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Abstract

Training a convolutional neural network (CNN) to detect
infrared small targets in a fully supervised manner has
gained remarkable research interests in recent years, but
is highly labor expensive since a large number of per-pixel
annotations are required. To handle this problem, in this
paper, we make the first attempt to achieve infrared small
target detection with point-level supervision. Interestingly,
during the training phase supervised by point labels,
we discover that CNNs first learn to segment a cluster
of pixels near the targets, and then gradually converge
to predict groundtruth point labels. Motivated by this
“mapping degeneration” phenomenon, we propose a label
evolution framework named label evolution with single
point supervision (LESPS) to progressively expand the
point label by leveraging the intermediate predictions of
CNNs. In this way, the network predictions can finally
approximate the updated pseudo labels, and a pixel-level
target mask can be obtained to train CNNs in an end-to-end
manner. We conduct extensive experiments with insightful
visualizations to validate the effectiveness of our method.
Experimental results show that CNNs equipped with LESPS
can well recover the target masks from corresponding
point labels, and can achieve over 70% and 95% of
their fully supervised performance in terms of pixel-level
intersection over union (IoU ) and object-level probability
of detection (Pd), respectively. Code is available at
https://github.com/XinyiYing/LESPS.

1. Introduction
Infrared small target detection has been a longstanding,

fundamental yet challenging task in infrared search and
tracking systems, and has various important applications in
civil and military fields [49,57], including traffic monitoring
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Figure 1. An illustration of mapping degeneration under point
supervision. CNNs always tend to segment a cluster of pixels
near the targets with low confidence at the early stage, and then
gradually learn to predict GT point labels with high confidence.

[24, 54], maritime rescue [52, 53] and military surveillance
[7, 47]. Due to the rapid response and robustness to
fast-moving scenes, single-frame infrared small target
(SIRST) detection methods have always attracted much
more attention, and numerous methods have been proposed.
Early methods, including filtering-based [9, 40], local
contrast-based [3,16] and low rank-based [11,43] methods,
require complex handcrafted features with carefully tuned
hyper-parameters. Recently, compact deep learning has
been introduced in solving the problem of SIRST detection
[24, 45, 54]. However, there are only a few attempts, and its
potential remains locked, unlike the extensive explorations
of deep learning for natural images. This is mainly due to
potential reasons, including lack of large-scale, accurately
annotated datasets and high stake application scenarios.

Infrared small targets are usually of very small size,
weak, shapeless and textureless, and are easily submerged
in diverse complex background clutters. As a result,
directly adopting existing popular generic object detectors
like RCNN series [13, 14, 19, 39], YOLO series [25, 37,
38] and SSD [29] to SIRST detection cannot produce
satisfactory performance. Realizing this, researchers have
been focusing on developing deep networks tailored for
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infrared small targets by adequately utilizing the domain
knowledge. However, most existing deep methods for
SIRST detection [8, 24, 54] are fully supervised, which
usually requires a large dataset with accurate target mask
annotations for training. Clearly, this is costly [5, 26].

Therefore, a natural question arises: Can we develop
a new framework for SIRST detection with single point
supervision? In fact, to substantially reduce the annotation
cost for object detection tasks, weakly supervised object
detection methods with point supervision [4, 5, 26, 56] have
been studied in the field of computer vision. Although these
weakly supervised methods achieve promising results, they
are not designed for the problem of SIRST detection,
and the class-agnostic labels (i.e., only foreground
and background) of infrared small targets hinder their
applications [42, 58]. Therefore, in this work, we intend
to conduct the first study of weakly supervised SIRST
detection with single-point supervision.

A key motivation of this work comes from an interesting
observation during the training of SIRST detection
networks. That is, with single point labels serving as
supervision, CNNs always tend to segment a cluster of
pixels near the targets with low confidence at the early
stage, and then gradually learn to predict groundtruth (GT)
point labels with high confidence, as shown in Fig. 1.
It reveals the fact that region-to-region mapping is the
intermediate result of the final region-to-point mapping1.
We attribute this “mapping degeneration” phenomenon to
the special imaging mechanism of infrared system [24, 54],
the local contrast prior of infrared small targets [3, 8], and
the easy-to-hard learning property of CNNs [44], in which
the first two factors result in extended mapping regions
beyond the point labels, and the last factor contributes to
the degeneration process.

Based on the aforementioned discussion, in this work,
we propose a novel framework for the problem of weakly
supervised SIRST detection, dubbed label evolution with
single point supervision (LESPS). Specifically, LESPS
leverages the intermediate network predictions in the
training phase to update the current labels, which serve as
supervision until the next label update. Through iterative
label update and network training, the network predictions
can finally approximate the updated pseudo mask labels,
and the network can be simultaneously trained to achieve
pixel-level SIRST detection in an end-to-end2 manner.

Our main contributions are summarized as: (1) We
present the first study of weakly supervised SIRST

1 “region-to-region mapping” represents the mapping learned by CNNs
from target regions in images to a cluster of pixels near the targets, while
“region-to-point mapping” represents the mapping from target regions in
images to the GT point labels.

2Different from generic object detection [32, 59], “end-to-end” here
represents achieving point-to-mask label regression and direct pixel-level
inference in once training.

detection, and introduce LESPS that can significantly
reduce the annotation cost. (2) We discover the mapping
degeneration phenomenon, and leverage this phenomenon
to automatically regress pixel-level pseudo labels from the
given point labels via LESPS. (3) Experimental results
show that our framework can be applied to different existing
SIRST detection networks, and enable them to achieve
over 70% and 95% of its fully supervised performance
in terms of pixel-level intersection over union (IoU ) and
object-level probability of detection (Pd), respectively.

2. Related Work
SIRST Detection. In the past decades, various methods

have been proposed, including early traditional paradigms
(e.g., filtering-based methods [9, 40], local contrast-based
methods [3, 15–17, 33, 34], low rank-based methods [6, 11,
28,43,50,51]) and recent deep learning paradigms [7,8,20,
21, 24, 45, 52–54]. Compared to traditional methods, which
require delicately designed models and carefully tuned
hyper-parameters, convolutional neural networks (CNNs)
can learn the non-linear mapping between input images
and GT labels in a data-driven manner, and thus generalize
better to real complex scenes. As the pioneering work,
Wang et al. [45] first employed a generative adversarial
network to achieve a better trade-off between miss detection
and false alarm. Recently, more works focus on customized
solutions of infrared small target. Specifically, Dai et al. [7]
specialized an asymmetric contextual module, and further
incorporated local contrast measure [8] to improve the
target contrast. Li et al. [24] preserved target information
by repetitive feature fusion. Zhang et al. [54] aggregated
edge information to achieve shape-aware SIRST detection.
Zhang et al. [52, 53] explored cross-level correlation and
transformer-based method [18] to predict accurate target
mask. Wu et al. [46] customized a UIU-Net framework
for multi-level and multi-scale feature aggregation. In
conclusion, existing works generally focus on compact
architectural designs to pursue superior performance in a
fully supervised manner. However, due to the lack of a
large number of public datasets [7, 24, 45] with per-pixel
annotations, the performance and generalization of CNNs
are limited. In addition, per-pixel manual annotations are
time-consuming and labor-intensive. Therefore, we focus
on achieving good pixel-level SIRST detection with weaker
supervision and cheaper annotations.

Weakly Supervised Segmentation with Points.
Recently, point-level annotation has raised more
attention in dense prediction tasks such as object
detection [4, 12, 56], crowd counting [1, 23, 30, 48]
and image segmentation [2,5,10,26,31,36,55]. We mainly
focus on image segmentation in this paper. Specifically,
Bearman et al. [2] made the first attempt to introduce an
objectiveness potential into a pointly supervised training
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loss function to boost segmentation performance. Qian
et al. [36] leveraged semantic information of several
labeled points by a distance metric loss to achieve scene
parsing. Zhang et al. [55] proposed an inside-outside
guidance approach to achieve instance segmentation
by five elaborate clicks. Cheng et al. [5] designed to
provide ten randomly sampled binary point annotations
within box annotations for instance segmentation. Li et
al. [26] encoded each instance with kernel generator for
panoptic segmentation to achieve 82% of fully-supervised
performance with only twenty randomly annotated points.
In contrast to these approaches employing complicated
prior constraints to segment large generic objects with rich
color and fine textures by several elaborate points, we fully
exploit the local contrast prior of infrared small target to
progressively evolve pseudo masks by single coarse point
without any auxiliaries in an end-to-end manner.

3. The Mapping Degeneration Phenomenon
In this section, we first describe the mapping

degeneration phenomenon together with our intuitive
explanation. Then we conduct experiments under single-
sample and many-sample training schemes to demonstrate
the generality of degeneration, and investigate the influence
of generalization on degeneration.

As shown in Fig. 1, given an input image and the
corresponding GT point label, we employ U-Net [41] as the
baseline SIRST detection network for training. It can be
observed that, in the early training phase, network predicts
a cluster of pixels near the targets with low confidence.
As training continues, the network prediction finally
approximates GT point label with gradually increased
confidence. We name this phenomenon as “mapping
degeneration”, and attribute the following reasons to this
phenomenon. 1) Special imaging mechanism of infrared
systems [24, 54]: Targets only have intensity information
without structure and texture details, resulting in highly
similar pixels within the target region. 2) High local
contrast of infrared small targets [3, 8]: Pixels within the
target region are much brighter or darker with high contrast
against the local background clutter. 3) Easy-to-hard
learning property of CNNs [44]: CNNs always tend to learn
simple mappings first, and then converge to difficult ones.
Compared with region-to-point mapping, region-to-region
mapping is easier, and thus tends to be the intermediate
result of region-to-point mapping. In conclusion, the unique
characteristics of infrared small targets result in extended
mapping regions beyond point labels, and CNNs contribute
to the mapping degeneration process.

It is worth noting that the mapping degeneration
phenomenon is a general phenomenon in various scenes
with infrared small targets. Specifically, we use the training
datasets (including 1676 images and their corresponding
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Figure 2. Quantitative and qualitative illustrations of mapping
degeneration in CNNs.

centroid point label, see details in Section 5.1) to train U-
Net under a single-sample training scheme (i.e., training one
CNN on each image). For quantitative analyses, we employ
the IoU results between positive pixels in predictions (i.e.,
pixels with confidence higher than half of its maximum
value) and GT mask label. Average IoU results of
1676 CNNs at each epoch are shown by the blue curve
in Fig. 2(a), while the number of training samples with
maximum IoU during training phase falling in a threshold
range of [i, i + 0.1], (i = 0, 0.1, · · · , 0.9) is illustrated via
blue bars in Fig. 2(b). It can be observed from the zoom-
in curve and bars that mapping degeneration is a general
phenomenon with point supervision, and U-Net can achieve
IoU > 0.5 on more than 60% of the training images.

In addition, we conduct experiments to train U-Net
under a many-sample training scheme (i.e., training one
CNN using all images which contain abundant targets
with various sizes and shapes) to investigate the effect of
generalization on mapping degeneration. Average IoU
results of 1676 images are shown by orange curve in
Fig. 2(a). It can be observed that many-sample training
scheme needs more time to converge. Moreover, Fig. 2(b)
shows that orange bars are slightly lower than blue ones
on larger IoU values (i.e., 0.5-1.0). It is demonstrated
that generalization decelerates but aggravates mapping
degeneration. Figure 2(c) shows some zoom-in target
regions of images and their predictions under these two
training schemes. It can be observed that CNNs can
effectively segment a cluster of target pixels under both
training schemes in a size-aware manner.

Therefore, an intuitive assumption arises: Can we
leverage the intermediate results of CNNs to regress
masks? A simple early stopping strategy seems to be a
positive answer but is indeed unpractical since mapping
degeneration is influenced by various factors, including
target intensity, size, shape, and local background clutter
(see details in Section 5.2.1). Consequently, there is no
fixed optimal stopping epoch for all situations. These
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Figure 3. An illustration of label evolution with single point
supervision (LESPS). During training, intermediate predictions of
CNNs are used to progressively expand point labels to mask labels.
Black arrows represent each round of label updates.

observations motivate us to design a special label evolution
framework to well leverage the mapping degeneration for
pseudo mask regression.

4. The Label Evolution Framework
Motivated by mapping degeneration, we propose a label

evolution framework named label evolution with single
point supervision (LESPS) to leverage the intermediate
network predictions in the training phase to update
labels. As training continues, the network predictions
approximate the updated pseudo mask labels, and network
can simultaneously learn to achieve pixel-level SIRST
detection in an end-to-end manner. Here, we employ a
toy example of 1D curves for easy understanding. As
shown in Fig. 3, sub-figures on the left of the dotted line
represent the network predictions. Note that, the black
curves denote the intermediate predictions within LESPS,
while the gray curves represent virtual results produced by
the network without label update. On the right of the dotted
line, the first and second columns of sub-figures represent
current labels and updated labels, respectively, and black
arrows represent each round of label update. The overall
framework can be summarized as follows. With point
label serving as supervision, in the 1st round label update
after initial training, the predictions are used to update the
current point label to generate the 1st updated label, which
is then used to supervise the network training until the
2nd round label update. Through iterative label updates
and network training, CNNs can incorporate the local
contrast prior to gradually recover the mask labels. From
another viewpoint, label evolution consistently updates the
supervision to prevent mapping degeneration, and promotes
CNNs to converge to the easy region-to-region mapping.

Taking the nth update as an example, given the current
label Ln and the network prediction Pn, we perform
label update for each target, which consists of three steps:
candidate pixel extraction, false alarm elimination, and
weighted summation between candidate pixels and current
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Figure 4. (a) Adaptive threshold Tadapt with respect to positive
pixels L̂i

n and hyper-parameters k, Tb. Pink dotted line represents
the constant hwr. (b) An illustration of false alarm elimination.
Red circle and dot represent positive pixels and centroid point of
label. Orange circle represents false alarms.

labels. Specifically, the d × d local neighborhoods of
the ith target in label Ln and prediction Pn are cropped
based on the centroid of the positive pixels3 in label (i.e.,
L̂n). Then to reduce error accumulation for label update
(see Section 5.2.2 for details), we employ an adaptive
threshold (the red dotted line in Fig. 3) to extract the local
neighborhood candidate pixels (predictions higher than the
red dotted line in Fig. 3). The process can be defined as:

Ci
n = P i

n � (P i
n > Tadapt), (1)

where Ci
n is the candidate pixels, and� represents element-

wise multiplication. Tadapt is the adaptive threshold that
correlated to the current prediction P i

n and the positive
pixels in label L̂i

n, and can be calculated according to:

Tadapt = max(P i
n)(Tb + k(1− Tb)L̂

i
n/(hwr)), (2)

where h, w are the height and width of input images, and
r is set to 0.15% [7, 24]. As shown in Fig. 4 (a), Tb is
the minimum threshold, and k controls the threshold growth
rate. An increasing number of L̂i

n leads to the increase of
the threshold, which can reduce error accumulation of low
contrast targets and strong background clutter.

To eliminate false alarms by local neighborhood noise,
we exclude the eight connective regions of candidate pixels
that have no intersection with positive pixels of labels, as
shown in Fig. 4 (b). This process is defined as:

Ei
n = Ci

n � F i
n, (3)

where Ei
n is the candidate pixels after false alarm

elimination, and F i
n is the mask against false alarm pixels.

We then perform average weighted summation between
candidate pixels Ei

n and current label Li
n to achieve label

update. The process can be formulated as:

Li
n+1 = Li

n � (1−N i
n) +

Li
n + Ei

n

2
�N i

n, (4)

where Li
n+1 is the updated label in the nth round, which

serves as new supervision for training in the n+ 1th round,
3The value of a pixel is higher than 0.5, which represents that the pixel

is more likely to be positive than negative [8, 24]
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Figure 5. IoU and visualize results of mapping degeneration with respect to different characteristics of targets (i.e.,(a) intensity, (b) size,)
and point labels (i.e.,(c) locations and (d) numbers). We visualize the zoom-in target regions of input images with GT point labels (i.e., red
dots in images) and corresponding CNN predictions (in the epoch reaching maximum IoU ).

and N i
n = (P i

n > Tadapt) � F i
n. Note that, the first term

represents GT labels below red dotted lines, and the second
term represents the average weighted summation between
predictions and GT labels above red dotted lines.

It is worth noting that we provide three conditions
to ensure network convergence: 1) Average weighted
summation between predictions and labels promotes CNNs
to converge as predictions approximate labels. 2) Pixel-
adaptive threshold increases with the increase of positive
pixels in updated labels, which slows down or suspends the
label update. 3) As label evolution introduces more target
information for training, CNNs grow to mature, and learn
to distinguish targets from backgrounds.

We start label evolution after initial evolution epoch
Tepoch, and perform label update every f epoch until the
end of training. Note that, our epoch-based threshold Tepoch

is a coarse threshold to ensure that networks attend to targets
instead of background clutter.

5. Experiments

In this section, we first describe the implementation
details, and then make comprehensive analyses of the
mapping degeneration phenomenon and our label evolution
framework. In addition, we apply our method to the
state-of-the-art SIRST detection methods with point
supervision, and make comparisons with their fully
supervised counterparts. Moreover, we make comparisons
of our dynamic updated pseudo labels with fixed pseudo
labels, and discuss the calculation of loss function.

5.1. Implementation Details

Three public datasets NUAA-SIRST [8], NUDT-SIRST
[24], and IRSTD-1K [54] are used in our experiments.
We followed [24] to split the training and test sets of
NUAA-SIRST and NUDT-SIRST, and followed [54] to
split IRSTD-1K. We employed two pixel-level metrics (i.e.,
intersection over union (IoU ) and pixel accuracy (PA)) and
two target-level metrics (i.e., probability of detection (Pd)
and false-alarm rate (Fa)) for performance evaluation.

During training, all images were normalized and
randomly cropped into patches of size 256×256 as network
inputs. We augmented the training data by random flipping
and rotation. Due to the extreme positive-negative sample
imbalance (less than 10 vs. more than 256×256) in
SIRST detection with point supervision, we employed
focal loss4 [27] to stabilize the training process. All the
networks were optimized by the Adam method [22]. Batch
size was set to 16, and learning rate was initially set to
5×10−4 and reduced by ten times at the 200th and 300th

epochs. We stopped training after 400 epochs. All models
were implemented in PyTorch [35] on a PC with an Nvidia
GeForce 3090 GPU.

5.2. Model Analyses

5.2.1 Analyses of Mapping Degeneration

We use synthetic images (simulated targets and real
backgrounds [24]) to investigate the mapping degeneration
phenomenon with respect to different characteristics of
targets (i.e., intensity and size5) and point labels (i.e.,
locations and numbers). We employ U-Net [41] as the
baseline detection network, and use centroid point as GT
label if not specified. We calculate IoU between positive
pixels in predictions and GT mask labels of each epoch
for quantitative analyses. In addition, we visualize the
zoom-in target regions of simulated images with GT point
labels (i.e., red dots) and corresponding CNN predictions
(in the epoch reaching maximum IoU ). To reduce
training randomness, we show the average IoU results and
visualization results over 100 runs.

Target Intensity. We simulate Gaussian-based extended
targets with different peak values (i.e., 10, 50, 100, 200,
500) to investigate the influence of target intensity on
mapping degeneration. Quantitative results in Fig. 5(a)
show that intensity higher than 100 leads to a positive
correlation between intensity and maximum IoU , while

4Focal loss is calculated between current evolved and GT labels to
supervise the network training until the next round label update.

5Shape, and local background clutter are investigated in supplemental
material.
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Figure 6. PA (P) and IoU (I) results of LESPS with respect to (a) initial evolution epoch Tepoch, (b) Tb and (c) k of evolution threshold,
and (d) evolution frequency f .

Table 1. Average IoU (×102), Pd (×102) and Fa(×106) values
on NUAA-SIRST [8] NUDT-SIRST [24] and IRSTD-1K [54]
achieved by DNA-Net with (w/) and without (w/o) LESPS under
centroid, coarse point supervision together with full supervision.

Method Centroid Coarse Full
IoU Pd Fa IoU Pd Fa IoU Pd Fa

w/o LESPS 5.12 89.19 0.68 2.96 49.89 0.30 75.67 96.18 22.94w/ LESPS 57.34 91.87 20.24 56.18 91.49 18.32

lower intensity leads to a negative one. In addition, curve
“intensity10” reaches maximum IoU at around epoch 150
while others are less than 50, which demonstrates that
over-small intensity decelerates degeneration. Visualization
results show that our method can well highlight target
regions under various intensities.

Target Size. We simulate Gaussian-based extended
targets with different radii (i.e., 3, 5, 7, 9, 13) to investigate
the influence of target size on mapping degeneration.
Quantitative results in Fig. 5(b) show that larger target
size leads to lower maximum IoU and less time to
reach maximum IoU . That is because, size discrepancy
between targets and GT point labels increases as target
size increases, which aggravates and accelerates mapping
degeneration. Visualization results show that CNNs can
predict a cluster of pixels in a size-aware manner, and the
peak values of predictions decrease as target size increases.

Locations of Point Label. We simulate a Gaussian-
based extended target (with intensity 500 & radius 13),
and place point labels at different distances away from the
target centroid to investigate the influence of point label
locations on mapping degeneration. Results in Fig. 5(c)
show that small perturbations of label locations (less than
3 pixels) have a minor influence on the maximum IoU
results. However, severe location perturbations (larger than
3 pixels) can lead to a significant maximum IoU drop, and
the drop is more obvious when the point label is close to
the edge. Note that, the same targets with different label
locations reach maximum IoU at the same time, which
demonstrates that the speed of mapping degeneration is
irrelevant to the position of labels.

Number of Points in Label. We simulate a Gaussian-
based extended target (with intensity 500 & radius 13) and
set different numbers of points in labels to investigate its
influence on mapping degeneration. Quantitative results

epoch

Io
U

XDU38

Misc_90

Training Epochs GT mask

(a) Quantitative Results (b) Qualitative Results

Figure 7. Quantitative and qualitative results of evolved target
masks.

in Fig. 5(d) show that as the number of points increases,
CNNs can learn more target information to achieve higher
maximum IoU results. In addition, the speed of mapping
degeneration is irrelevant to the point number. Visualization
results show that peak values of predictions increase as
the number of points increases, which demonstrates that
stronger supervision alleviates mapping degeneration. The
conclusion well supports our label evolution framework.

5.2.2 Analyses of the Label Evolution Framework

In this subsection, we conduct experiments to investigate
the effectiveness and the optimal parameter settings of our
label evolution framework (i.e., LESPS). We employ PA
and IoU between the positive pixels in updated labels and
the GT mask labels to quantitatively evaluate the accuracy
and expansion degree of the current label.

Effectiveness. We compare the average results of
NUAA-SIRST [8], NUDT-SIRST [24], and IRSTD-1K
[54] datasets achieved by DNA-Net with (i.e., w/) and
without (i.e., w/o) LESPS under centroid and coarse
point supervision, respectively. Note that, the results
of DNA-Net w/o LESPS are calculated under extremely
low threshold6 (i.e., 0.15) while those of DNA-Net w/
LESPS are calculated under the standard threshold (i.e.,
0.5 [24, 54]). As shown in Table 1, as compared to
full supervision, the results of DNA-Net w/o LESPS are
extremely low, which demonstrates that SIRST detection on
single point supervision is a challenging task. In contrast,
DNA-Net w/ LESPS can achieve significant performance
improvement under both point supervisions in terms of all
the metrics, which approximate the performance of their
fully supervised counterparts. Note that, Pd results of DNA-

6With point supervision, the results of DNA-Net w/o LESPS calculated
under threshold 0.5 are all zeros.
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Figure 8. Visualizations of regressed labels during training and
network predictions during inference with centroid and coarse
point supervision.

Net w/o LESPS under coarse point supervision are over half
lower than those under the centroid ones, while the results
of DNA-Net w/ LESPS under these two kinds of point
supervision are comparable. It demonstrates that LESPS
can generalize well to manual annotation errors.

In addition, we make evaluations of evolved target masks
during training. Quantitative results in Fig. 7(a) show
average IoU values between positive pixels of evolved
target masks and GT labels in 20-time training, which
demonstrates that the quality of pseudo target masks
consecutively increases during training. Qualitative results
in Fig. 7(b) demonstrate that networks can effectively learn
to expand point labels to mask labels. Furthermore, we
visualize the labels regressed by our LESPS during training
together with some network predictions during inference in
Figs. 8 (a) and (b). As shown in Fig. 8(a), compared with
GT mask labels, the evolved labels are more closely aligned
with the objects in images (e.g., GT masks of Misc 4,
XDU113 exceed the target regions due to visual edge
ambiguity), which demonstrates that LESPS can alleviate
the manually annotated errors. Figure 8(b) shows that
DNA-Net w/ LESPS can effectively achieve accurate pixel-
level SIRST detection in an end-to-end manner. Please refer
to the supplemental materials for more visual results.

Initial Evolution Epoch. We investigate the optimal
value of epoch-based threshold Tepoch. Figure 6(a) shows
that small initial evolution epoch results in a significant
difference between PA and IoU (i.e., 0.94 vs. 0.04
with Tepoch=10). That is because, early label evolution
introduces many error pixels, resulting in severe error
accumulation and network convergence failure. Increasing
initial evolution epoch can reduce error accumulation
and promote network convergence (0.60 vs. 0.54 with
Tepoch=50). However, over-large initial evolution epoch
(i.e., a high degree of mapping degeneration) results in
inferior performance (0.21 vs. 0.21 with Tepoch=100).
Therefore, Tepoch is set to 50 in our method.

Evolution Threshold. We investigate the optimal
values of k and Tb in the evolution threshold. Tb is
the minimum threshold, and controls evolution speed and
error accumulation degree. k determines the maximum
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Figure 9. Visual detection results of different methods achieved
on NUAA-SIRST [8], NUDT-SIRST [24] and IRSTD-1K [54]
datasets. Correctly detected targets and false alarms are
highlighted by red and orange circles, respectively.

threshold, and controls the growth rate of the threshold. As
shown in Fig. 6(b) and 6(c), both over-large and over-small
values of Tb and k result in inferior performance. Therefore,
we choose k=1/2 and Tb=0.5 in our method.

Evolution Frequency. We investigate the optimal
value of evolution frequency f . Figure 6(d) shows that
evolution frequency is positively correlated to PA and IoU .
However, high evolution frequency needs more time for
label updates. To balance performance and efficiency, we
choose f=5 in our method. Interestingly, higher frequency
(i.e., f=2) does not cause serve error accumulation, which
also demonstrates the effectiveness of the convergence
conditions of our LESPS. Please refer to the supplemental
materials for more discussions of the convergence issue.

5.3. Comparison to State-of-the-art Methods

Comparison to SISRT detection methods. We apply
our LESPS to several state-of-the-art CNN-based methods,
including ACM [7], ALCNet [8] and DNA-Net [24]. For
fair comparisons, we retrained all models on NUAA-SIRST
[8], NUDT-SIRST [24], and IRSTD-1K [54] datasets with
the same settings. In addition, we add the results of six fully
supervised CNN-based methods (MDvsFA [45], ACM [7],
ALCNet [8], DNA-Net [24], ISNet [54], UIU-Net [46])
and six traditional methods (Top-Hat [40], RLCM [15],
TLLCM [16], MSPCM [17], IPI [11], PSTNN [51]) as the
baseline results.

Quantitative results in Table 2 show that CNN-based
methods equipped with LESPS can outperform all the
traditional methods. In addition, they can also achieve 71-
75% IoU results and comparable Pd and Fa results of their
fully supervised counterparts. Qualitative results in Fig. 9
show that CNN-based methods equipped with LESPS can
produce outputs with precise target mask and low false
alarm rate, and can generalize well to complex scenes.
Please refer to supplemental materials for more quantitative
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Table 2. IoU (×102), Pd (×102) and Fa(×106) values of different methods achieved on NUAA-SIRST [8], NUDT-SIRST [24] and
IRSTD-1K [54] datasets. “CNN Full”, “CNN Centroid”, and “CNN Coarse” represent CNN-based methods under full supervision, centroid
and coarse point supervision. “+” represents CNN-based methods equipped with LESPS.

Methods Description NUAA-SIRST [8] NUDT-SIRST [24] IRSTD-1K [54] Average
IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa

Top-Hat [40] Filtering 7.14 79.84 1012.00 20.72 78.41 166.70 10.06 75.11 1432.00 12.64 77.79 870.23
RLCM [15] Local Contrast 21.02 80.61 199.15 15.14 66.35 163.00 14.62 65.66 17.95 16.06 68.70 98.77
TLLCM [16] Local Contrast 11.03 79.47 7.27 7.06 62.01 46.12 5.36 63.97 4.93 7.22 65.45 21.42
MSPCM [34] Local Contrast 12.38 83.27 17.77 5.86 55.87 115.96 7.33 60.27 15.24 7.23 61.53 55.13
IPI [11] Low Rank 25.67 85.55 11.47 17.76 74.49 41.23 27.92 81.37 16.18 23.78 80.47 22.96
PSTNN [51] Low Rank 22.40 77.95 29.11 14.85 66.13 44.17 24.57 71.99 35.26 20.61 72.02 36.18
MDvsFA [45] CNN Full 61.77 92.40 64.90 45.38 86.03 200.71 35.40 85.86 99.22 47.52 88.10 121.61
ISNet [54] CNN Full 72.04 94.68 42.46 71.27 96.93 96.84 60.61 94.28 61.28 67.97 95.30 66.86
UIU-Net [46] CNN Full 69.90 95.82 51.20 75.91 96.83 18.61 61.11 92.93 26.87 68.97 95.19 32.23

ACM [7]
CNN Full 64.92 90.87 12.76 57.42 91.75 39.73 57.49 91.58 43.86 59.94 91.40 32.12
CNN Centroid+ 49.23 89.35 40.95 42.09 91.11 38.24 41.44 88.89 60.46 44.25 89.78 46.55
CNN Coarse+ 47.81 88.21 40.75 40.64 81.11 49.45 40.37 92.59 64.81 42.94 87.30 51.67

ALCNet [8]
CNN Full 67.91 92.78 37.04 61.78 91.32 36.36 62.03 90.91 42.46 63.91 91.67 38.62
CNN Centroid+ 50.62 92.02 36.84 41.58 92.28 67.01 44.90 90.57 84.68 45.70 91.62 62.84
CNN Coarse+ 51.00 90.87 42.40 44.14 92.80 32.10 46.75 92.26 64.30 47.30 91.98 46.27

DNA-Net [24]
CNN Full 76.86 96.96 22.5 87.42 98.31 24.5 62.73 93.27 21.81 75.67 96.18 22.94
CNN Centroid+ 61.95 92.02 18.17 57.99 94.71 26.45 52.09 88.88 16.09 57.34 91.87 20.24
CNN Coarse+ 61.13 93.16 11.87 58.37 93.76 28.01 49.05 87.54 15.07 56.18 91.49 18.32

Table 3. Average IoU (×102), Pd (×102), Fa(×106) values
on NUAA-SIRST [8], NUDT-SIRST [24] and IRSTD-1K [54]
datasets of DNA-Net trained with pseudo labels generated by input
intensity threshold, LCM-based methods [15, 16, 34] and LESPS
under centroid and coarse point supervision.

Pseudo Label Centroid Coarse
IoU Pd Fa IoU Pd Fa

Threshold=0.3 4.92 81.78 13.18 5.67 83.12 11.98
Threshold=0.5 13.24 73.08 5.31 15.54 76.03 4.89
Threshold=0.7 14.51 45.50 4.28 15.21 46.88 3.84
RLCM [15] 21.43 89.10 2.67 22.53 90.56 3.69
TLLCM [16] 21.95 90.96 7.72 26.05 94.15 4.27
MSPCM [34] 28.89 92.62 3.84 29.79 93.95 2.28
LESPS(ours) 57.34 91.87 20.24 56.18 91.49 18.32

and qualitative results.
Comparison to other pseudo labels. We compare our

dynamic updated pseudo labels with fixed pseudo labels
generated by input intensity threshold and local contrast-
based methods [15, 16, 34]. Specifically, given a GT point
label, we only preserve the eight connected regions of
detection results that have union pixels with the GT point
label. Then, we employ the pseudo labels to retrain DNA-
Net [24] from scratch. As shown in Table 3, compared
with fixed pseudo labels, dynamic updated pseudo labels by
LESPS can achieve the highest IoU values with comparable
Pd and reasonable Fa increase.

5.4. Discussion of Loss Function

In this subsection, we investigate the loss function of
computing negative loss on different background points.
Average results of different baseline methods under centroid
point supervision are shown in Table 4. Extremely
limited handcrafted background points7 leads to many false
alarms. Random sample8 introduces more background
points and well alleviates class imbalance, resulting in great

7Points are sampled near targets, and are fixed during training.
8Points are randomly sampled, and change in each training iteration.

Table 4. Average IoU (×102), Pd(×102), Fa(×103) values
on NUAA-SIRST [8], NUDT-SIRST [24] and IRSTD-1K [54]
datasets of different methods when computing negative loss
on i handcrafted (handi), j randomly sampled (randj) and all
background points.

Annotations ACM ALCNet DNA-Net
IoU Pd Fa IoU Pd Fa IoU Pd Fa

hand1 0.54 95.79 47.06 0.16 95.19 262.06 1.43 97.80 26.91
hand2 0.12 97.24 295.17 0.15 96.62 248.05 3.41 98.18 8.48
hand5 0.11 96.36 316.37 0.08 97.29 363.25 3.68 98.13 7.29
rand1 8.06 93.45 3.56 8.57 92.97 3.21 18.74 94.69 0.58
rand2 10.78 92.72 2.22 10.78 91.16 2.71 22.85 94.81 0.42
rand5 13.39 92.66 1.35 11.87 93.26 0.89 24.80 95.00 0.34

All (Ours) 3.95 87.15 0.02 4.08 88.93 0.02 5.12 89.18 0.01

performance improvements. However, the above simple
versions introduce huge false alarms (34-1.8K times of all
points), which are not practical for real applications, but
inspire further thorough investigation in the future.

6. Conclusion

In this paper, we proposed the first work to achieve
weakly-supervised SIRST detection using single-point
supervision. In our method, we discovered the mapping
degeneration phenomenon and proposed a label evolution
framework named label evolution with single point
supervision (LESPS) to automatically achieve point-to-
mask regression. Through LESPS, networks can be trained
to achieve SIRST detection in an end-to-end manner.
Extensive experiments and insightful visualizations have
fully demonstrated the effectiveness and superiority of
our method. In addition, our method can be applied to
different networks to achieve over 70% and 95% of its fully
supervised performance on pixel-level IoU and object-
level Pd, respectively. We hope our interesting findings
and promising results can inspire researchers to rethink
the feasibility of achieving state-of-the-art performance in
SIRST detection with much weaker supervision.
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Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target
Detection with Single Point Supervision (Supplemental Material)
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Figure I. IoU and visualize results of mapping degeneration with
respect to different characteristics of targets ((a) shape and (b)
local background clutter). We visualize the zoom-in target regions
of input images with GT point labels (i.e., red dots in images) and
corresponding CNN predictions (in the epoch reaching maximum
IoU ).

Section A investigates the mapping degeneration
phenomenon with respect to different characteristics
of targets (i.e., shape and local background clutter)
for the analyses in Section 5.2.1-Analyses of Mapping
Degeneration. Section B presents more visual results
of labels and network predictions for the analyses in
Section 5.2.2-Effectiveness. Section C provides additional
discussion of the convergence issue for the analyses in
Section 5.2.2-Evolution Frequency. Section D includes
additional comparison results for the analyses in Section
5.3. Section E provides comparison results with existing
weakly-supervised segmentation methods.

A. Analyses of Mapping Degeneration

In this section, we investigate the mapping degeneration
phenomenon with respect to different characteristics of
targets (i.e., shape, and local background clutter).

Target Shape. We simulate targets [24] with different
shapes (i.e., 001067, 001313, Misc 103, Misc 106,
XDU992) to investigate the influence of target shape on
mapping degeneration. Note that, we try to keep the
target size and intensity unchanged when changing the
target shape. Quantitative results in Fig. I(a) show that
more concentrated shape results in higher maximum IoU .
Visualization results show that CNNs can predict a cluster
of pixels in a shape-aware manner, but can only recover

††This work was supported by National Key Research and
Development Program of China No. 2021YFB3100800.
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Figure II. Visualizations of regressed labels during training and
network predictions during inference with centroid and coarse
point supervision.

the main body of targets without fine-grained details (e.g.,
wings of drones in 001067 and XDU992).

Local Background Clutter. We simulate a Gaussian-
based extended target (with intensity 100 & radius 7),
and add them to different locations of the background
image to investigate the influence of local background
clutter on mapping degeneration. We employ SCR of
the local neighborhood to quantify the local background
clutter. Results in Fig. I(b) show that background clutters
significantly change the observed target appearance in size,
shape, and contrast, and our method can only predict the
high-contrast regions in the input images. Therefore, high-
contrast background clutters introduce false alarms, and
thus degrade the detection performance.
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Figure III. lossd with respect to evolution frequency f=5 and f=2.

B. Visual Results of Labels and Network
Predictions

In this section, we provides additional visual results of
regressed labels during training and network predictions
during inference on NUAA-SIRST [8], NUDT-SIRST [24],
and IRSTD-1K [54] datasets. It can be observed from
Figure II that our LESPS can effectively regress mask labels
during training, and can achieve accurate pixel-level SIRST
detection in the inference stage.

C. Discussion of Convergence Issue
In this section, we discuss the convergence issue of our

label evolution framework (i.e., LESPS). Specifically, we
calculate the focal loss between evolved labels and network
predictions before and after label update, and use their
absolute difference (i.e., lossd) to measure the proximity
degree between predictions and labels. Fig. III shows lossd
of each update with evolution frequency f=5 and f=2 (i.e.,
update every 5 and 2 epochs). It can be observed that
lossd is gradually reduced in general, which reveals that
predictions gradually approximate labels and networks can
converge steadily. In addition, the training process of lossd
with f=5 is more steady than that of f=2. This is because,
a relatively lower update frequency (i.e., f=5) represents
more training time before label update, and thus stabilize
the training process.

D. Quantitative and Qualitative Results
D.1. Comparison to SISRT Detection Methods

Table III provides additional comparative results of
six traditional methods (Max-Median [9], WSLCM [17],
WSPCM [17], NRAM [50], RIPT [6], MSLSTIPT [43]).
It can be observed that CNN-based methods equipped with
LESPS can outperform all the traditional methods, and can
achieve over 70% IoU and comparable Pd, Fa values of
their fully supervised counterparts.

Figure IV provides ROC results of ACM [7],
ALCNet [8], DNA-Net [24] equipped with LESPS
under centroid point supervision (i.e., ACM Centroid+,
ALCNet Centroid+, DNA-Net Centroid+) and their fully
supervised counterparts (i.e., ACM, ALCNet, DNA-Net)

Table I. Average IoU (×102), Pd (×102), Fa(×106) values on 3
public datasets [8, 24, 54] of DNA-Net trained with pseudo labels
generated by input intensity threshold, LCM-based methods [15,
16, 34] and LESPS under centroid and coarse point supervision.
Best results are shown in boldface.

Pseudo Label
Centroid Coarse

IoU Pd Fa IoU Pd Fa

Threshold=0.3 4.92 81.78 13.18 5.67 83.12 11.98
Threshold=0.5 13.24 73.08 5.31 15.54 76.03 4.89
Threshold=0.7 14.51 45.50 4.28 15.21 46.88 3.84
RLCM [15] 21.43 89.10 2.67 22.53 90.56 3.69
WSLCM [17] 8.68 86.64 50.10 8.89 84.45 80.24
TLLCM [16] 21.95 90.96 7.72 26.05 94.15 4.27
MSLCM [33] 31.43 93.16 2.50 36.32 92.43 1.17
MSPCM [34] 28.89 92.62 3.84 29.79 93.95 2.28
Ours 57.34 91.87 20.24 56.18 91.49 18.32

Table II. Average IoU (×102), Pd(×102), Fa(×106) values
of different methods. “#Params.” represents the number of
parameters. Best results are shown in boldface.

Method Annotations per object #Params. IoU Pd Fa

MaskRCNN+ [C3] 10 points in bbox 88.6M 51.30 94.38 82.77
PointRend [C4] 100+ elaborated points 120.3M 56.02 94.30 61.48
Implicit PointRend [C3] 10 points in bbox 700.0M 52.00 94.13 85.79
DNA-Net+LESPS (Ours) 1 coarse point 4.8M 56.18 91.49 18.32

achieved on NUAA-SIRST [8], NUDT-SIRST [24], and
IRSTD-1K [54] datasets. It can be observed that ROC
results of ACM Centroid+, ALCNet Centroid+, DNA-Net
Centroid+, and ACM, ALCNet, DNA-Net only have minor
differences (i.e., less than 5%).

Figure V provides additional qualitative results. It can be
observed that CNN-based methods equipped with LESPS
can produce outputs with precise target mask and low false
alarm rate, and can generalize well to complex scenes.

D.2. Comparison to Fixed Pseudo Labels

Table I provides additional comparisons to more LCM-
based pseudo labels. It can be observed that, compared
with LCM-based pseudo labels, DNA-Net with LESPS can
achieve the highest IoU values with comparable Pd and
reasonable Fa increase.

E. Comparison to Existing Weakly-Supervised
Segmentation Methods

We equip DNA-Net with LESPS, and compare with
existing weakly-supervised segmentation methods1.
Results are shown in Table II. It can be observed that
general weakly-supervised segmentation methods require
much more annotation effort and computational cost
(i.e., 18-146 times of our method) but the performance is
comparable or worse. It is demonstrated that different from
general methods, point-supervised SISRT detection has its
unique characteristics, and needs further exploration.

1All models are implemented by their officially public codes.

13



Table III. IoU (×102), Pd (×102) and Fa(×106) values of different methods achieved on NUAA-SIRST [8] NUDT-SIRST [24] and
IRSTD-1K [54] datasets. “CNN Full”, “CNN Centroid”, and “CNN Coarse” represent CNN-based methods under full supervision, centroid
and coarse point supervision. “+” represents CNN-based methods equipped with LESPS.

Methods Description
NUAA-SIRST [8] NUDT-SIRST [24] IRSTD-1K [54] Average

IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa

Top-Hat [40] Filtering 7.14 79.84 1012.00 20.72 78.41 166.70 10.06 75.11 1432.00 12.64 77.79 870.23
Max-Median [9] Filtering 4.17 69.20 55.33 4.20 58.41 36.89 7.00 65.21 59.73 5.12 64.27 50.65
RLCM [15] Local Contrast 21.02 80.61 199.15 15.14 66.35 163.00 14.62 65.66 17.95 16.06 68.70 98.77
WSLCM [17] Local Contrast 1.02 80.99 45846.16 0.85 74.60 52391.63 0.99 70.03 15027.08 0.91 74.82 33759.07
TLLCM [16] Local Contrast 11.03 79.47 7.27 7.06 62.01 46.12 5.36 63.97 4.93 7.22 65.45 21.42
MSLCM [33] Local Contrast 11.56 78.33 8.37 6.65 56.83 25.62 5.35 59.93 5.41 7.07 61.20 13.74
MSPCM [34] Local Contrast 12.38 83.27 17.77 5.86 55.87 115.96 7.33 60.27 15.24 7.23 61.53 55.13
IPI [11] Low Rank 25.67 85.55 11.47 17.76 74.49 41.23 27.92 81.37 16.18 23.78 80.47 22.96
NRAM [50] Low Rank 12.16 74.52 13.85 6.93 56.40 19.27 15.25 70.68 16.93 11.45 67.20 16.68
RIPT [6] Low Rank 11.05 79.08 22.61 29.44 91.85 344.30 14.11 77.55 28.31 18.20 82.83 131.74
PSTNN [51] Low Rank 22.40 77.95 29.11 14.85 66.13 44.17 24.57 71.99 35.26 20.61 72.02 36.18
MSLSTIPT [43] Low Rank 10.30 82.13 1131.00 8.34 47.40 888.10 11.43 79.03 1524.00 10.02 69.52 1181.03
MDvsFA [45] CNN Full 61.77 92.40 64.90 45.38 86.03 200.71 35.40 85.86 99.22 47.52 88.10 121.61
ISNet [54] CNN Full 72.04 94.68 42.46 71.27 96.93 96.84 60.61 94.28 61.28 67.97 95.30 66.86
UIU-Net [46] CNN Full 69.90 95.82 51.20 75.91 96.83 18.61 61.11 92.93 26.87 68.97 95.19 32.23

ACM [7]
CNN Full 64.92 90.87 12.76 57.42 91.75 39.733 57.49 91.58 43.86 59.94 91.40 32.12
CNN Centroid+ 49.23 89.35 40.95 42.09 91.11 38.24 41.44 88.89 60.46 44.25 89.78 46.55
CNN Coarse+ 47.81 88.21 40.75 40.64 81.11 49.45 40.37 92.59 64.81 42.94 87.30 51.67

ALCNet [8]
CNN Full 67.91 92.78 37.04 61.78 91.32 36.36 62.03 90.91 42.46 63.91 91.67 38.62
CNN Centroid+ 50.62 92.02 36.84 41.58 92.28 67.01 44.90 90.57 84.68 45.70 91.62 62.84
CNN Coarse+ 51.00 90.87 42.40 44.14 92.80 32.10 46.75 92.26 64.30 47.30 91.98 46.27

DNA-Net [24]
CNN Full 76.86 96.96 22.5 87.42 98.31 24.5 62.73 93.27 21.81 75.67 96.18 22.94
CNN Centroid+ 61.95 92.02 18.17 57.99 94.71 26.45 52.09 88.88 16.09 57.34 91.87 20.24
CNN Coarse+ 61.13 93.16 11.87 58.37 93.76 28.01 49.05 87.54 15.07 56.18 91.49 18.32

243

307

166

406

Inference DNAnet-
centroid 122/289

Inference DNAnet-
gaussian 151/294

Training DNAnet-
centroid 1295/1327

Training DNAnet-
gaussian 393/934

train inference

DNAnet-centroid

DNAnet-gaussian

train inference

Centroid Gaussian

Im
ag

es
O

u
r 

re
su

lt
s

G
T 

m
as

ks

Centroid Gaussian

train inference

Centroid Gaussian

Im
ag

es
O

u
rs

G
T

Centroid Gaussian

train inference

Im
ag

es
C

e
n

tr
o

id
G

T
C

o
ar

se

centroid Coarse

train inference

000870

Misc_131

001303

XDU762

000881

XDU882

Misc_18

XDU113

000746

Misc_4

XDU113

XDU38

Misc_90

000272

XDU110

Misc_131

001255

Images masks Centroid Coarse Images masks Centroid Coarse

(a) Labels in Training (b) Predictons in Inference

IPI MDvsFA ACM ALCnet DNAnet GTImages DNAnet+LabEov

00
12

51
0

0
0

0
5

9
0

0
0

54
8

X
D

U
9

2
5

M
is

c_
28

M
is

c_
84

Input IPI MDvsFA ACM ALCnet DNAnet DNAnet+LabEvo GT

0
0

1
2

5
1

00
00

5
9

Input IPI MDvsFA ACM ALCnet DNAnet DNAnet+LESPS GT

M
is

c_
32

1
X

D
U

11
0

001303

XDU762

000881

XDU882

Misc_18

XDU113

000746

XDU185

XDU146

001253

000436

000316

Misc_75

Misc_321

000289000287

XDU98

XDU95

XDU972

XDU502

X
D

U
92

5
M

is
c_

2
8

M
is

c_
84

00
05

4
8

Input IPI MDvsFA ACM ALCnet DNAnet DNAnet+LESPS GT

00
03

9
7

X
D

U
76

2

Images Masks Centroid Coarse Images Masks Centroid Coarse

(a) Labels in Training (b) Predictons in Inference

(a) Evolution Frequency (b) Evolution Frequency5f  2f 

(a) Evolution Frequency (b) Evolution Frequency5f  2f 

5f  2f (a) Evolution Frequency (b) Evolution Frequency

XDU334

Misc_4 XDU113XDU38Misc_90

000272 XDU110Misc_131001255

Im
ag

es
m

as
ks

C
e

n
tr

o
id

C
o

ar
se

001303

000881 XDU882Misc_18 XDU113000746

XDU185XDU146001253000436000316 Misc_75 Misc_321000289

000287 XDU98XDU95 XDU972XDU502

(a) Labels in Training

(b) Predictons in Inference

XDU334Im
ag

es
m

as
ks

C
e

n
tr

o
id

C
o

ar
se

00
12

5
1

00
00

5
9

Input IPI MDvsFA ACM ALCnet DNAnet DNAnet+LESPS GT

M
is

c_
32

1
X

D
U

11
0

M
is

c_
28

M
is

c_
84

00
05

4
8

X
D

U
76

2

(a) NUAA-SIRST (b) NUDT-SIRST (c) IRSTD-1K

Figure IV. ROC results of different methods achieved on (a) NUAA-SIRST [8], (b) NUDT-SIRST [24], and (c) IRSTD-1K [54] datasets.
“Centroid+” represents CNN-based methods equipped with LESPS under centroid point supervision.
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Figure V. Visual detection results of different methods achieved on NUAA-SIRST [8], NUDT-SIRST [24], and IRSTD-1K [54] datasets.
Correctly detected targets and false alarms are highlighted by red and orange circles, respectively.
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