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Abstract

Driven by improved architectures and better representa-
tion learning frameworks, the field of visual recognition has
enjoyed rapid modernization and performance boost in the
early 2020s. For example, modern ConvNets, represented
by ConvNeXt [52], have demonstrated strong performance
in various scenarios. While these models were originally
designed for supervised learning with ImageNet labels,
they can also potentially benefit from self-supervised learn-
ing techniques such as masked autoencoders (MAE) [31].
However, we found that simply combining these two ap-
proaches leads to subpar performance. In this paper, we
propose a fully convolutional masked autoencoder frame-
work and a new Global Response Normalization (GRN)
layer that can be added to the ConvNeXt architecture to
enhance inter-channel feature competition. This co-design
of self-supervised learning techniques and architectural im-
provement results in a new model family called ConvNeXt
V2, which significantly improves the performance of pure
ConvNets on various recognition benchmarks, including
ImageNet classification, COCO detection, and ADE20K
segmentation. We also provide pre-trained ConvNeXt V2
models of various sizes, ranging from an efficient 3.7M-
parameter Atto model with 76.7% top-1 accuracy on Im-
ageNet, to a 650M Huge model that achieves a state-of-the-
art 88.9% accuracy using only public training data.

Code: https://github.com/facebookresearch/ConvNeXt-V2

1. Introduction
Building on research breakthroughs in earlier decades

[34,44,47,60,68], the field of visual recognition has ushered
in a new era of large-scale visual representation learning.
Pre-trained, large-scale vision models have become essen-
tial tools for feature learning and enabling a wide range of
vision applications. The performance of a visual represen-
tation learning system is largely influenced by three main
factors: the neural network architecture chosen, the method

* Work done during an internship at FAIR.
† Corresponding author.
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Figure 1. ConvNeXt V2 model scaling. The ConvNeXt V2
model, which has been pre-trained using our fully convolutional
masked autoencoder framework, performs significantly better than
the previous version across a wide range of model sizes.

used for training the network, and the data used for training.
In the field of visual recognition, progress in each of these
areas contributes to overall improvements in performance.

Innovation in neural network architecture design has
consistently played a major role in the field of representa-
tion learning. Convolutional neural network architectures
(ConvNets) [34, 44, 47] have had a significant impact on
computer vision research by allowing for the use of generic
feature learning methods for a variety of visual recognition
tasks [25, 33], rather than relying on manual feature engi-
neering. In recent years, the transformer architecture [68],
originally developed for natural language processing, has
also gained popularity due to its strong scaling behavior
with respect to model and dataset size [21]. More re-
cently, ConvNeXt [52] architecture has modernized tradi-
tional ConvNets and demonstrated that pure convolutional
models could also be scalable architectures. However, the
most common method for exploring the design space for
neural network architectures is still through benchmarking
supervised learning performance on ImageNet.
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In a separate line of research, the focus of visual repre-
sentation learning has been shifting from supervised learn-
ing with labels to self-supervised pre-training with pre-
text objectives. Among many different self-supervised al-
gorithms, masked autoencoders (MAE) [31] have recently
brought success in masked language modeling to the vision
domain and quickly become a popular approach for visual
representation learning. However, a common practice in
self-supervised learning is to use a predetermined architec-
ture designed for supervised learning, and assume the de-
sign is fixed. For instance, MAE was developed using the
vision transformer [21] architecture.

It is possible to combine the design elements of archi-
tectures and self-supervised learning frameworks, but do-
ing so may present challenges when using ConvNeXt with
masked autoencoders. One issue is that MAE has a specific
encode-decoder design that is optimized for the sequence
processing capabilities of transformers, which allows the
compute-heavy encoder to focus on visible patches and thus
reduce the pre-training cost. This design may not be com-
patible with standard ConvNets, which use dense sliding
windows. Additionally, if the relationship between the ar-
chitecture and the training objective is not taken into con-
sideration, it may be unclear whether optimal performance
can be achieved. In fact, previous research has shown that
training ConvNets with mask-based self-supervised learn-
ing can be difficult [43], and empirical evidence suggests
that transformers and ConvNets may have different feature
learning behaviors that can affect representation quality.

To this end, we propose to co-design the network archi-
tecture and the masked autoencoder under the same frame-
work, with the aim of making mask-based self-supervised
learning effective for ConvNeXt models and achieving re-
sults similar to those obtained using transformers.

In designing the masked autoencoder, we treat the
masked input as a set of sparse patches and use sparse con-
volutions [28] to process only the visible parts. The idea
is inspired by the use of sparse convolutions in processing
large-scale 3D point clouds [15,76]. In practice, we can im-
plement ConvNeXt with sparse convolutions, and at fine-
tuning, the weights are converted back to standard, dense
layers without requiring special handling. To further im-
prove the pre-training efficiency, we replace the transformer
decoder with a single ConvNeXt block, making the entire
design fully convolutional. We have observed mixed results
with these changes: the learned features are useful and im-
prove upon the baseline results, but the fine-tuning perfor-
mance is still not as good as the transformer-based model.

We then conduct a feature space analysis of different
training configurations for ConvNeXt. We identify a poten-
tial issue of feature collapse at the MLP layer when training
ConvNeXt directly on masked input. To address this issue,
we propose adding a Global Response Normalization layer

to enhance inter-channel feature competition. This change
is most effective when the model is pre-trained with masked
autoencoders, suggesting that reusing a fixed architecture
design from supervised learning may be suboptimal.

In summary, we introduce ConvNeXt V2 which demon-
strates improved performance when used in conjunction
with masked autoencoders. We have found that this model
significantly improves the performance of pure ConvNets
across various downstream tasks, including ImageNet clas-
sification [60], COCO object detection [49] and ADE20K
segmentation [81]. The ConvNeXt V2 models can be used
in a variety of compute regimes and includes models of
varying complexity: from an efficient 3.7M-parameter Atto
model that achieves 76.7% top-1 accuracy on ImageNet, to
a 650M Huge model that reaches a state-of-the-art 88.9%
accuracy when using IN-22K labels.

2. Related Work

ConvNets. The design of ConvNets, which were first intro-
duced in the 1980s [46] and trained using back-propagation,
has undergone numerous improvements in terms of opti-
mization, accuracy, and efficiency over the years [35, 36,
39, 44, 58, 61, 63, 75]. These innovations have mainly been
discovered through the use of supervised training on the Im-
ageNet dataset. In recent years, some efforts have been
made to perform architecture search using self-supervised
pre-text tasks such as rotation prediction and colorization,
as in the case of UnNAS [50]. Recently, ConvNeXt [52]
conducted a comprehensive review of the design space and
demonstrated pure ConvNets can be as scalable as the vi-
sion transformers [21, 51], which have become the dom-
inant architecture in many applications. ConvNeXt has
particularly excelled in scenarios requiring lower complex-
ity [7, 70, 71]. Our ConvNeXt V2 model, which is pow-
ered by self-supervised learning, provides a simple way to
upgrade existing models and achieve a significant boost in
performance across a wide range of use cases.

Masked Autoencoders. Masked image modeling, repre-
sented by masked autoencoders [31], is one of the latest
self-supervised learning strategies. As a neural network
pre-training framework, masked autoencoders have shown
a broad impact on visual recognition. However, original
masked autoencoders are not directly applicable to Con-
vNets due to their asymmetric encoder-decoder design. Al-
ternative frameworks such as [3,77] have attempted to adapt
the approach for use with ConvNets, but with mixed results.
MCMAE [23] uses a few convolutional blocks as input to-
kenizers. To the best of our knowledge, there are no pre-
trained models that show self-supervised learning can im-
prove upon the best ConvNeXt supervised results.
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3. Fully Convolutional Masked Autoencoder
Our approach is conceptually simple and runs in a fully

convolutional manner. The learning signals are generated
by randomly masking the raw input visuals with a high
masking ratio and letting the model predict the missing
parts given the remaining context. Our framework is il-
lustrated in Figure 2, and we will now describe its main
components in more detail.

Masking. We use a random masking strategy with a mask-
ing ratio of 0.6. As the convolutional model has a hierarchi-
cal design, where the features are downsampled in different
stages, the mask is generated in the last stage and upsam-
pled recursively up to the finest resolution. To implement
this in practice, we randomly remove 60% of the 32 × 32
patches from the original input image. We use minimal data
augmentation, only including random resized cropping.

Encoder design. We use ConvNeXt [52] model as the en-
coder in our approach. One challenge in making masked
image modeling effective is preventing the model from
learning shortcuts that allow it to copy and paste informa-
tion from the masked regions. This is relatively easy to pre-
vent in transformer-based models, which can leave the vis-
ible patches as the only input to the encoder. However, it
is more difficult to achieve this with ConvNets, as the 2D
image structure must be preserved. While naive solutions
involve introducing learnable masked tokens in the input
side [3,77], these approaches decrease the efficiency of pre-
training and result in a train and test time inconsistency, as
there are no mask tokens at test time. This becomes espe-
cially problematic when the masking ratio is high.

To tackle this issue, our new insight is to view the
masked image from a “sparse data perspective”, which
was inspired by learning on sparse point clouds in 3D
tasks [15,76]. Our key observation is that the masked image
can be represented as a 2D sparse array of pixels. Based on
this insight, it is natural to incorporate sparse convolution
into our framework to facilitate pre-training of the masked
autoencoder. In practice, during pre-training, we propose
to convert the standard convolution layer in the encoder
with the submanifold sparse convolution, which enables the
model to operate only on the visible data points [15,27,28].
We note that the sparse convolution layers can be converted
back to standard convolution at the fine-tuning stage with-
out requiring additional handling. As an alternative, it is
also possible to apply a binary masking operation before
and after the dense convolution operation. This operation
has numerically the same effect as sparse convolutions, is
theoretically more computationally intensive, but can be
more friendly on AI accelerators like TPU.

Decoder design. We use a lightweight, plain ConvNeXt
block as the decoder. This forms an asymmetric encoder-
decoder architecture overall, as the encoder is heavier and

Figure 2. Our FCMAE framework. We introduce a fully con-
volutional masked autoencoder (FCMAE). It consists of a sparse
convolution-based ConvNeXt encoder and a lightweight Con-
vNeXt block decoder. Overall, the architecture of our autoencoder
is asymmetric. The encoder processes only the visible pixels, and
the decoder reconstructs the image using the encoded pixels and
mask tokens. The loss is calculated only on the masked region.

has a hierarchy. We also considered more complex de-
coders such as hierarchical decoders [48, 59] or transform-
ers [21, 31], but the simpler single ConvNeXt block de-
coder performed well in terms of fine-tuning accuracy and
reduced pre-training time considerably, demonstrated in Ta-
ble 1. We set the dimension of the decoder to 512.

Reconstruction target. We compute the mean squared er-
ror (MSE) between the reconstructed and target images.
Similar to MAE [31], the target is a patch-wise normalized
image of the original input, and the loss is applied only on
the masked patches.

FCMAE. We now present a Fully Convolutional Masked
AutoEncoder (FCMAE) by combining the proposals de-
scribed above. To evaluate the effectiveness of this frame-
work, we use the ConvNeXt-Base model as the encoder and
conduct a series of ablation studies. Throughout the pa-
per, we focus on the end-to-end fine-tuning performance
becuase of its practical relevance in transfer learning, and
use that to assess the quality of the learned representation.

We pre-train and fine-tune using the ImageNet-1K (IN-
1K) dataset for 800 and 100 epochs, respectively, and report
the top-1 IN-1K validation accuracy for a single 224×224
center crop. Additional details about the experimental setup
can be found in the appendix.

To understand the impact of using sparse convolution in
our FCMAE framework, we first investigate how it affects
the quality of the learned representation during masked im-
age pre-training. Our empirical findings show that it is es-
sential to prevent information leakage from the masked re-
gion in order to achieve good results.

w/o Sparse conv. w/ Sparse conv.
79.3 83.7
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dec. type ft hours speedup
UNet w/ skip 83.7 12.9 -
UNet w/o skip 83.5 12.9 -
Transformer [31] 83.4 8.5 1.5×
ConvNeXt block 83.7 7.7 1.7×

(a) Decoder design. A simple convolutional block out-
performs more complex decoder designs.

blocks ft
1 83.7
2 83.5
4 83.7
8 83.6
12 83.3

(b) Decoder depth. A single block yields
competitive fine-tuning performance.

dim ft
128 83.5
256 83.7
512 83.7
768 83.6
1024 83.5

(c) Decoder width. A decoder width of
256 or 512 achieves the best performance.

Table 1. MAE decoder ablation experiments with ConvNeXt-Base on ImageNet-1K. We report fine-tuning (ft) accuracy (%). The pre-
training schedule is 800 epochs. In the decoder design exploration, the wall-clock time is benchmarked on a 256-core TPU-v3 pod using
JAX. The speedup is relative to the UNet decoder baseline. Our final design choices employed in the paper are marked in gray .

Figure 3. Feature activation visualization. We visualize the activation map for each feature channel in small squares. For clarity, we
display 64 channels in each visualization. The ConvNeXt V1 model suffers from a feature collapse issue, which is characterized by the
presence of redundant activations (dead or saturated neurons) across channels. To fix this problem, we introduce a new method to promote
feature diversity during training: the global response normalization (GRN) layer. This technique is applied to high-dimensional features in
every block, leading to the development of the ConvNeXt V2 architecture.

Next, we compare our self-supervised approach to super-
vised learning. Specifically, we obtain two baseline experi-
mental results: the supervised 100 epoch baseline using the
same recipe and the 300 epoch supervised training baseline
provided in the original ConvNeXt paper [52]. We find that
our FCMAE pre-training provides better initialization than
the random baseline (i.e., 82.7 → 83.7), but it still needs
to catch up to the best performance obtained in the original
supervised setup.

Sup, 100ep Sup, 300ep. [52] FCMAE
82.7 83.8 83.7

This is in contrast to the recent success of masked im-
age modeling using transformer-based models [3, 31, 77],
where the pre-trained models significantly outperform the
supervised counterparts. This motivates us to investigate the
unique challenges faced by the ConvNeXt encoder during
masked autoencoder pre-training, which we discuss next.

4. Global Response Normalization

In this section, we introduce a new Global Response
Normalization (GRN) technique to make FCMAE pre-
training more effective in conjunction with the ConvNeXt
architecture. We first motivate our approach through both
qualitative and quantitative feature analyses.

Feature collapse. To gain more insight into the learning
behavior, we first perform qualitative analysis in the feature
space. We visualize the activations of a FCMAE pre-trained
ConvNeXt-Base model and notice an intriguing “feature
collapse” phenomenon: there are many dead or saturated
feature maps and the activation becomes redundant across
channels. We show some of the visualizations in Figure
3. This behavior was mainly observed in the dimension-
expansion MLP layers in a ConvNeXt block [52].

Feature cosine distance analysis. To further validate our
observation quantitatively, we perform a feature cosine dis-
tance analysis. Given an activation tensor X ∈ RH×W×C ,
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Figure 4. Feature cosine distance analysis. As the number of
total layers varies for different architectures, we plot the distance
values against the normalized layer indexes. We observe that the
ConvNeXt V1 FCMAE pre-trained model exhibits severe feature
collapse behavior. The supervised model also shows a reduction
in feature diversity, but only in the final layers. This decrease in
diversity in the supervised model is likely due to the use of the
cross-entropy loss, which encourages the model to focus on class-
discriminative features while suppressing the others.

Xi ∈ RH×W is the feature map of the i-th channel. We
reshape it as a HW dimensional vector and compute the
average pair-wise cosine distance across the channels by
1
C2

∑C
i

∑C
j

1−cos(Xi,Xj)
2 . A higher distance value indi-

cates more diverse features, while a lower value indicates
feature redundancy.

To perform this analysis, we randomly select 1,000 im-
ages from different classes in the ImageNet-1K validation
set and extract the high-dimensional features from each
layer of different models, including the FCMAE models,
the ConvNeXt supervised model [52] and the MAE pre-
trained ViT model [31]. We then compute the distance per
layer for each image and average the values across all im-
ages. The results are plotted in Figure 4. The FCMAE pre-
trained ConvNeXt model exhibits a clear tendency towards
feature collapse, consistent with our observations from the
previous activation visualizations. This motivates us to con-
sider ways to diversify the features during learning and pre-
vent feature collapse.

Approach. There are many mechanisms in the brain that
promote neuron diversity. For example, lateral inhibi-
tion [6, 30] can help to sharpen the response of the acti-
vated neuron and increase the contrast and selectivity of in-
dividual neurons to the stimulus while also increasing the
diversity of responses across the population of neurons. In
deep learning, this form of lateral inhibition can be imple-
mented by response normalization [45]. In this work, we
introduce a new response normalization layer called global
response normalization (GRN), which aims to increase the
contrast and selectivity of channels. Given an input feature,
X ∈ RH×W×C , the proposed GRN unit consists of three
steps: 1) global feature aggregation, 2) feature normaliza-
tion, and 3) feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters
# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)
return gamma * (X * nx) + beta + X

First, we aggregate a spatial feature mapXi into a vector
gx with a global function G(·):

G(X) := X ∈ RH×W×C → gx ∈ RC . (1)

This can be viewed as a simple pooling layer. We ex-
perimented with different functions in Table 2a. Interest-
ingly, global average pooling, a widely used feature ag-
gregator [37, 72], did not perform well in our case. In-
stead, we found that using norm-based feature aggregation,
specifically, using L2-norm, resulted in better performance.
This gives us a set of aggregated values G(X) = gx =
{||X1||, ||X2||, . . . , ||XC ||} ∈ RC where G(X)i = ||Xi||
is a scalar that aggregates the statistics of the i-th channel.

Next, we apply a response normalization function N (·)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

N (||Xi||) := ||Xi|| ∈ R →
||Xi||∑

j=1,...,C ||Xj ||
∈ R, (2)

where ||Xi|| is the L2-norm of the i-th channel. 1 Intu-
itively, for the i-th channel, Eqn. 2 computes its relative
importance compared to all the other channels. Similar to
other forms of normalization [42, 45, 68], this step creates
a feature competition across channels by mutual inhibition.
In Table 2b, we also examine the use of other normalization
functions and find that the simple divisive normalization
works best, though standardization (||Xi|| − µ)/σ yields
similar results when applied to the same L2-norm aggre-
gated values.

Finally, we calibrate the original input responses using
the computed feature normalization scores:

Xi = Xi ∗ N (G(X)i) ∈ RH×W (3)

The core GRN unit is very easy to implement, requiring
only three lines of code, and has no learnable parameters.
The pseudo-code for the GRN unit is in Algorithm 1.

To ease optimization, we add two additional learnable
parameters, γ and β, and initialize them to zero. We also
add a residual connection between the input and output of
the GRN layer. The resulting final GRN block is Xi =
γ∗Xi∗N (G(X)i)+β+Xi. This setup allows a GRN layer

1To account for the increased number of channels at deeper layers, in
practice, we also scale the normalized value by the channel count C.
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case ft
g.avg. 83.7
L1 84.3
L2 84.6

(a) Global aggregation G(·). L2 Norm-based
aggregation function produces the best result.

case ft
(||Xi|| − µ)/σ 84.5
1/

∑
||Xi|| 83.8

||Xi||/
∑
||Xi|| 84.6

(b) Normalization operator,N(·). Divisive normaliza-
tion is an effective channel importance calibrator.

case ft
w/o skip 84.0
w/ skip 84.6

(c) Residual connection helps with GRN op-
timization and leads to better performance.

case ft
Baseline 83.7
LRN [45] 83.2
BN [41] 80.5
LN [2] 83.8
GRN 84.6

(d) Feature normalization. GRN outperforms
other normalizations through global contrasting.

case ft #param
Baseline 83.7 89M
SE [37] 84.4 109M
CBAM [72] 84.5 109M
GRN 84.6 89M

(e) Feature re-weighting. GRN does effective and effi-
cient feature re-weighting without parameter overhead.

case ft
Baseline 83.7
drop at ft. 78.8
add at ft. 80.6
both 84.6

(f) GRN in pre-training/fine-tuning. To be
effective, GRN should be used in both stages.

Table 2. GRN ablations with ConvNeXt-Base. We report fine-tuning accuracy on ImageNet-1K. Our final proposal is marked in gray .

to initially perform an identity function and gradually adapt
during training. The importance of residual connection is
demonstrated in Table 2c.

ConvNeXt V2. We incorporate the GRN layer into the orig-
inal ConvNeXt block, as illustrated in Figure 5. We em-
pirically found that LayerScale [65] becomes unnecessary
when GRN is applied and can be removed. Using this new
block design, we create various models with varying effi-
ciency and capacity, which we refer to as the ConvNeXt V2
model family. These models range from lightweight (e.g.
Atto [70]) to compute-intensive (e.g. Huge) ones. Detailed
model configurations can be found in the appendix.

Impact of GRN. We now pre-train ConvNeXt V2 using
the FCMAE framework and evaluate the impact of GRN.
From visualization in Figure 3 and cosine distance analysis
in Figure 4, we can observe that ConvNeXt V2 effectively
mitigates the feature collapse issue. The cosine distance
values are consistently high, indicating that feature diver-
sity is maintained across layers. This behavior is similar to
that of the MAE pre-trained ViT model [31]. Overall, this
suggests that ConvNeXt V2 learning behavior can resemble
ViT, under a similar masked image pre-training framework.

Next, we evaluate the fine-tuning performance.

V1 + Sup, 300ep. V1 + FCMAE V2 + FCMAE
83.8 83.7 84.6

When equipped with GRN, the FCMAE pre-trained
model can significantly outperform the 300 epoch super-
vised counterpart. GRN improves the representation qual-
ity by enhancing the feature diversity, which was absent in
the V1 model but has proven crucial for masked-based pre-
training. Note this improvement is achieved without adding
additional parameter overhead or increased FLOPS.2

Relation to feature normalization methods. Can other
normalization layers [2,41,45,67,73] perform as well as the

2The additional affine parameters γ/β are negligible.

Figure 5. ConvNeXt Block Designs. In ConvNeXt V2, we add
the GRN layer after the dimension-expansion MLP layer and drop
LayerScale [65] as it becomes redundant.

global response normalization (GRN) layer? In Table 2d,
we compare GRN with the three widely used normaliza-
tion layers: Local Response Normalization (LRN) [45],
Batch Normalization (BN) [41], and Layer Normalization
(LN) [2]. We observe that only GRN can significantly out-
perform the supervised baseline. LRN lacks global context
as it only contrasts channels within nearby neighbors. BN
normalizes spatially along the batch axis, which is unsuit-
able for masked inputs. LN implicitly encourages feature
competition through global mean and variance standardiza-
tion but does not work as well as GRN.

Relation to feature gating methods. Another way to en-
hance competition across neurons is to use dynamic feature
gating methods [37, 56, 69, 72, 78]. In Table 2e, we com-
pare our GRN with two classic gating layers: squeeze-and-
excite (SE) [37] and convolutional block attention module
(CBAM) [72]. SE focuses on channel gating, while CBAM
focuses on spatial gating. Both modules can increase the
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Backbone Method #param FLOPs Val acc.

ConvNeXt V1-B Supervised 89M 15.4G 83.8
ConvNeXt V1-B FCMAE 89M 15.4G 83.7
ConvNeXt V2-B Supervised 89M 15.4G 84.3 (+0.5)
ConvNeXt V2-B FCMAE 89M 15.4G 84.6 (+0.8)
ConvNeXt V1-L Supervised 198M 34.4G 84.3
ConvNeXt V1-L FCMAE 198M 34.4G 84.4
ConvNeXt V2-L Supervised 198M 34.4G 84.5 (+0.2)
ConvNeXt V2-L FCMAE 198M 34.4G 85.6 (+1.3)

Table 3. Co-design matters. When the architecture and the learn-
ing framework are co-designed and used together, masked image
pre-training becomes effective for ConvNeXt. We report the fine-
tuning performance from 800 epoch FCMAE pre-trained models.
The relative improvement is bigger with a larger model.

contrast of individual channels, similar to what GRN does.
GRN is much simpler and more efficient as it does not re-
quire additional parameter layers (such as MLPs).

The role of GRN in pre-training/fine-tuning. Finally, we
examine the importance of GRN in pre-training and fine-
tuning. We present results in Table 2f where we either re-
move GRN from fine-tuning or add newly initialized GRN
only at the time of fine-tuning. Either way, we observe a
significant performance degradation, suggesting that keep-
ing GRN in both pre-training and fine-tuning is important.

5. ImageNet Experiments

In this section, we present and analyze two key propos-
als, the FCMAE pre-training framework and ConvNeXt V2
architecture, which are co-designed to make masked-based
self-supervised pre-training successful. We show these de-
signs synergize well and provide a strong foundation for
scaling the model to various sizes. Additionally, we com-
pare our approach to previous masked image modeling ap-
proaches through experiments. Furthermore, we show that
our largest ConvNeXt V2 Huge model, which has been pre-
trained using the FCMAE framework and fine-tuned on the
ImageNet-22K dataset, can achieve a new state-of-the-art
of 88.9% top-1 accuracy on the ImageNet-1K dataset, us-
ing only publicly available data.

Co-design matters. In this paper, we conduct a unique
study that involves co-designing both the self-supervised
learning framework (FCMAE) and the model architecture
improvement (GRN layer), through an empirical study of
their learning behavior. The results presented in Table 3
demonstrate the importance of this approach.

We found that using the FCMAE framework without
modifying the model architecture has a limited impact on
representation learning quality. Similarly, the new GRN
layer has a rather small effect on performance under the
supervised setup. However, the combination of the two
results in a significant improvement in fine-tuning perfor-

Backbone Method #param PT epoch FT acc.

ViT-B BEiT 88M 800 83.2
ViT-B MAE 88M 1600 83.6
Swin-B SimMIM 88M 800 84.0
ConvNeXt V2-B FCMAE 89M 800 84.6
ConvNeXt V2-B FCMAE 89M 1600 84.9
ViT-L BEiT 307M 800 85.2
ViT-L MAE 307M 1600 85.9
Swin-L SimMIM 197M 800 85.4
ConvNeXt V2-L FCMAE 198M 800 85.6
ConvNeXt V2-L FCMAE 198M 1600 85.8
ViT-H MAE 632M 1600 86.9
Swin V2-H SimMIM 658M 800 85.7
ConvNeXt V2-H FCMAE 659M 800 85.8
ConvNeXt V2-H FCMAE 659M 1600 86.3

Table 4. Comparisons with previous masked image modeling
approaches. The pre-training data is the IN-1K training set. All
self-supervised methods are benchmarked by the end-to-end fine-
tuning performance with an image size of 224. We underline the
highest accuracy for each model size and bold our best results.

mance. This supports the idea that both the model and learn-
ing framework should be considered together, particularly
when it comes to self-supervised learning.

Model scaling. In this study, we evaluated a range of
8 models with different sizes, from a low-capacity 3.7M
Atto model to a high-capacity 650M Huge model. We pre-
trained these models using the proposed FCMAE frame-
work and compared the fine-tuning results to the fully su-
pervised counterparts.

The results, shown in Figure 1, demonstrate strong
model scaling behavior, with consistently improved perfor-
mance over the supervised baseline across all model sizes.
This is the first time the benefit of masked image model-
ing has been demonstrated in such a broad model spectrum,
both in terms of effectiveness and efficiency. The complete
tabulated results can be found in the appendix.

Comparisons with previous methods. We compare our
approach to previous masked auto-encoder methods [3, 31,
77], which were all designed for transformer-based mod-
els. The results are summarized in Table 4. Our framework
outperforms the Swin transformer pre-trained with Sim-
MIM [77] across all model sizes. Compared to the plain ViT
pre-trained with MAE [31], our approach performs simi-
larly up to the Large model regime, despite using much
fewer parameters (198M vs 307M). However, in the huge
model regime, our approach slightly lagged behind. This
might be because a huge ViT model can benefit more from
self-supervised pre-training. As we will see next, the gap
might be closed with additional intermediate fine-tuning.

ImageNet-22K intermediate fine-tuning. We also present
ImageNet-22K intermediate fine-tuning results [3]. The
training process involves three steps: 1) FCMAE pre-
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Type Backbone size #param FLOPS Val acc.

Conv
Efficient V2-XL 4802 208M 94.0G 87.3
ConvNeXt V1-XL 3842 350M 179.0G 87.8

Hybrid
CoAtNet-4 5122 275M 360.9G 88.1
MaxViT-XL 3842 475M 293.7G 88.5
MaxViT-XL 5122 475M 535.2G 88.7

Trans
MViTV2-H 3842 667M 388.5G 88.6
MViTV2-H 5122 667M 763.5G 88.8
ConvNeXt V2-H 3842 659M 337.9G 88.7

Conv
ConvNeXt V2-H 5122 659M 600.7G 88.9

Table 5. ImageNet-1K fine-tuning results using IN-21K labels.
The ConvNeXt V2 Huge model equipped with the FCMAE pre-
training outperforms other architectures and sets a new state-of-
the-art accuracy of 88.9% among methods using public data only.

training, 2) ImageNet-22K fine-tuning, and 3) ImageNet-
1K fine-tuning. We use 3842 resolution images for pre-
training and fine-tuning [38]. We compare our results to the
state-of-the-art architecture designs, including convolution-
based [52, 64], transformer-based [22], and hybrid de-
signs [20,66]. All these results were trained with ImageNet-
22K supervised labels. The results are summarized in Ta-
ble 5. Our method, using a convolution-based architecture,
sets a new state-of-the-art accuracy using publicly available
data only (i.e. ImageNet-1K and ImageNet-22K).

6. Transfer Learning Experiments
We now benchmark the transfer learning performance.

First, we evaluate the impact of our co-design, i.e. compar-
ing ConvNeXt V1 + supervised vs. ConvNeXt V2 + FC-
MAE. We also directly compare our approach with Swin
transformer models pre-trained with SimMIM [77]. The
training and testing details are provided in the appendix.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN [33] on the COCO dataset [49] and re-
port the detection mAPbox and the segmentation mAPmask

on the COCO val2017 set. The results are shown in Ta-
ble 6. We see a gradual improvement as our proposals are
applied. From V1 to V2, the GRN layer is newly introduced
and enhances performance. Upon this, the model further
benefits from better initialization when moving from super-
vised to FCMAE-based self-supervised learning. The best
performances are achieved when both are applied together.
Additionally, our final proposal, ConvNeXt V2 pre-trained
on FCMAE, outperforms the Swin transformer counterparts
across all model sizes, with the largest gap achieved in the
huge model regime.

Semantic segmentation on ADE20K. To summarize, we
conduct experiments on the ADE20K [82] semantic seg-
mentation task using the UperNet framework [74]. Our
results show a similar trend to the object detection exper-
iments, and our final model significantly improves over the
V1 supervised counterparts. It also performs on par with

Backbone Method FLOPS AP
box

AP
box
50 AP

box
75 AP

mask
AP

mask
50 AP

mask
75

ConvNeXt V1-B Supervised 486G 50.3 71.6 56.1 44.9 68.5 48.8
ConvNeXt V2-B Supervised 486G 51.0 72.4 56.6 45.6 69.5 49.7
Swin-B SimMIM 497G 52.3 − − − − −
ConvNeXt V2-B FCMAE 486G 52.9 72.6 58.9 46.6 70.0 51.1

ConvNeXt V1-L Supervised 875G 50.6 71.5 56.3 45.1 68.7 49.2
ConvNeXt V2-L Supervised 875G 51.5 72.5 57.3 45.8 69.4 49.9
Swin-L SimMIM 904G 53.8 − − − − −
ConvNeXt V2-L FCMAE 875G 54.4 73.9 60.4 47.7 71.4 52.3

Swin V2-H SimMIM − 54.4 − − − − −
ConvNeXt V2-H FCMAE 2525G 55.7 75.2 61.8 48.9 72.8 53.6

Table 6. COCO object detection and instance segmentation
results using Mask-RCNN. FLOPS are calculated with image size
(1280, 800). Swins’ results are from [77]. All COCO fine-tuning
experiments rely on ImageNet-1K pre-trained models.

Backbone Method input mIoU #param FLOPS

ConvNeXt V1-B Supervised 5122 49.9 122M 1170G
ConvNeXt V2-B Supervised 5122 50.5 122M 1170G
Swin-B SimMIM 5122 52.8 121M 1181G
ConvNeXt V2-B FCMAE 5122 52.1 122M 1170G
ConvNeXt V1-L Supervised 5122 50.5 235M 1573G
ConvNeXt V2-L Supervised 5122 51.6 235M 1573G
Swin-L SimMIM 5122 53.5 234M 1601G
ConvNeXt V2-L FCMAE 5122 53.7 235M 1573G
Swin V2-H SimMIM 5122 54.2 − −
ConvNeXt V2-H FCMAE 5122 55.0 707M 3272G
ConvNeXt V2-H FCMAE, 22K ft 6402 57.0 707M 5113G

Table 7. ADE20K semantic segmentation results using UPer-
Net. Swins’ results are from [77]. FLOPS are based on input sizes
of (2048, 512) or (2560, 640). All ADE20K fine-tuning exper-
iments rely on ImageNet-1K pre-trained model except FCMAE,
22K ft, in which case the ImageNet-1K pre-training is followed by
ImageNet-22K supervised fine-tuning.

the Swin transformer in the base and large model regimes
but outperforms Swin in the huge model regime.

7. Conclusion
In this paper, we introduce a new ConvNet model family

called ConvNeXt V2 that covers a broader range of com-
plexity. While the architecture has minimal changes, it is
specifically designed to be more suitable for self-supervised
learning. Using our fully convolutional masked autoen-
coder pre-training, we can significantly improve the perfor-
mance of pure ConvNets across various downstream tasks,
including ImageNet classification, COCO object detection,
and ADE20K segmentation.

Acknowledgments. We thank Ross Wightman for the ini-
tial design of the small-compute ConvNeXt model variants
and the associated training recipe. We also appreciate the
helpful discussions and feedback provided by Kaiming He.
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Appendix
This appendix provides implementation details, in-

cluding model configurations, pre-training and fine-tuning
recipes, and sparse and dense encoding methods for FC-
MAE pre-training (see §A). In §B, we present complete
fine-tuning accuracy comparisons between ConvNeXt V1
and V2 on ImageNet 1K and 22K. In §C, we perform anal-
yses on the efficiency of sparse encoding and general fea-
ture analysis using the class selectivity index. Finally, in
§D, we conduct additional ablation studies on the mask-
ing ratio and GRN component analysis. We also compare
FCMAE (masked image modeling) with MoCo V3 (con-
trastive learning).

A. Implementation Details
A.1. ConvNeXt V2 model configurations

The basic models, i.e., Tiny (28M), Base (89M) and
Large (198M), follow the same configurations of the stage,
block (B), and channel (C) settings of the ConvNeXt
V1 [52].

• ConvNeXt V2-T: C=96, B=(3, 3, 9, 3)

• ConvNeXt V2-B: C=128, B=(3, 3, 27, 3)

• ConvNeXt V2-L: C=192, B=(3, 3, 27, 3)

Given the same definitions above, we scale the model
to provide a broad model size spectrum, targeting versatile
scenarios. First, to obtain efficient models, we scale down
as follows:

• ConvNeXt V2-A: C=40, B=(2, 2, 6, 2)

• ConvNeXt V2-F: C=48, B=(2, 2, 6, 2)

• ConvNeXt V2-P: C=64, B=(2, 2, 6, 2)

• ConvNeXt V2-N: C=80, B=(2, 2, 8, 2)

A, F, P, N denote Atto (3.7M), Femto (5.2M), Pico
(9.1M), and Nano (15.6M) models designed originally
in [70]. Next, to introduce the large-capacity variant, we
scale up as follows:

• ConvNeXt V2-H: C=352, B=(3, 3, 27, 3)

H denotes Huge (659M) model, which is newly pre-
sented in this work.

A.2. ImageNet Experiments

Pre-training All models share the same pre-training setup,
as noted in Table 8. We use the linear lr scaling rule [26]:
lr = base lr×batchsize / 256.

ImageNet-1K fine-tuning As the learning capacity varies
by model size, we adopt different fine-tuning recipes for
each model. We summarize them in Table 9, 10 and 11.
We see longer fine-tuning epochs help small models. We
adopt two different learning-rate layer decay strategies in
this work: group-wise [52], where we treat three sequential
layers as a single “layer” and use the same decaying value
for them, and the layer-wise [3], where we assign a distinct
value for each layer, both following the standard decaying
rule. The default is a layer-wise strategy, but we apply the
group-wise decaying strategy to Base and Large models.

ImageNet-22K intermediate fine-tuning We conduct
ImageNet-22K intermediate fine-tuning with the FCMAE-
pretrained ConvNeXt models. We use nano, tiny, base,
large, and huge models. The setups are summarized in Ta-
ble 12 and 13. Similarly, using larger layer-wise learning
rate decay values for small models is helpful.

Sparse encoding implementations. We propose two pos-
sible implementations to enable FCMAE pre-training: 1)
sparse encoding using sparse convolution [15, 27, 28] sup-
ported by external libraries [15, 18], and 2) simulating
sparse encoding with the masked dense convolution, which
can be easily implemented by applying binary masks be-
fore and after the standard convolution operation. As
they produce numerically identical outputs, both can be
adopted depending on different use cases. In this work,
we adopt sparse encoding on the GPU environment, where
we use MinkowskiEngine library [15] and PyTorch frame-
work [57]; we use dense masked conv based encoding on
TPU accelerators using Jax [5]. The experiments in the
main paper are all conducted on TPU (v3-256) pods and
we release a PyTorch reproduction.

A.3. Object detection and segmentation on COCO

For COCO experiments, we use the MMDetection [10]
toolbox and the final model weights from ImageNet-1K pre-
training as network initializations. All models are trained
with a 3x schedule (36 epochs) and a batch size of 32. We
utilize an AdamW optimizer [54] with a learning rate of
1e-4, a weight decay of 0.05 and sweep layer-wise learning
rate decay in {0.9, 0.95}, stochastic depth rate in {0.2, 0.3,
0.4, 0.5}. We employ a large-scale jittering augmentation
[24] (1024×1024 resolution, scale range [0.1, 2.0]). We use
single-scale testing with soft-NMS [4] during inference.

A.4. Semantic segmentation in ADE20K

For ADE20K experiments, we use the MMSegmentation
[17] toolbox. We use an AdamW optimizer [54] with the
following hyperparameters: a weight decay of 0.05, a batch
size of 16 and sweep layer-wise decay rate {0.8, 0.9}, learn-
ing rate {1e-4, 2e-4, 3e-4}, stochastic depth rate {0.1, 0.2,
0.3, 0.4}. All models are trained for 160K iterations with
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config value
optimizer AdamW [54]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [11]
batch size 4096
learning rate schedule cosine decay [53]
warmup epochs [26] 40
training epochs 800 or 1600
augmentation RandomResizedCrop

Table 8. Pre-training setting.

config value
optimizer AdamW
base learning rate 2e-4
weight decay 0.05 (F), 0.3 (A/P/N)
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [3, 16] 0.9
batch size 1024
learning rate schedule cosine decay
warmup epochs 0
training epochs 600
augmentation RandAug (9, 0.5) [19]
label smoothing [62] 0.2
mixup [80] 0.0 (A), 0.3 (F/P), 0.5 (N)
cutmix [79] 0.0 (A), 0.3 (F/P), 0.5 (N)
drop path [40] 0.1 (A/N), 0.0 (F/P),
head init [52] 0.001
ema 0.9999

Table 9. End-to-end IN-1K fine-tuning setting for Atto (A),
Femto (F), Pico (P) and Nano (N) models.

config value
optimizer AdamW
base learning rate 8e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [3, 16] 0.9
batch size 1024
learning rate schedule cosine decay
warmup epochs 40
training epochs 300
augmentation RandAug (9, 0.5) [19]
label smoothing [62] 0.1
mixup [80] 0.8
cutmix [79] 1.0
drop path [40] 0.2
head init [52] 0.001
ema 0.9999

Table 10. End-to-end IN-1K fine-tuning setting for Tiny model.

config value
optimizer AdamW
base learning rate 6.25e-3 (B/L), 1.25e-3 (H)
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [3, 16] 0.6 (B/L), 0.75 (H)
batch size 1024
learning rate schedule cosine decay
warmup epochs 20 (B/L), 10 (H)
training epochs 100 (B/L), 50 (H)
augmentation RandAug (9, 0.5) [19]
label smoothing [62] 0.1
mixup [80] 0.8
cutmix [79] 1.0
drop path [40] 0.1 (B), 0.2 (L), 0.3 (H)
head init [52] 0.001
ema 0.9999

Table 11. End-to-end IN-1K fine-tuning setting for Base (B),
Large (L), and Huge (H) models.

config value
optimizer AdamW
base learning rate 2.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [3, 16] 0.8 (B/L/H), 0.9 (N/T)
batch size 4096
learning rate schedule cosine decay
warmup epochs 5
training epochs 90
augmentation RandAug (9, 0.5) [19]
label smoothing [62] 0.1
mixup [80] 0.8
cutmix [79] 1.0
drop path [40] 0.(N/T), 0.1 (B/L), 0.3 (H)
head init [52] 0.001
ema None

Table 12. End-to-end IN-22K intermediate fine-tuning settings.

config value
optimizer AdamW
base learning rate 2.5e-5
weight decay 1e-8
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [3, 16] 0.8 (B/L), 0.85 (H), 0.9 (N/T)
batch size 512
learning rate schedule cosine decay
warmup epochs None
training epochs 30 (B/L/H), 90 (N/T)
augmentation RandAug (9, 0.5) [19]
label smoothing [62] 0.1
mixup [80] None
cutmix [79] None
drop path [40] 0.1(N/T), 0.2 (B), 0.3 (L), 0.5(H)
head init [52] 0.001
ema 0.9999 (N/T/B/L), None (H)

Table 13. End-to-end IN-1K fine-tuning settings (after IN-22K
intermediate fine-tuning).

an input resolution of 512×512. In inference, a multi-scale
test using resolutions that are [0.75,0.875,1.0,1.125,1.25] of
512×2048 is employed.

Similar to [77], we initialized the segmentation mod-
els using model weights after supervised fine-tuning on
ImageNet-1K, as we found its performance superior to us-
ing the self-supervised pre-trained weights directly.

B. Complete comparisons with V1

In Tables 14 and 15, we present detailed experiment-
level comparisons between ConvNeXt V1 [52, 70] and V2.
In particular, Table 14 shows ImageNet-1K fine-tuning re-
sults using eight models: Atto, Femto, Nano, Pico, Tiny,
Base, Large, and Huge, which range from low-compute
(Atto, 3.7M) to large-capacity models (Huge, 660M). We
see a consistent and significant improvement across all
models. The best performance is achieved when the archi-
tecture is upgraded from V1 to V2 and the self-supervised
learning framework FCMAE is used, demonstrating the
effectiveness of the co-design. In Table 15, we present
ImageNet-22K intermediate fine-tuning results. The pre-
training and fine-tuning process consists of three steps: 1)
FCMAE pre-training, 2) ImageNet-22K fine-tuning, and 3)
ImageNet-1K fine-tuning. Here, we focus on five V2 mod-
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Backbone Method #param FLOPs Val acc.

ConvNeXt V1-A Supervised 3.7M 0.55G 75.7
ConvNeXt V2-A Supervised 3.7M 0.55G 76.2 (+0.5)
ConvNeXt V2-A FCMAE 3.7M 0.55G 76.7 (+1.0)
ConvNeXt V1-F Supervised 5.2M 0.78G 77.5
ConvNeXt V2-F Supervised 5.2M 0.78G 78.0 (+0.5)
ConvNeXt V2-F FCMAE 5.2M 0.78G 78.5 (+1.0)
ConvNeXt V1-P Supervised 9.1M 1.37G 79.5
ConvNeXt V2-P Supervised 9.1M 1.37G 79.7 (+0.2)
ConvNeXt V2-P FCMAE 9.1M 1.37G 80.3 (+0.8)
ConvNeXt V1-N Supervised 15.6M 2.45G 80.8
ConvNeXt V2-N Supervised 15.6M 2.45G 81.2 (+0.4)
ConvNeXt V2-N FCMAE 15.6M 2.45G 81.9 (+1.1)
ConvNeXt V1-T Supervised 28.6M 4.47G 82.1
ConvNeXt V2-T Supervised 28.6M 4.47G 82.5 (+0.4)
ConvNeXt V2-T FCMAE 28.6M 4.47G 83.0 (+0.9)
ConvNeXt V1-B Supervised 89M 15.4G 83.8
ConvNeXt V1-B FCMAE 89M 15.4G 83.7
ConvNeXt V2-B Supervised 89M 15.4G 84.3 (+0.5)
ConvNeXt V2-B FCMAE 89M 15.4G 84.9 (+1.1)
ConvNeXt V1-L Supervised 198M 34.4G 84.3
ConvNeXt V1-L FCMAE 198M 34.4G 84.4
ConvNeXt V2-L Supervised 198M 34.4G 84.5 (+0.2)
ConvNeXt V2-L FCMAE 198M 34.4G 85.8 (+1.5)
ConvNeXt V2-H FCMAE 660M 115G 86.3

Table 14. ImageNet-1K fine-tuning results with a single
224×224 crop. The improvement over the V1 supervised model
is shown in parentheses.

Backbone image size #param FLOPs Val acc.

ConvNeXt V2-N 2242 15.6M 2.45G 82.1
ConvNeXt V2-N 3842 15.6M 7.21G 83.4
ConvNeXt V1-T 2242 28.6M 4.47G 82.9
ConvNeXt V2-T 2242 28.6M 4.47G 83.9(+1.0)
ConvNeXt V1-T 3842 28.6M 13.1G 84.1
ConvNeXt V2-T 3842 28.6M 13.1G 85.1(+1.0)
ConvNeXt V1-B 2242 89M 15.4G 85.8
ConvNeXt V2-B 2242 89M 15.4G 86.8(+1.0)
ConvNeXt V1-B 3842 89M 45.2G 86.8
ConvNeXt V2-B 3842 89M 45.2G 87.7(+0.9)
ConvNeXt V1-L 2242 198M 34.4G 86.6
ConvNeXt V2-L 2242 198M 34.4G 87.3(+0.7)
ConvNeXt V1-L 3842 198M 101.1G 87.5
ConvNeXt V2-L 3842 198M 101.1G 88.2(+0.7)
ConvNeXt V1-XL 2242 350M 60.9G 87.0
ConvNeXt V1-XL 3842 350M 179.0G 87.8
ConvNeXt V2-H 3842 660M 337.9G 88.7
ConvNeXt V2-H 5122 660M 600.8G 88.9

Table 15. ImageNet-22K intermediate fine-tuning results with
a single 224×224 crop. The improvement over the V1 supervised
model is shown in parentheses.

els: Nano, Tiny, Base, Large and Huge. We see consistent
improvement over the V1 counterparts. In particular, the
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Figure 6. Sparse encoding efficiency. Under the pre-training
setup, we measure the training throughput (image/s) and max GPU
memory usage (G). The per GPU batch size is 64, and the through-
put values are measured using 20 forward and backward steps. Our
results show that the sparse convolution-based encoder allows for
improved pre-training efficiency compared to the dense masked
convolution-based counterpart.

V2 Base (86.8%/87.7%) and Large (87.3%/88.2%) models
outperform the next-level model sizes of V1, which are the
Large (86.6%/87.5%) and XLarge (87.0%/87.8%) models.
The V2 Huge model also achieves a new state-of-the-art
with a performance of 88.9%. Our proposal demonstrates
that pure convolutional models can also be strong and scal-
able vision learners with mask-based pre-training.

C. Further Analyses

Sparse encoding efficiency. One of the key design choices
in our FCMAE framework is the use of sparse convolu-
tion [15, 27, 28] during pre-training. The primary purpose
is to block the flow of information from the masked re-
gion and facilitate masked autoencoder pre-training. As a
byproduct, it also offers improved computational and mem-
ory efficiency during pre-training, as the kernels only apply
to the visible pixels. However, we note that the sparse con-
volution libraries [15,18] are not highly optimized for mod-
ern hardware, and the efficiency achieved usually depends
on the frameworks [1, 5, 57] used in practice.

To better understand the actual pre-training efficiency
achieved using sparse convolution, we conducted bench-
mark experiments using a controlled setup with Minkowski
Engine v0.5.4 [15] and PyTorch [57]. We simulated the pre-
training masked input (image size 224×224, masking ratio
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Figure 7. Class selectivity index distribution. The x-axis and y-axis show the class selectivity index and its density (PDF), respectively.
Using the ImageNet-1K validation dataset, we calculated the class selectivity index distribution of both FCMAE pre-trained ConvNeXt V1
(red) and V2 (blue). While they tend to match closely in the early stages, the distribution becomes different in the deep layers. V2 tends to
include more class-generic features in the later stages.

0.6, mask size 32×32) and compared the training through-
put (image/s) and max GPU memory usage (G) between the
sparse convolution-based and dense masked convolution-
based encoders. While the results may vary depending on
the experimental environment (we used PyTorch V1.8.0,
CUDA 11.1, CuDNN 8.2, and NVIDIA RTX A6000 GPU),
we observed a moderate increase in pre-training efficiency,
with an average of 1.3× increase in throughput and a 2×
decrease in max memory usage across the models. The gap
becomes more salient as the model size increases.

Class Selectivity Index. FCMAE pre-trained ConvNeXt
V2 has a distinctive feature characteristic compared to V1.
We conducted a class selectivity index analysis on the FC-
MAE pre-trained weights for ConvNeXt V1 and V2 to
understand this. The class selectivity index is a metric
that measures the difference between the highest class-
conditional mean activity and all other class-conditional
mean activities. The final normalized value lies between 0
and 1, with 1 indicating that a filter activates only for a sin-
gle class and 0 indicating that the filter activates uniformly
for all classes. In Figure 7, we plot the class selectivity
index distribution for all intermediate layers in the model,
using the output of every residual block. The distribution
is closely matched between V1 and V2 in the early stages,
but they begin to diverge in the deep layers, such as stage
3 layer 12. As the layer becomes deeper, the plot shows
that V2 (bimodal) tends to include more class-generic fea-
tures than V1 (unimodal). Since class-agnostic features are
more transferrable [55], this leads to better fine-tuning per-

GRN functions
case aggregation normalization Val acc.

base - - 83.7
(a) X - - 83.9
(b) X ∗ G(X) X - 83.9
(c) X ∗ N (X) - X unstable
(d) X ∗ N (G(X)) X X 84.6

Table 16. GRN component analysis. We report the fine-tuning
performance after the 800 epoch FCMAE pre-training. Here,
affine parameters and residual connection are omitted for clarity.
The base denotes the ConvNeXt V1 fine-tuning performance. The
aggregation and normalization are spatial L2-norm pooling and
channel-wise divisive normalization, respectively. Case-(a) indi-
cates a simple baseline of channel-wise scaling and shifting (with
affine parameters) without explicit feature normalization.

formance in downstream tasks. We leave more explorations
as a future study.

D. Additional Experiments

GRN component analysis. The proposed Global Rela-
tion Network (GRN) consists of three steps: global feature
aggregation, feature normalization, and feature calibration.
The main paper demonstrates that the combination of L2-
norm based aggregation and divisive normalization works
well in practice. Table 16 verifies the individual contribu-
tion of these components using ConvNeXt V2-Base as the
encoder. When either component is dropped, performance
significantly decreases, and the training becomes unstable if
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Figure 8. Masking ratio. We observe that a masking ratio of 0.6
provides the best result. The y-axis is ImageNet-1K accuracy (%).

feature normalization is not preceded by global aggregation.
This supports the idea that both operations work together to
make GRN effective.

Masking ratios. We conduct a hyper-parameter analysis on
the masking ratio for a mask size of 32 × 32. The results,
shown in Figure 8, suggest that a masking ratio in the range
of 0.5 to 0.7 produces the best results, with a masking ratio
of 0.6 providing the highest performance. The model’s per-
formance declines at the two extremes of either removing
or leaving 90% of the input information, although it is more
robust when more information is retained.

Comparison with contrastive SSL. In this work, we com-
pare the performance of the two dominant self-supervised
learning (SSL) approaches: contrastive learning [8, 9, 12–
14, 29, 32] and masked image modeling [3, 31, 77]. Specifi-
cally, we compare the end-to-end fine-tuning performance
of MoCoV3 [14], the current state-of-the-art contrastive
learning method, with our proposed FCMAE framework us-
ing the same ConvNeXt V2-Base as the encoder. We follow
the default pre-training and fine-tuning recipes for each ap-
proach and present the results below.

Sup, 300ep. MoCo V3 FCMAE
84.3 83.7 84.9

We use the 300-epoch supervised learning baseline as a ref-
erence. The above table shows that FCMAE leads to better
representation quality than MoCo V3 and also outperforms
the supervised baseline. This is consistent with the recent
observations that masked image modeling offers superior
results over contrastive learning-based SSL for end-to-end
fine-tuning. In this work, this success was also made possi-
ble with pure ConvNets.
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