rounds
datasets AP AP50 AP AP50

PartImageNet val
w/ imperf. 43.16 74.96 43.29 74.80
w/ perf. 86.19 96.43 86.18 96.41

PartImageNet test
w/ imperf. 40.43 71.18 40.78 71.20
w/ perf. 83.86 95.05 83.86 95.05

Pascal-Part-58
w/ imperf. 24.02 50.10 23.96 49.80
w/ perf. 27.69 49.75 27.83 50.13

positions” of their objects. We extract imperfect object
masks by an off-the-shelf segmentation model (see main
paper for more information) and input with images as an
additional channel to RGB. Fig. A shows that OPS part pre-
dictions are able to complete the missing parts even though
the imperfect object masks are used for pre-awareness. For
example, in the first column, the predictions of the cow re-
cover the right ear region. Similarly, the predictions of the
horse in the second column repair the leg. In addition, the
model is able to exclude the rein since it is less likely to be
a part of the horse.

D. Robustness to Unseen Parts
In Fig. B, we show the robustness of OPS to the unseen

objects and parts. Here the test images are from Pascal-Part-
58 val, while our OPS model is trained on PartImageNet

train and fine-tuned on Pascal-Part-58 train. Some of the
predicted parts are not annotated in Pascal-Part [5]. In the
first column, the prediction excludes the baby on the chair
while the GT labels the whole as a single part. In the third
column, the prediction not only finds out the headrest, body,
and bottom part of the chair but also discovers all wheels
and the armrest. In these cases, our predictions won’t get
any reward in terms of evaluation metric, e.g., AP or AP50,
and they will even get lower scores since the predicted parts
are not annotated in the ground-truth. We will explore better
evaluation metrics for unlabeled part discovery in our future
work.

E. Comparison to More Baselines

In this section, we try to compare OPS to SCOPS [17]
as an additional baseline. We note that SCOPS [17] exper-
imented with PASCAL-Part but did not release the check-
point; it reported object-level IoU (by aggregating parts) but
not part-level IoU or AP. Therefore, we perform a qualita-
tive comparison by applying OPS on the PASCAL-Part im-
ages that SCOPS [17] showed in their paper. As shown in
Fig. C, OPS generally leads to a higher quality of parts.

F. Robustness to Multiple Objects in a Scene

We use single-object images for simplicity by follow-
ing SCOPS [17]. Meanwhile, our OPS can be applied to a
multi-object image in one pass by simply including a multi-
object mask. As shown in Fig. D, although in the rightmost
case, all object masks are connected without differentiation
in the mask channel, OPS still correctly recognizes the parts
of each object. In addition, simple post-processing with ob-
ject masks can further refine the part predictions.
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Figure B. Robustness to unseen parts. OPS shows strong generalizability to objects and parts that are unseen in PartImageNet [14].
Furthermore, our method is able to segment parts that are not annotated in Pascal-Part [5].

Figure C. Comparison to SCOPS [17] (The results in the first
row are directly copied from its paper). OPS has a higher quality
of parts.

Figure D. Qualitative results on multiple objects in an image.

G. More Qualitative Results

Fig. E shows the result on PartImageNet test set by our
OPS model trained on PartImageNet train and fine-tuned
on PartImageNet val. The part predictions perform well on
OOD objects and parts. Some of them even discover more
reasonable parts than annotations in GT (e.g. chimpanzee
on 2nd row and 4th column).

Fig. F shows the result on Pascal-Part-58 val set by our
OPS model trained on PartImageNet train and fine-tuned
on Pascal-Part-58 train. As mentioned in Appendix D, this

demonstrates the robustness of OPS to unseen objects and
parts in an even more challenging cross-dataset setting.
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Figure E. Qualitative results on PartImageNet test set.
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Figure F. Qualitative results on Pascal-Part-58 val set.

15


	. Introduction
	. Related Work
	. Approach
	. Class-Agnostic Part Segmentation
	. Object-Aware Learning and Inference
	. Learning with Unlabeled Data
	. Open Part Segmenter

	. Experiments
	. Setup
	. Implementation
	. Main Results on PartImageNet
	. Main Results on Pascal-Part
	. Comparison to Other Baselines

	. Conclusion
	. Pascal-Part-58 to PartImageNet
	. Multiple-Round Self-Training
	. Robustness to Imperfect Object Masks
	. Robustness to Unseen Parts
	. Comparison to More Baselines
	. Robustness to Multiple Objects in a Scene
	. More Qualitative Results

