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Abstract

In this paper, our goal is to design a simple learning
paradigm for long-tail visual recognition, which not only
improves the robustness of the feature extractor but also
alleviates the bias of the classifier towards head classes
while reducing the training skills and overhead. We pro-
pose an efficient one-stage training strategy for long-tailed
visual recognition called Global and Local Mixture Con-
sistency cumulative learning (GLMC). Our core ideas are
twofold: (1) a global and local mixture consistency loss im-
proves the robustness of the feature extractor. Specifically,
we generate two augmented batches by the global MixUp
and local CutMix from the same batch data, respectively,
and then use cosine similarity to minimize the difference. (2)
A cumulative head-tail soft label reweighted loss mitigates
the head class bias problem. We use empirical class fre-
quencies to reweight the mixed label of the head-tail class
for long-tailed data and then balance the conventional loss
and the rebalanced loss with a coefficient accumulated by
epochs. Our approach achieves state-of-the-art accuracy
on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT datasets.
Additional experiments on balanced ImageNet and CIFAR
demonstrate that GLMC can significantly improve the gen-
eralization of backbones. Code is made publicly available
at https://github.com/ynu-yangpeng/GLMC.

1. Introduction
Thanks to the available large-scale datasets, e.g., Im-

ageNet [10], MS COCO [27], and Places [46] Database,
deep neural networks have achieved dominant results in
image recognition [15]. Distinct from these well-designed
balanced datasets, data naturally follows long-tail distribu-
tion in real-world scenarios, where a small number of head
classes occupy most of the samples. In contrast, dominant
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Figure 1. An overview of our GLMC: two types of mixed-label
augmented images are processed by an encoder network and a pro-
jection head to obtain the representation hg and hl. Then a predic-
tion head transforms the two representations to output ug and ul.
We minimize their negative cosine similarity as an auxiliary loss
in the supervised loss. sg(·) denotes stop gradient operation.

tail classes only have a few samples. Moreover, the tail
classes are critical for some applications, such as medical
diagnosis and autonomous driving. Unfortunately, learning
directly from long-tailed data may cause model predictions
to over-bias toward the head classes.

There are two classical rebalanced strategies for long-
tailed distribution, including resampling training data [7,
13, 35] and designing cost-sensitive reweighting loss func-
tions [3, 20]. For the resampling methods, the core idea is
to oversample the tail class data or undersample the head
classes in the SGD mini-batch to balance training. As for
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the reweighting strategy, it mainly increases the loss weight
of the tail classes to strengthen the tail class. However,
learning to rebalance the tail classes directly would damage
the original distribution [45] of the long-tailed data, either
increasing the risk of overfitting in the tail classes or sacri-
ficing the performance of the head classes. Therefore, these
methods usually adopt a two-stage training process [1,3,45]
to decouple the representation learning and classifier fine-
tuning: the first stage trains the feature extractor on the orig-
inal data distribution, then fixes the representation and trains
a balanced classifier. Although multi-stage training signifi-
cantly improves the performance of long-tail recognition, it
also negatively increases the training tricks and overhead.

In this paper, our goal is to design a simple learning
paradigm for long-tail visual recognition, which not only
improves the robustness of the feature extractor but also al-
leviates the bias of the classifier towards head classes while
reducing the training skills and overhead. For improving
representation robustness, recent contrastive learning tech-
niques [8,18,26,47] that learn the consistency of augmented
data pairs have achieved excellence. Still, they typically
train the network in a two-stage manner, which does not
meet our simplification goals, so we modify them as an aux-
iliary loss in our supervision loss. For head class bias prob-
lems, the typical approach is to initialize a new classifier for
resampling or reweighting training. Inspired by the cumula-
tive weighted rebalancing [45] branch strategy, we adopt a
more efficient adaptive method to balance the conventional
and reweighted classification loss.

Based on the above analysis, we propose an efficient
one-stage training strategy for long-tailed visual recogni-
tion called Global and Local Mixture Consistency cumula-
tive learning (GLMC). Our core ideas are twofold: (1) a
global and local mixture consistency loss improves the ro-
bustness of the model. Specifically, we generate two aug-
mented batches by the global MixUp and local CutMix from
the same batch data, respectively, and then use cosine sim-
ilarity to minimize the difference. (2) A cumulative head-
tail soft label reweighted loss mitigates the head class bias
problem. Specifically, we use empirical class frequencies
to reweight the mixed label of the head-tail class for long-
tailed data and then balance the conventional loss and the
rebalanced loss with a coefficient accumulated by epochs.

Our method is mainly evaluated in three widely used
long-tail image classification benchmark datasets, which
include CIFAR10-LT, CIFAR100-LT, and ImageNet-LT
datasets. Extensive experiments show that our approach
outperforms other methods by a large margin, which ver-
ifies the effectiveness of our proposed training scheme.
Additional experiments on balanced ImageNet and CIFAR
demonstrate that GLMC can significantly improve the gen-
eralization of backbones. The main contributions of our
work can be summarized as follows:

• We propose an efficient one-stage training strategy
called Global and Local Mixture Consistency cumu-
lative learning framework (GLMC), which can effec-
tively improve the generalization of the backbone for
long-tailed visual recognition.

• GLMC does not require negative sample pairs or large
batches and can be as an auxiliary loss added in super-
vised loss.

• Our GLMC achieves state-of-the-art performance
on three challenging long-tailed recognition bench-
marks, including CIFAR10-LT, CIFAR100-LT, and
ImageNet-LT datasets. Moreover, experimental results
on full ImageNet and CIFAR validate the effectiveness
of GLMC under a balanced setting.

2. Related Work
2.1. Contrastive Representation Learning

The recent renaissance of self-supervised learning is ex-
pected to obtain a general and transferrable feature repre-
sentation by learning pretext tasks. For computer vision,
these pretext tasks include rotation prediction [22], relative
position prediction of image patches [11], solving jigsaw
puzzles [30], and image colorization [23, 43]. However,
these pretext tasks are usually domain-specific, which limits
the generality of learned representations.

Contrastive learning is a significant branch of self-
supervised learning. Its pretext task is to bring two aug-
mented images (seen as positive samples) of one image
closer than the negative samples in the representation space.
Recent works [17, 31, 36] have attempted to learn the em-
bedding of images by maximizing the mutual information
of two views of an image between latent representations.
However, their success relies on a large number of negative
samples. To handle this issue, BYOL [12] removes the neg-
ative samples and directly predicts the output of one view
from another with a momentum encoder to avoid collaps-
ing. Instead of using a momentum encoder, Simsiam [5]
adopts siamese networks to maximize the cosine similar-
ity between two augmentations of one image with a simple
stop-gradient technique to avoid collapsing.

For long-tail recognition, there have been numerous
works [8, 18, 26, 47] to obtain a balanced representation
space by introducing a contrastive loss. However, they usu-
ally require a multi-stage pipeline and large batches of nega-
tive examples for training, which negatively increases train-
ing skills and overhead. Our method learns the consistency
of the mixed image by cosine similarity, and this method
is conveniently added to the supervised training in an auxil-
iary loss way. Moreover, our approach neither uses negative
pairs nor a momentum encoder and does not rely on large-
batch training.



2.2. Class Rebalance learning

Rebalance training has been widely studied in long-tail
recognition. Its core idea is to strengthen the tail class by
oversampling [4, 13] or increasing weight [2, 9, 44]. How-
ever, over-learning the tail class will also increase the risk
of overfitting [45]. Conversely, under-sampling or reducing
weight in the head class will sacrifice the performance of
head classes. Recent studies [19, 45] have shown that di-
rectly training the rebalancing strategy would degrade the
performance of representation extraction, so some multi-
stage training methods [1, 19, 45] decouple the training of
representation learning and classifier for long-tail recog-
nition. For representation learning, self-supervised-based
[18, 26, 47] and augmentation-based [6, 32] methods can
improve robustness to long-tailed distributions. And for
the rebalanced classifier, such as multi-experts [24, 37],
reweighted classifiers [1], and label-distribution-aware [3],
all can effectively enhance the performance of tail classes.
Further, [45] proposed a unified Bilateral-Branch Network
(BBN) that adaptively adjusts the conventional learning
branch and the reversed sampling branch through a cumula-
tive learning strategy. Moreover, we follow BBN to weight
the mixed labels of long-tailed data adaptively and do not
require an ensemble during testing.

3. The Proposed Method

In this section, we provide a detailed description of our
GLMC framework. First, we present an overview of our
framework in Sec.3.1. Then, we introduce how to learn
global and local mixture consistency by maximizing the
cosine similarity of two mixed images in Sec.3.2. Next,
we propose a cumulative class-balanced strategy to weight
long-tailed data labels progressively in Sec.3.3. Finally, we
introduce how to optionally use MaxNorm [1, 16] to fine-
tune the classifier weights in Sec.3.4.

3.1. Overall Framework

Our framework is divided into the following six major
components:

• A stochastic mixed-label data augmentation module
Aug(x, y). For each input batch samples, Aug(x, y)
transforms x and their labels y in global and local aug-
mentations pairs, respectively.

• An encoder (e.g., ResNet) f(x̃) that extracts represen-
tation vectors r from the augmented samples x̃.

• A projection proj(x) that maps vectors r to lower di-
mension representations h. The projection is simply
a fully connected layer. Its output has no activation
function.

• A predictor pred(x) that maps the output of projec-
tion to the contrastive space. The predictor also a fully
connected layer and has no activation function.

• A linear conventional classifier head c(x) that maps
vectors r to category space. The classifier head cal-
culates mixed cross entropy loss with the original data
distribution.

• (optional) A linear rebalanced classifier head cb(x)
that maps vectors r to rebalanced category space. The
rebalanced classifier calculates mixed cross entropy
loss with the reweighted data distribution.

Note that only the rebalanced classifier cb(x) is retained at
the end of training for the long-tailed recognition, while the
predictor, projection, and conventional classifier head will
be removed. However, for the balanced dataset, the rebal-
anced classifier cb(x) is not needed.

3.2. Global and Local Mixture Consistency Learn-
ing

In supervised deep learning, the model is usually divided
into two parts: an encoder and a linear classifier. And the
classifiers are label-biased and rely heavily on the quality
of representations. Therefore, improving the generaliza-
tion ability of the encoder will significantly improve the fi-
nal classification accuracy of the long-tailed challenge. In-
spired by self-supervised learning to improve representation
by learning additional pretext tasks, as illustrated in Fig.1,
we train the encoder using a standard supervised task and
a self-supervised task in a multi-task learning way. Fur-
ther, unlike simple pretext tasks such as rotation predic-
tion, image colorization, etc., following the global and local
ideas [39], we expect to learn the global-local consistency
through the strong data augmentation method MixUp [42]
and CutMix [41].
Global Mixture. MixUp is a global mixed-label data aug-
mentation method that generates mixture samples by mix-
ing two images of different classes. For a pair of two images
and their labels probabilities (xi, pi) and (xj , pj), we calcu-
late (x̃g, p̃g) by

λ ∼ Beta(β, β),

x̃g = λxi + (1− λ)xj ,

p̃g = λpi + (1− λ)pj .

(1)

where λ is sampled from a Beta distribution parameterized
by the β hyper-parameter. Note that p are one-hot vectors.
Local Mixture. Different from MixUp, CutMix combines
two images by locally replacing the image region with a
patch from another training image. We define the combin-
ing operation as

x̃l = M ⊙ xi + (1−M)⊙ xj . (2)
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Figure 2. An illustration of the cumulative class-balanced learning pipeline. We apply uniform and reversed samplers to obtain head and
tail data, and then they are synthesized into head-tail mixture samples by MixUp and CutMix. The cumulative learning strategy adaptively
weights the rebalanced classifier and the conventional classifier by epochs.

where M ∈ {0, 1}W×H denotes the randomly selected
pixel patch from the image xi and pasted on xj , 1 is a bi-
nary mask filled with ones, and ⊙ is element-wise multi-
plication. Concretely, we sample the bounding box coordi-
nates B = (rx, ry, rw, rh) indicating the cropping regions
on xi and xj . The box coordinates are uniformly sampled
according to

rx ∼ Uniform(0,W ), rw = W
√
1− λ

ry ∼ Uniform(0, H), rh = H
√
1− λ

(3)

where λ is also sampled from the Beta(β, β), and their
mixed labels are the same as MixUp.

Self-Supervised Learning Branch. Previous works re-
quire large batches of negative samples [17, 36] or a mem-
ory bank [14] to train the network. That makes it difficult to
apply to devices with limited memory. For simplicity, our
goal is to maximize the cosine similarity of global and local
mixtures in representation space to obtain contrastive con-
sistency. Specifically, the two types of augmented images
are processed by an encoder network and a projection head
to obtain the representation hg and hl. Then a prediction
head transforms the two representations to output ug and
ul. We minimize their negative cosine similarity:

sim(ug, hl) = −
ug

∥ug∥
· hl

∥hl∥
(4)

where ∥·∥ is l2 normalization. An undesired trivial solution
to minimize the negative cosine similarity of augmented im-
ages is all outputs “collapsing” to a constant. Following
SimSiam [5], we use a stop gradient operation to prevent
collapsing. The SimSiam loss function is defined as:

£sim = sim(ug, sg(hl)) + sim(ul, sg(hg)) (5)

this means that hl and hg are treated as a constant.
Supervised Learning Branch. After constructing the

global and local augmented data pair (x̃g; p̃g) and (x̃l; p̃l),
we calculate the mixed-label cross-entropy loss:

£c = −
1

2N

N∑
i=1

(p̃ig(logf(x̃
i
g)) + p̃il(logf(x̃

i
l))) (6)

where N denote the sampling batch size and f(·) denote
predicted probability of x̃. Note that a batch of images is
augmented into a global and local mixture so that the actual
batch size will be twice the sampling size.

3.3. Cumulative Class-Balanced Learning

Class-Balanced learning. The design principle of class
reweighting is to introduce a weighting factor inversely pro-
portional to the label frequency and then strengthen the
learning of the minority class. Following [44], the weight-
ing factor wi is define as:

wi =
C · (1/ri)k∑C
i=1(1/ri)

k
(7)

where ri is the i-th class frequencies of the training dataset,
and k is a hyper-parameter to scale the gap between the head
and tail classes. Note that k = 0 corresponds to no re-
weighting and k = 1 corresponds to class-balanced method
[9]. We change the scalar weights to the one-hot vectors
form and mix the weight vectors of the two images:

w̃ = λwi + (1− λ)wj . (8)

Formally, given a train dataset D = {(xi, yi, wi)}Ni=1, the
rebalanced loss can be written as:

£cb = −
1

2N

N∑
i=1

w̃i(p̃ig(logf(x̃
i
g)) + p̃il(logf(x̃

i
l))) (9)



Table 1. Top-1 accuracy (%) of ResNet-32 on CIFAR-10-LT and CIFAR-100-LT with different imbalance factors [100, 50, 10]. GLMC
consistently outperformed the previous best method only in the one-stage.

Method CIFAR-10-LT CIFAR-100-LT
IF=100 50 10 100 50 10

CE 70.4 74.8 86.4 38.3 43.9 55.7

rebalance classifier

BBN [45] 79.82 82.18 88.32 42.56 47.02 59.12
CB-Focal [9] 74.6 79.3 87.1 39.6 45.2 58
LogitAjust [29] 80.92 - - 42.01 47.03 57.74
weight balancing [1] - - - 53.35 57.71 68.67

augmentation
Mixup [42] 73.06 77.82 87.1 39.54 54.99 58.02
RISDA [6] 79.89 79.89 79.89 50.16 53.84 62.38
CMO [32] - - - 47.2 51.7 58.4

self-supervised pretraining

KCL [18] 77.6 81.7 88 42.8 46.3 57.6
TSC [25] 79.7 82.9 88.7 42.8 46.3 57.6
BCL [47] 84.32 87.24 91.12 51.93 56.59 64.87
PaCo [8] - - - 52 56 64.2
SSD [26] - - - 46 50.5 62.3

ensemble classifier RIDE (3 experts) + CMO [32] - - - 50 53 60.2
RIDE (3 experts) [37] - - - 48.6 51.4 59.8

one-stage training ours 87.75 90.18 94.04 55.88 61.08 70.74
finetune classifier ours + MaxNorm [1] 87.57 90.22 94.03 57.11 62.32 72.33

where f(x̃) and w̃ denote predicted probability and weight-
ing factor of mixed image x̃, respectively. Note that the
global and local mixed image have the same mixed weights.

Cumulative Class-Balanced Learning. As illustrated
in Fig.2, we use the bilateral branches structure to learn
the rebalance branch adaptively. But unlike BBN [45], our
cumulative learning strategy is imposed on the loss func-
tion instead of the fully connected layer weights and uses
reweighting instead of resampling for learning. Concretely,
the loss £c of the unweighted classification branch is mul-
tiplied by α, and the rebalanced loss £cb is multiplied by
1 − α. α automatically decreases as the current training
epochs T increase:

α = 1− (
T

Tmax
)2 (10)

where Tmax is the maximum training epoch.
Finally, the total loss is defined as a combination of loss

Lsup, Lcb, and Lsim:

£total = α£c + (1− α)£cb + γ£sim (11)

where γ is a hyperparameter that controls Lsim loss. The
default value is 10.

3.4. Finetuning Classifier Weights

[1] investigate that the classifier weights would be heav-
ily biased toward the head classes when faced with long-
tail data. Therefore, we optionally use MaxNorm [1, 16]

to finetune the classifier in the second stage. Specifically,
MaxNorm restricts weight norms within a ball of radius δ:

Θ∗ = argmin
Θ

F (Θ;D), s.t.||θk||22 ≤ δ2 (12)

this can be solved by applying projected gradient descent
(PGD). For each epoch (or iteration), PGD first computes
an updated θk and then projects it onto the norm ball:

θk ← min(1, δ/||θk||2) ∗ θk (13)

4. Experiments
In this section, we evaluate the proposed GLMC on

three widely used long-tailed benchmarks: CIFAR-10-LT,
CIFAR-100-LT, and ImageNet-LT. We also conduct a series
of ablation studies to assess each component of GLMC’s
importance fully.

4.1. Experiment setup

Datasets. Following [40], we modify the balanced
CIFAR10, CIFAR100, and ImageNet-2012 dataset to the
uneven setting (named CIFAR10-LT, CIFAR100-LT, and
ImageNet-LT) by utilizing the exponential decay function
n = niµ

i, where i is the class index (0-indexed), ni is the
original number of training images and µ ∈ (0, 1). The im-
balanced factor β is defined by β = Nmax/Nmin, which
reflects the degree of imbalance in the data. CIFAR10-
LT and CIFAR100-LT are divided into three types of train
datasets, and each dataset has a different imbalance factor
[100,50,10]. ImageNet-LT has a 256 imbalance factor. The



Table 2. Top-1 accuracy (%) on ImageNet-LT dataset. Comparison to the state-of-the-art methods with different backbone. † denotes
results reproduced by [47] with 180 epochs.

Method Backbone ImageNet-LT
Many Med Few All

CE ResNet-50 64 33.8 5.8 41.6
CB-Focal [9] ResNet-50 39.6 32.7 16.8 33.2
LDAM [3] ResNet-50 60.4 46.9 30.7 49.8
KCL [18] ResNet-50 61.8 49.4 30.9 51.5
TSC [25] ResNet-50 63.5 49.7 30.4 52.4
RISDA [6] ResNet-50 - - - 49.3
BCL (90 epochs) [47] ResNeXt-50 67.2 53.9 36.5 56.7
BCL (180 epochs) [47] ResNeXt-50 67.9 54.2 36.6 57.1
PaCo† (180 epochs) [8] ResNeXt-50 64.4 55.7 33.7 56.0
Balanced Softmax† (180 epochs) [34] ResNeXt-50 65.8 53.2 34.1 55.4
SSD [26] ResNeXt-50 66.8 53.1 35.4 56
RIDE (3 experts) + CMO [32] ResNet-50 66.4 53.9 35.6 56.2
RIDE (3 experts) [37] Swin-S 66.9 52.8 37.4 56
weight balancing + MaxNorm [1] ResNeXt-50 62.5 50.4 41.5 53.9
ours

ResNeXt-50
70.1 52.4 30.4 56.3

ours + MaxNorm [1] 60.8 55.9 45.5 56.7
ours + BS [34] 64.76 55.67 42.19 57.21

most frequent class includes 1280 samples, while the least
contains only 5.

Network architectures. For a fair comparison with re-
cent works, we follow [1, 8, 47] to use ResNet-32 [15]
on CIFAR10-LT and CIFAR100-LT, ResNet-50 [15] and
ResNeXt-50-32x4d [38] on ImageNet-LT. The main abla-
tion experiment was performed using ResNet-32 on the CI-
FAR100 dataset.

Evaluation protocol. For each dataset, we train them
on the imbalanced training set and evaluate them in the bal-
anced validation/test set. Following [1, 28], we further re-
port accuracy on three splits of classes, Many-shot classes
(training samples > 100), Medium-shot (training samples
20 ∼ 100) and Few-shot (training samples ≤ 20), to com-
prehensively evaluate our model.

Implementation. We train our models using the Py-
Torch toolbox [33] on GeForce RTX 3090 GPUs. All mod-
els are implemented by the SGD optimizer with a momen-
tum of 0.9 and gradually decay learning rate with a co-
sine annealing scheduler, and the batch size is 128. For
CIFAR10-LT and CIFAR100-LT, the initial learning rate is
0.01, and the weight decay rate is 5e-3. For ImageNet-LT,
the initial learning rate is 0.1, and the weight decay rate is
2e-4. We also use random horizontal flipping and cropping
as simple augmentation.

4.2. Long-tailed Benchmark Results

Compared Methods. Since the field of LTR is develop-
ing rapidly and has many branches, we choose recently pub-
lished representative methods of different types for com-

Table 3. Top-1 accuracy (%) on full ImageNet dataset with
ResNet-50 backbone.

Method Augmentation Top-1 acc
vanilla Simple Augment 76.4
vanilla MixUp [42] 77.9
vanilla CutMix [41] 78.6
Supcon [21] RandAugment 78.4
PaCo [8] Simple Augment 78.7
PaCo [8] RandAugment 79.3
ours MixUp + CutMix 80.2

parison. For example, SSD [26], PaCo [8], KCL [18],
BCL [47], and TSC [25] use contrastive learning or self-
supervised methods to train balanced representations. RIDE
[37] combines multiple experts for prediction; RISDA [6]
and CMO [32] apply strong data augmentation techniques
to improve robustness; Weight Balancing [1] is a typical
two-stage training method.
Results on CIFAR10-LT and CIFAR100-LT. We conduct
extensive experiments to compare GLMC with state-of-
the-art baselines on long-tailed CIFAR10 and CIFAR100
datasets by setting three imbalanced ratios: 10, 50, and
100. Table 1 reports the Top-1 accuracy of various methods
on CIFAR-10-LT and CIFAR-100-LT. We can see that our
GLMC consistently achieves the best results on all datasets,
whether using one-stage training or a two-stage finetune
classifier. For example, on CIFAR100-LT (IF=100), Our
method achieves 55.88% in the first stage, outperforming



Algorithm 1 Learning algorithm of our proposed GLMC
Input: Training Dataset D = {(xi, yi, wi)}Ni=1

Parameter: Encoder(·) denotes feature extractor; proj(·)
and pred(·) denote projection and predictor; c(·) and cb(·)
denote convention classifier and rebalanced classifier; Tmax

is the Maximum training epoch; sg(·) denotes stop gradient
operation.

1: for T = 1 in Tmax do
2: α← 1− ( T

Tmax
)2

3: for (x, y, w) in D do
4: λ← Beta(β, β)
5: (x̃g, p̃g, w̃g)←MixUp(x, y, w, λ)
6: (x̃l, p̃l, w̃l)← CutMix(x, y, w, λ)

// Generate global and local mixed augmented data.
7: rg, rl ← Encoder(x̃g), Encoder(x̃l)
8: hg, hl ← proj(rg), proj(rl)

// Map representation rg and rl to vector hg and hl.
9: ug, ul ← pred(hg), pred(hl)

// Map representation hg and hl to contrastive space ug

and ul.
10: £sim ← sim(ug, sg(hl)) + sim(ul, sg(hg))

// Calculate global and local mixture similarity.
11: pcg, p

c
l ← Sofmatx(c(rg)), Sofmatx(c(rl))

// Calculate the classification probability of the conven-
tion branch

12: £c ← £(p̃, pcg) +£(p̃, pcl )
// Calculate the classification loss

13: pcbg , pcbl ← Sofmatx(cb(rg)), Sofmatx(cb(rl))
// Calculate the classification probability of the rebal-
ance branch

14: £cb ← £(p̃, pcbg ) +£(p̃, pcbl )
// Calculate the rebalanced classification loss

15: £total = α£c + (1− α)£cb + γ£sim

// Calculate the total loss
16: Update model parameters by minimizing £total

17: end for
18: end for

the two-stage weight rebalancing strategy (53.35%). Af-
ter finetuning the classifier with MaxNorm, our method
achieves 57.11%, which accuracy increased by +3.76%
compared with the previous SOTA. Compared to contrastive
learning families, such as PaCo and BCL, GLMC surpasses
previous SOTA by +5.11%, +5.73%, and +7.46% under
imbalance factors of 100, 50, and 10, respectively. In addi-
tion, GLMC does not need a large batch size and long train-
ing epoch to pretrain the feature extractor, which reduces
training skills.
Results on ImageNet-LT. Table 2 compares GLMC with
state-of-the-art baselines on ImageNet-LT dataset. We re-
port the Top-1 accuracy on Many-shot, Medium-shot, and
Few-shot groups. As shown in the table, with only one-

Table 4. Top-1 accuracy (%) on full CIFAR-10 and CIFAR-100
dataset with ResNet-50 backbone.

Method CIFAR-10 CIFAR-100
vanilla 94.85 75.28

MixUp [42] 95.95 77.99
CutMix [41] 95.41 78.03
SupCon [21] 96 76.5

PaCo [8] - 79.1
ours 97.23 83.05

stage training, GLMC significantly improves the perfor-
mance of the head class by 70.1%, and the overall perfor-
mance reaches 56.3%, similar to PaCo (180 epochs). After
finetuning the classifier, the tail class of GLMC can reach
45.5% (+ MaxNorm [1]) and 42.19% (+ BS [34]), which
significantly improves the performance of the tail class.

4.3. Full ImageNet and CIFAR Recognition

GLMC utilizes a global and local mixture consistency
loss as an auxiliary loss in supervised loss to improve the
robustness of the model, which can be added to the model
as a plug-and-play component. To verify the effective-
ness of GLMC under a balanced setting, we conduct ex-
periments on full ImageNet and full CIFAR. They are in-
dicative to compare GLMC with the related state-of-the-art
methods (MixUp [42], CutMix [41], PaCo [8], and Sup-
Con [8]). Note that under full ImageNet and CIFAR, we
remove the cumulative reweighting and resampling strate-
gies customized for long-tail tasks.
Results on Full CIFAR-10 and CIFAR-100. For CIFAR-
10 and CIFAR-100 implementation, following PaCo and
SupCon, we use ResNet-50 as the backbone. As shown
in Table 4, on CIFAR-100, GLMC achieves 83.05% Top-
1 accuracy, which outperforms PaCo by 3.95%. Further-
more, GLMC exceeds the vanilla cross entropy method by
2.13% and 7.77% on CIFAR-10 and CIFAR-100, respec-
tively, which can significantly improve the performance of
the base model.
Results on Full ImageNet. In the implementation, we
transfer hyperparameters of GLMC on ImageNet-LT to
full ImageNet without modification. The experimental re-
sults are summarized in Table 3. Our model achieves
80.2% Top-1 accuracy, outperforming PaCo and SupCon
by +0.9% and +1.8%, respectively. Compared to the
positive/negative contrastive model (PaCo and SupCon).
GLMC does not need to construct negative samples, which
can effectively reduce memory usage during training.

4.4. Ablation Study

To further analyze the proposed GLMC, we perform sev-
eral ablation studies to evaluate the contribution of each
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Figure 3. Confusion matrices of different label reweighting and
resample coefficient k on CIFAR-100-LT with an imbalance ratio
of 100.

component more comprehensively. All experiments are per-
formed on CIFAR-100 with an imbalance factor of 100.
The effect of rebalancing intensity. As analyzed in Sec.
3.3, we mitigate head classes bias problems by reweighting
labels and sampling weights by inverting the class sampling
frequency. See Fig.3, we set different reweighting and re-
sampling coefficients to explore the influence of the rebal-
ancing strategy of GLMC on long tail recognition. One can
see very characteristic patterns: the best results are clustered
in the upper left, while the worst are in the lower right. It
indicates that the class resampling weight is a very sensitive
hyperparameter in the first-stage training. Large resampling
weight may lead to model performance degradation, so it
should be set to less than 0.4 in general. And label reweight-
ing improves long tail recognition significantly and can be
set to 1.0 by default.
The effect of mixture consistency weight γ. We investi-
gate the influence of the mixture consistency weight γ on
the CIFAR100-LT (IF=100) and plot the accuracy-weight
curve in Fig.4. It is evident that adjusting γ is able to
achieve significant performance improvement. Compared
with the without mixture consistency (γ=0), the best setting
(γ=10) can improve the performance by +2.41%.
The effect of each component. GLMC contains two essen-
tial components:(1) Global and Local Mixture Consistency
Learning and (2) Cumulative Class-Balanced reweighting.
Table 5 summarizes the ablation results of GLMC on
CIFAR100-LT with an imbalance factor of 100. Note that
both settings are crossed to indicate using a standard cross-
entropy training model. We can see that both components
significantly improve the baseline method. Analyzing each
element individually, Global and Local Mixture Consis-
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Figure 4. Different global and local mixture consistency weights
on CIFAR-100-LT (IF = 100) .

Table 5. Ablations of the different key components of GLMC
architecture. We report the accuracies (%) on CIFAR100-LT
(IF=100) with ResNet-32 backbone. Note that all model use one-
stage training.

Global and Local
Mixture Consistency

Cumulative
Class-Balanced Accuracies(%)

× × 38.3
× ✓ 44.63
✓ × 50.11
✓ ✓ 55.88

tency Learning is crucial, which improves performance by
an average of 11.81% (38.3%→ 50.11% ).

5. Conclusion

In this paper, we have proposed a simple learning
paradigm called Global and Local Mixture Consistency cu-
mulative learning (GLMC). It contains a global and lo-
cal mixture consistency loss to improve the robustness of
the feature extractor, and a cumulative head-tail soft la-
bel reweighted loss mitigates the head class bias problem.
Extensive experiments show that our approach can signif-
icantly improve performance on balanced and long-tailed
visual recognition tasks.
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