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Abstract

Rotated bounding boxes drastically reduce output ambi-
guity of elongated objects, making it superior to axis-aligned
bounding boxes. Despite the effectiveness, rotated detectors
are not widely employed. Annotating rotated bounding boxes
is such a laborious process that they are not provided in many
detection datasets where axis-aligned annotations are used
instead. In this paper, we propose a framework that allows
the model to predict precise rotated boxes only requiring
cheaper axis-aligned annotation of the target dataset 1.

To achieve this, we leverage the fact that neural networks
are capable of learning richer representation of the target
domain than what is utilized by the task. The under-utilized
representation can be exploited to address a more detailed
task. Our framework combines task knowledge of an out-of-
domain source dataset with stronger annotation and domain
knowledge of the target dataset with weaker annotation. A
novel assignment process and projection loss are used to en-
able the co-training on the source and target datasets. As a
result, the model is able to solve the more detailed task in the
target domain, without additional computation overhead dur-
ing inference. We extensively evaluate the method on various
target datasets including fresh-produce dataset, HRSC2016
and SSDD. Results show that the proposed method consis-
tently performs on par with the fully supervised approach.
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sion project conducted at Amazon. We would like to express
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Figure 1. KCR combines the task knowledge of a source dataset
with stronger rotated annotation and the domain knowledge of the
target dataset with weaker axis-aligned annotation, which enables
the model to predict rotated detection on the target domain.

1. Introduction

Rotated detectors introduced in recent works [17, 20, 32]
have received attention due to their outstanding performance
for top view images [15, 33, 34]. They reduce the output am-
biguity of elongated objects for downstream tasks making
them superior to axis-aligned detectors in dense scenes with
severe occlusions [18]. However, the rotated annotation is
more expensive compared to axis-aligned annotation. Fur-
thermore, popular 2D annotation tools such as Sagemaker
Groundtruth 2 and VGG app 3 do not support rotated bound-
ing box annotations. As a result, many popular detection
datasets only have axis-aligned annotations [3, 4, 11]. These
problems reduces the potential scope of the implementation
of rotated detectors. In this work, we introduce Knowledge
Combination to learn Rotated object detection, a training
scheme that only requires cheaper axis-aligned annotation
for the target dataset in order to predict rotated boxes.

Neural networks encode data into a latent space, which
is then decoded to optimize the given task. The latent em-
bedding is an abstract representation of the data, containing
much richer information than the output [29]. Early works in
deep learning show that the model implicitly learns to detect
image features such as edges and corners [10, 12], which

2https://aws.amazon.com/sagemaker/data-labeling/
3https://www.robots.ox.ac.uk/vgg/software/via/
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can be used for more detailed tasks if decoded properly. We
believe decoding to a more precise task on the target do-
main can be learnt via co-optimizing with a strongly labelled
source dataset. We design a framework that combines task
knowledge of rotated detection from a source dataset, and
the domain knowledge of a disjoint class of objects in the
target dataset with only axis-aligned annotation, as shown
in Figure 1. This approach combines the advantage of both
weakly-supervised learning and transfer learning.

We follow a design principal that the framework should
maximize the target domain knowledge learnt by the model
while minimizing the negative impact caused by weaker
labels. This is achieved by co-training the source and tar-
get dataset with projection losses and a novel assignment
process. The design choices are validated through ablation
studies. We conduct extensive experiments to demonstrate
that our framework is robust to a large domain gap between
source and target dataset. Therefore, box orientation can
practically be learnt for free with KCR, due to the availabil-
ity of free public source datasets such as DOTA [32] with
rotated annotations. We show the efficacy of this method on a
fresh-produce dataset with high density of objects and severe
occlusions. The performance (AP50) gap between the pro-
posed method, learning from weak axis-aligned boxes, and
the fully-supervised model learning from strong rotated an-
notation, reduces to only 3.2% for the challenging cucumber
dataset. We apply the same framework to HRSC2016 [16]
and SSDD [27] datasets to show that our method consis-
tently performs on par with fully supervised models. The
performance gap reduces to 1.0% for SSDD. We believe
our approach can greatly increase the usage and impact of
rotated object detectors. The source code will be publicly
available for the community to save future annotation cost.
In summary, our main contributions are as follows:

1) We introduce a framework that combines task knowl-
edge of a strongly labelled source dataset and domain
knowledge of a weakly labelled target dataset.

2) We apply this method in 2D rotated detection task,
enabling the model to predict rotated bounding box with
only axis-aligned annotation and verify the generality
of the method with several datasets.

3) We demonstrate robustness of the framework to vari-
ous domain gaps between source and target datasets.
Hence, box orientation can be learnt with no additional
annotation cost in practical applications.

2. Related Work
Rotated Detection Task. Rotated object detection requires
the model to predict minimum area rectangles with five de-
grees of freedom, namely rotated bounding boxes, enclosing
objects of interests [32]. In axis-aligned object detection, the
output rectangles have four degrees of freedom, which are
aligned with the image axes [13]. The rotated boxes occupy

a much smaller area when estimating the location status of
diagonally positioned elongated objects as shown in Fig-
ure 1. Rotated detection is strictly superior to axis-aligned
detection as there is less background within the box, and the
orientation can potentially convey object pose information.
However, there are only a handful of datasets with rotated
annotations [16, 27, 32] comparing to large number of read-
ily available large-scale axis-aligned datasets [4, 11, 13, 19].
A potential contributor to this phenomenon is the ease of
annotating axis-aligned boxes by simple click-and-drag with
current labelling tools. Rotated boxes require much more
effort to tightly enclose the objects with an extra degree of
freedom. Popular annotation tools such as AWS Sagemaker
and VGG app do not support rotated boxes. In order to ac-
quire tighter rotated annotations, users must pay for instance
segmentation, which is significantly more expensive and un-
necessary for the final task. Therefore, we propose this work
to address the shortcomings of the rotated object detection
task pipeline by making orientation free to learn.

Weakly-Supervised Learning. Weakly supervised learn-
ing sits between fully supervised learning and unsupervised
learning, in the sense that only weak labels are available.
The labels are weak either because they are incomplete, inex-
act or noisy [1, 6, 9, 23, 30, 31]. In computer vision, popular
weakly-supervised learning tasks include object detection
with only image level annotation [5,35] and instance segmen-
tation with only box annotation [2, 21]. Due to the difficulty
of pixel-wise prediction, weakly-supervised instance seg-
mentation still falls significantly behind a fully-supervised
model [28] on novel objects. In this paper, we focus on
learning rotated detection requiring five parameters with
only axis-aligned annotation during training which provides
four parameters. The one parameter difference makes our ap-
proach weakly-supervised. To the best our knowledge, such
problem has only been attempted on specific category of
objects [8] but not approached generally. For elongated ob-
jects, solving this problem is more appropriate than solving
weakly-supervised instance segmentation directly.

Transfer Learning. Computer vision models are frequently
initialised with backbones [7,14,22] pretrained on ImageNet
or COCO [13, 26], which is a basic form of transfer learning
and a common practice. Transfer learning is highly effective
when the target dataset has small sample size such as medical
imaging [24]. Despite the fact that conventional transfer
learning reduces the number of data samples required for a
specific task, strong annotation of the target domain is still
required for the model to learn the detailed task. In this
paper, we utilize co-training strategy to transfer the ability to
make more detailed predictions from the source to the target
dataset with weaker annotations.
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Figure 2. Overall framework of KCR, which learns the knowledge of rotated detection from source dataset combined with domain knowledge
of axis-aligned target dataset to infer rotated bounding boxes of target objects. The rotated detector [33] takes in an image encoded by a
CNN and generates first-stage proposals (x, y, w, h, α, β, p) and second-stage refinements (x∗, y∗, w∗, h∗, θ∗, p∗). We use a function P to
either project or enlarge the box representation during the assignment processes and loss functions.

3. KCR
The goal of our work is to learn to predict rotated bound-

ing boxes on a target dataset of which we only have axis-
aligned bounding boxes in training examples. We develop
a co-training scheme that utilizes an out-of-domain but
strongly labelled source dataset to learn accurate rotations
of elongated objects. An example of a potential source and
target dataset pair are a satellite imagery dataset, DOTA [32],
and a fresh-produce dataset, as shown in Figure 1. In this
section, we first briefly describe the workflow of the detector
following by our training scheme which enables weakly-
supervised learning and knowledge transfer.

3.1. Rotated Detection Overview

In this work, we employ the same architectural choices
as [33] and the flow is briefly demonstrated in Figure 2. The
forward propagation comes in two stages: the oriented RPN
followed by oriented R-CNN, where both methods contain a
classification head and a regression head. The RPN takes an
image and generates N oriented region proposals {Ri}Ni=1

which each take the form Ri = (xi, yi, wi, hi, α, β, pi),
where (xi, yi) denotes the center, wi and hi are the width
and height of the tightest axis-aligned external box. α and
β are the are the offsets relative to the midpoints of the top
and right sides of the external rectangle. pi is an object
score. The proposed rotated region will then be cropped
by rotated roi [33] in feature space. The proposal is then
fed to Oriented R-CNN which is a CNN followed by an-
other classification head and a bounding box regression head
rectifying the spatial location. We denote the output of of sec-

ond stage is {R∗i }
N
i=1 and R∗i = (x∗i , y

∗
i , w

∗
i , h
∗
i , θ
∗
i , p
∗
i , c
∗
i )

where (x∗i , y
∗
i ) denotes the center, w∗i and h∗i are the width

and height and θ∗i the rotation angle of the final predicted
rotated box. p∗i is the second stage object score and c∗i repre-
sents the classification score.

3.2. Learning Rotated Region Proposal

We develop a co-training scheme that utilizes both source
and target datasets. We denote

{
Bsj
}m
j=1

to be the m

rotated bounding boxes of a source image where Bsj =
(xsj , y

s
j , w

s
j , h

s
j , θ

s
j ) is a rotated box. For the target dataset,

we have n axis-aligned boxes
{
Btj
}n
j=1

on a target image
where Btj = (xtj , y

t
j , w

t
j , h

t
j) is a axis-aligned box.

In the first stage, a set of N oriented regions are pro-
posed where each proposal Ri = (xi, yi, wi, hi, α, β, pi) is
assigned a ground truth label Bσ(i) based on intersection
over union (IoU) matching, where the assignment σ(i) and
matching score τ(i) are

σ(i) = argmax
j∈{1,...,m}

iou((xi, yi, wi, hi), P (Bj)), (1)

τ(i) = max
j∈{1,...,m}

iou((xi, yi, wi, hi), P (Bj)). (2)

Since in first stage, (xi, yi, wi, hi) represents the tightest
external axis-aligned box instead of the rotated region itself,
we need a transformation function P to project the ground
truth to axis-aligned box for source rotated dataset. It is
important to notice that P (Bj) is strictly equal or larger
than canonical axis-aligned box of the object. Therefore, for
target axis-aligned dataset, we need to enlarge Btj . Here we
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formally define the transformation function

P (B) =


(xmin, ymin, xmax, ymax)

for B = (x, y, w, h, θ),
(xmin − γwi, ymin − γhi, xmax + γwi,

ymax + γhi) for B = (x, y, w, h),
(3)

where γ is simply an enlargement factor that we can tune.
The loss for this RPN is defined as follows

LS =
1

N

N∑
i=1

−1τ(i)≥0.5 log(pi) + l1(Ri, B
s
σ(i)) (4)

LT =
1

N

N∑
i=1

−1τ(i)≥0.5 log(pi)

+ l1((xi, yi, wi, hi), P (B
t
σ(i))),

L = LS + LT , (5)

where the loss for both target and source examples are com-
posed by a binary cross entropy (BCE) loss and an l1 re-
gression loss on spatial outputs. The label for the BCE is
determined by whether the proposal has an overlap larger
than 0.5 with any projected ground truth. For the source
dataset, we can compute ground truth (αs, βs) from θs

which is the regression for the rotation representation. How-
ever, for the target dataset, we only compute regression loss
for (xi, yi, wi, hi). The model must learn the rotation knowl-
edge from the source dataset. To simplify the mathematical
notation, we omit classification loss as it is less relevant to
our contribution than object score.

3.3. Learning Rotated R-CNN

In the second stage, the Oriented R-CNN takes in a subset
of proposals generated in first stage and make final prediction
R∗i = (x∗i , y

∗
i , w

∗
i , h
∗
i , θ
∗
i , p
∗
i , c
∗
i ). The bounding box regres-

sion is less important because of two reasons. Firstly, the
cropped region proposal is already an approximate detection.
The goal of regression of this stage is to fine-tune. Secondly,
we choose to use class-agnostic rotated bounding box re-
gression here as the model is able to learn general bounding
box regression from the source dataset. The classification
of the second stage is also straight forward to train because
canonical axis-aligned detector fundamentally identical in
that respect. The most important and challenging aspect is to
produce an accurate object score p∗i , which is a direct result
of ground truth assignment process. We first formulate the
assignment process for the source dataset as

σ∗s (i) = argmax
j∈{1,...,m}

iou((xi, yi, wi, hi, θi), B
s
j ), (6)

τ∗s (i) = max
j∈{1,...,m}

iou((xi, yi, wi, hi, θi), B
s
j ). (7)

Note that the assignment process is based on the proposal
instead of the final refined prediction. The difference from
the first stage is that here we use accurate rotated ground
truth Bsj against Ri instead of the external enclosing axis-
aligned box. We compute θ of the first stage with (α, β)
inline with [33]. This works appropriately with the source
dataset. However, it creates a challenge for the target dataset
which lacks rotation information. If we follow the identical
assignment process as the source dataset, then a close-to-
correct proposal might be classified as negative example
if the overlap between the rotated bounding box and axis-
aligned bounding box is low. Consequently, false negative
rate will be increased, reducing the recall of such training
scheme. Therefore, we propose two additional strategies,
projection assignment and heuristic selection.
Projection Assignment. To avoid the aforementioned in-
creased false negative problem, we can project the predicted
(xi, yi, wi, hi, θi) as an axis-aligned box and then compute
the overlap between projected box and axis-aligned ground
truth. Then we have,

σ∗t (i) = argmax
j∈{1,...,m}

iou(P (xi, yi, wi, hi, θi), P (B
t
j)), (8)

τ∗t (i) = max
j∈{1,...,m}

iou(P (xi, yi, wi, hi, θi), P (B
t
j)). (9)

whereP is the transformation defined in previous section. By
doing this, we reduce the false negative rate as rotated boxes
can be correctly assigned to the axis-aligned counterpart
and increase the recall of the model. However, consider a
rotated box that has a rotation angle of π − θ or −θ. It will
have the same projected axis-aligned box as the one with
θ and these two are completely different boxes. Therefore,
this process might misclassify negative examples as positive,
which results in reduction in precision. The losses are:

L∗S =
1

N

N∑
i=1

−1τ∗
s (i)≥0.5 log(p

∗
i ) + l1(R

∗
i , B

s
σ(i)), (10)

L∗T =
1

N

N∑
i=1

−1τ∗
t (i)≥0.5 log(p

∗
i ) (11)

L∗ = L∗S + L∗T . (12)

Heuristic Selection. Aside from the projection assignment,
we also propose a parallel strategy. We use the same assign-
ment rule as the source dataset 7. However, we evaluate
how reliable each assignment is based on the aspect ratio
and area size of axis-aligned ground truth and try to learn
more from the reliable ground truth. For a particular axis-
aligned ground truth box, we can compute its aspect ratio rj
defined by rj = max(wj , hj)/min(wj , hj). Larger aspect
ratio implies the ground truth box is more reliable. In ad-
dition, we can find an area threshold athreshold a minimum
un-occluded stereotypical object area on a target dataset. For
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wj ∗hj < athreshold, it is likely an occluded box. Following
these heuristics, we define a binary reliability switch and
loss for target dataset as

gi =

{
1 if (rσ∗(i) > 3 or wσ∗(i) ∗ hσ∗(i) < athreshold)

0 otherwise
(13)

L∗T =
1

N

N∑
i=1

−gi1τ∗
t (i)≥0.5log(p

∗
i ). (14)

and we choose to mask unreliable examples. Despite heuris-
tic selection is less general than projection assignment, this
can be beneficial for confined industry applications where
the aspect ratio of the target object is known such as detecting
a bottle on the conveyor belt.

4. Experiments and Discussion
In this section, we first outline our implementation details

and experimental setup including the datasets. Then we show
the effectiveness of our method through ablation studies
followed by the comparison with different target and source
datasets. Finally, we include some qualitative results.

4.1. Experimental setup

Source Datasets. Source datasets, in this work, are datasets
strongly labelled with box orientations. The model has ac-
cess to the source datasets to learn the task of rotated box
detection. We choose a variety of source datasets including
DOTA [32], COCO [13] and Fresh-produce dataset 1 where
DOTA [32] is a popular satellite imagery dataset with ro-
tated annotations and COCO [13] is a popular general object
detection dataset. In COCO, rotated bounding box ground
truth can be generated by finding the minimum enclosing
rectangle on each instance segmentation mask ground truth.
Fresh-produce dataset 1 is a challenging dataset with high ob-
ject density and heavy occlusion. The number of images and
instances are shown in table 1. There are three long-shape
subsets including banana, cucumber and carrot.
Target Datasets. The training subset of the target datasets
only contains axis-aligned bounding box ground truth which
is used for the model to learn. Alternatively, the validation
and test subsets contain rotated ground truth to evaluate
the performance of the model. We select HRSC2016 [16],
SSDD [27], cucumber and carrot datasets 1 as our target
datasets to cover a variety of domain permutations including
satellite, single channel, natural and various object density.
Implementation Details. We pretrain our detector,
Oriented-RCNN [33] using DOTA [32]. The ship class
and the images with the ships are removed from DOTA for
this paper for pretraining and its role as a source dataset,
due to class overlap with some target datasets. The main
statistic we use in the paper to evaluate our method is AP50.

Table 1. Fresh-produce datasets.

Class Number of images Number of instances

banana 158 7391
cucumber 48 2036
carrot 47 4647

It calculates the average precision with IOU threshold of 0.5.
Average precision (AP) is the area under precision and recall
curve. We utilise the mmrotate framework [36] and [33] for
training. We use a batch of 2 images from target dataset and
a batch of 2 images from the source dataset for a combined
mini-batch of 4. The losses and forward propagation for
two batches are computed independently, then the losses
are added and backpropagated through the network. We
train the models up to 50 epochs of target dataset. During
inference, we set the non-maximum-suppression threshold
to 0.5 instead of 0.1 used generally for aerial datasets, as
the higher object density fresh-produce dataset contains far
more object overlapping cases. We conduct the experiments
using one 2080ti GPU with 11GB of memory. The training
time depends on the dataset size, ranging from 30 minutes
to 2 hours to train. The test can be done within 5 minutes for
each dataset with speed of 15 FPS, which is the same as the
original detector.

4.2. Ablation Studies

To tackle the weakly-supervised learning of rotated
bounding box given only axis-aligned ground truth, we build
our approach progressively. In this section, we show how the
approach evolves using cucumber as our axis-aligned train-
ing target dataset and DOTA [32] as our source dataset. We
choose this particular pair because their domain gap is large
in terms object appearance, density and occlusion severity.
It is more convincing if the model is able to learn rotation
with such a large domain gap between source and target.

We first establish a baseline by training a rotated detector
using our axis-aligned cucumber training dataset and test it
on rotated cucumber test set. This baseline is the first row of
table 2 with AP50 of 0.491. Then we introduce the cotraining
strategy with the source dataset without any modification
of the training scheme. That means we simply treat both
source and target datasets equally and completely follow the
training scheme of [33]. This gives us AP50 of 0.542 which
is an incremental improvement over the baseline.

RPN projection 5 improves the performance to 0.581 (Ta-
ble 2). Instead of learning the wrong rotation supervision
from the axis-aligned dataset, it chooses not to learn. After
that, we try the single class strategy: only use one class label
for all classes in source dataset. This effectively improves the
performance to 0.633 because the model focuses on learning
the object score and rotation angle instead of the classifi-
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Table 2. Ablation Studies of the proposed methods. We use DOTA as source and fresh cucumber as target dataset. This table decoupled the
effectiveness of rotated cotraining, rpn projection loss, single class, heuristic selection, projection assignment and axis-aligned pretraining
using other objects.

Rotated Cotraining RPN Proj. Single Class H. Select. P. Assign. Pretraining AP50↑

- - - - - - 0.491
X - - - - - 0.542
X X - - - - 0.581
X X X - - - 0.633
X X X X - - 0.666
X X X - X - 0.664
X X X - X X 0.683

Table 3. Analysis for enlargement factor γ. We use DOTA as
source and HRSC as target dataset for this analysis.

γ 1.00 1.05 1.10 1.15 1.20 1.25
AP50↑ 0.791 0.763 0.756 0.733 0.718 0.650

Table 4. We evaluate KCR with dense cucumber and carrot datasets
with severe occlusion as target datasets. Tight rotated ground truth
is used to evaluate AP50 performance of the model in the test
time. We compare KCR method with original Oriented-RCNN [33]
with weak axis-aligned annotation for training and fully-supervised
models trained with strong rotated ground truth. Results show that
KCR enables the model to perform on par with fully-supervised
model and works reasonably well under large domain gap.

Method Source Target Train AP50↑

C
uc

um
be

r original [33] - axis-aligned 0.491
KCR(ours) DOTA [32] axis-aligned 0.683
KCR(ours) banana axis-aligned 0.788
fully-supervised - rotated 0.820

C
ar

ro
t original [33] - axis-aligned 0.560

KCR(ours) DOTA [32] axis-aligned 0.614
KCR(ours) banana axis-aligned 0.723
fully-supervised - rotated 0.765

cation problem of the source dataset. If the target dataset
is multi-class, we can apply the single class strategy to the
source dataset because the classification is not important.

The projection assignment and heuristic selection meth-
ods are implemented separately. The projection assignment
strategy as described in section 3.3 improves the perfor-
mance to 0.664 since it reduces the false negative rate. It
cannot further improve performance due to the false positive
assignment problem. Heuristic selection strategy improves
the model performance to 0.666. Finally, we pretrain this
model on other axis-aligned objects and improve this perfor-
mance to 0.683 which is 0.192 higher than the baseline. We
take the last row of table 2 as our final approach and apply it
to permutations of target and source datasets in section 4.2.

We also provide an ablation of the enlargement factor

Table 5. Evaluation of KCR method with HRSC2016 [16] and
SSDD [27] as target datasets against tight rotated ground truth in the
test. Influence of source dataset is investigated using COCO [13],
COCO with rotation augmentation and DOTA [32]. We also com-
pare KCR against original Oriented-RCNN [33], Grabcut [25]
with weak axis-aligned annotation for training and fully-supervised
model trained with strong rotated ground truth. We use projection
assignment methods for KCR except for the ones with HS, which
stands for heuristic selection.

Method Source Target Train AP50↑

H
R

SC
20

16
[1

6]

original [33] - axis-aligned 0.175
Grabcut [25] - axis-aligned 0.240
Grabcut Train - axis-aligned 0.629
KCR(ours) COCO [13] axis-aligned 0.579
KCR(ours) COCO Aug axis-aligned 0.783
KCR(ours) DOTA [32] axis-aligned 0.791
KCR-HS(ours) DOTA [32] axis-aligned 0.778
fully-supervised - rotated 0.903

SS
D

D
[2

7]

original [33] - axis-aligned 0.432
Grabcut Train - axis-aligned 0.585
KCR(Ours) COCO [13] axis-aligned 0.888
KCR(Ours) COCO Aug axis-aligned 0.874
KCR(Ours) DOTA [32] axis-aligned 0.881
KCR-HS(Ours) DOTA [32] axis-aligned 0.874
fully-supervised - rotated 0.898

γ ≥ 1. As we can see from Table 3, γ = 1.00 is the best,
which is what we have used throughout all the experiments.

4.3. Main results

In this section, we apply KCR framework to various com-
binations of source and target datasets to investigate the gen-
erality of the method under different domain gaps. We also
compare KCR with a popular foreground segmentor [25].
Fresh-produce dataset. In Table 4 we can see results pro-
gressively improve when information that is closer to de-
sired result is introduced. We initially evaluate our method
where no knowledge combination is used, that is, for the cu-
cumber and carrot, we use the axis-aligned bounding boxes
and allow the network to learn incorrect α, β and θ val-
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Figure 3. Visualization of KCR performance against original Oriented-Rcnn trained with weak axis-aligned annotation. The images are from
test sets of HRSC2016 [16] and SSDD [27]. We use the COCO as our source dataset which has large domain gap from the target. The model
trained with KCR methods learnt to predict accurate rotated bounding box, which is much more precise than the original model.

Figure 4. Distribution of Aspect ratios on 4 datasets.

ues. In the next iteration, we use DOTA [32] aerial satellite
images for knowledge combination. The domain gap be-
tween these images and the cucumber and carrots is large
because of the sparsity of objects in DOTA. Nonetheless,
introducing rotated-bounding box information, even with
dissimilar dataset, results in a large performance improve-
ment for both cucumber and carrot as seen in the second row
of Table 4. The next progression combines knowledge with
bananas annotated with rotated bounding-box. This further
improves the results and provides an insight into task sim-
ilarity strengthening knowledge combination. The banana
dataset offers the opportunity for the model to learn rotated
detection with severe occlusion. For reference, the last row
in Table 4 is the result when training the model directly on
ground truth rotated bounding box, i.e. fully supervised
training. We note that the performance gap between our
approach and fully supervised training is small.
HRSC2016. HRSC2016 [16] is a rotated satellite imagery
dataset that focuses on ships. The objects in HRSC2016 typi-
cally have a larger aspect ratio and occupies larger area of the
image in comparison DOTA [32] targets. To prevent class
overlap, images with ships have been removed from DOTA
when using as a source dataset. We establish our baseline by
using original training regime and only axis-aligned ground

truth of HRSC2016 yielding AP50 of 0.175, which is 72.8%
lower than a fully supervised result as shown in Table 5.
We investigate the performance of KCR with COCO [13],
containing only natural images, as source dataset because
the domain gap between COCO and HRSC2016 is visually
large. We generate rotated bounding box ground truth from
instance segmentation masks. The result significantly im-
proves to 0.579 when we use KCR framework. Although
the rotated bounding box is used in source dataset, objects in
COCO are typically axis-aligned, hence produce a weak ro-
tation training signal. We therefore rotate images by 0− 180
degrees followed by horizontal and diagonal flip augmenta-
tion to increase the number of rotated examples in the source
dataset. As a result, AP50 rises to 0.783 with strongly aug-
mented COCO. Thus we show that KCR enables the transfer
learning of extra parameter under large domain gap. At last,
we use DOTA dataset as source and achieves AP50 of 0.791,
which is only 11.2% lower than the fully supervised model.
The performance gap is potentially due to lack of equally
long objects with large aspect ratio in the source dataset.
SSDD. SSDD [27] is SAR dataset which also focuses on de-
tection of ships. Images in SSDD are single channel and vary
in frequency depending on the sensor used for acquisition.
These images are commonly low resolution and contain high
frequency noise, which results in a visually large domain
gap from any source datasets. We follow the same knowl-
edge combination strategy as before. Using KCR, a trained
rotated box model performs almost equally well from three
different source datasets (DOTA, coco and coco augmented).
The final AP50 of 0.888 is 45.6% better than the baseline
and only 1% lower than a fully supervised model.
Rotated Boxes with Grabcut. GrabCut [25] is a computer
vision algorithm that predicts a foreground initialised with a
region-of-interest. This foreground segmentation can then be
used for predicting a rotated box with a variety of heuristic
algorithms. This predicted rotation can be used at inference
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Figure 5. Visualization of KCR performance trained with axis-aligned only dataset. The images are chosen from an unlabeled set to ensure
generality. The model is clearly capable of predicting tight rotated bounding box even with high object density and occlusion.

time as a post-processing step, transforming the axis aligned
boundary box to a rotated boundary box. At test time, this
improves the baseline by a minimal 6.5%, however reduces
inference throughput to 0.3 FPS. Alternatively, this algo-
rithm can be performed offline on the axis-aligned ground
truth to produce a noisy rotated boundary box ground truth
for training. This method is significantly more effective,
improving test time performance on rotated ground truth
to 0.629 AP50 for HRSC and 0.585 for SSDD. However,
KCR outperforms training on noisy ground truth by 16.2%
on HRSC and 30.3% on SSDD.
Analysis on aspect ratios. We show histograms of aspect
ratio in Fig 4. The biggest difference between an axis-aligned
and rotated box happens when the instance has high aspect
ratio and rotated. Most COCO objects are neither long
nor rotated while DOTA has a fair distribution of long and
rotated objects. Performance gap between original COCO
and DOTA as source dataset is bigger for HRSC than SSDD
because HRSC has a more tail heavy aspect ratio distribution.

4.4. Qualitative Results

We visualize performance of KCR on HRSC2016 [16]
and SSDD [27] in Figure 3. The model has successfully
learnt to predict accurate rotated bounding box with weak
axis-aligned annotation. The source dataset we use to gain
rotation knowledge is COCO [13], which has a large domain
gap distant from the target dataset. The rotated prediction
from our framework produces boxes much tighter than a
model which was trained on and predicts axis-aligned boxes.

Fresh-produce dataset is more challenging due to higher
density of objects with severe occlusion. We visualize the
performance of KCR with cucumber and carrot as target
datasets and a banana dataset as the source dataset supplying
knowledge of rotation. The depicted images are from a
separate unlabeled set to ensure generality. As shown in
Figure 5, the model is clearly capable of predicting tight
rotated bounding boxes in a challenging scenario which
is core contribution of this paper. The model is able to
complete the task with high precision and recall in a scene
with frequent and extremely occlusions, various lighting
conditions and different object sizes. For the two images in
the left column, the model detects almost every object.

5. Conclusion

Rotated detection improves the performance of down-
stream tasks by reducing the overall area of the enclosing
box, improving the foreground to background ratio. This is
particularly important for scenes with high density of targets
and complex occlusions. However, most existing datasets
only provide axis-aligned annotation, with the lack of the ca-
pability to annotate rotated boxes. In this paper, we address
this problem by proposing KCR, which is a novel knowledge
combination training scheme that only requires axis-aligned
annotation for the target object class to train the model. At
inference time, the model predicts accurate rotated bounding
boxes on par with fully-supervised approach. This approach
will enable the detector to predict an extra but crucial param-
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eter. We believe this work can greatly extend the use case of
rotated object detection by reducing annotation costs.
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