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Abstract. While the evaluation of explanations is an important step towards trustworthy models, it
needs to be done carefully, and the employed metrics need to be well-understood. Specifically model
randomization testing is often overestimated and regarded as a sole criterion for selecting or discarding
certain explanation methods. To address shortcomings of this test, we start by observing an experimental
gap in the ranking of explanation methods between randomization-based sanity checks [1] and model
output faithfulness measures (e.g. [25]). We identify limitations of model-randomization-based sanity
checks for the purpose of evaluating explanations. Firstly, we show that uninformative attribution maps
created with zero pixel-wise covariance easily achieve high scores in this type of checks. Secondly, we show
that top-down model randomization preserves scales of forward pass activations with high probability.
That is, channels with large activations have a high probility to contribute strongly to the output, even
after randomization of the network on top of them. Hence, explanations after randomization can only
be expected to differ to a certain extent. This explains the observed experimental gap. In summary,
these results demonstrate the inadequacy of model-randomization-based sanity checks as a criterion to
rank attribution methods.

1 Introduction

Parallel to the progressively astounding performances of machine learning techniques, especially deep learning
methods, in solving even the most complex tasks, the transparency, trustworthiness, and lack of interpretability
of these techniques has increasingly been called into question [14,18,17]. As potential solutions to these
issues, a vast number of XAI methods have been developed in recent years [20], that aim to explain a
model’s behavior, for instance, by (locally) attributing importance scores to features of singular input samples,
indicating how (much) these features influence a specific model decision [27,33,30,6]. However, the scores
obtained for different attribution map methods tend to differ significantly, and the question arises how well
each explains model decisions. This is generally not answered easily, as there are a number of desirable
properties proposed to be fulfilled by these attributions, such as localization on relevant objects [36,4,5] or
faithfulness to the model output [25,2,9], among others, with several quantitative tests having been proposed
for each.

In parallel to these empirical evaluations, several works have proposed that explanations should fulfill
a certain number of ‘axioms’ or ‘unit tests’ [33,15,20,1], which need to hold universally for a method to be
considered good or valid. We place our focus on the model-randomization-based sanity checks [1], which
state that the explanation should be sensitive to a random permutation of parameters at one or more layers
in the network. Specifically, the authors proposed to apply measures such as Structural Similarity Index
Measure (SSIM) [34] between attribution maps obtained from the original model and a derived model for
which the top-layers are randomized. The idea is to require that methods used to compute attribution maps
should exhibit a large change when the neural network model — i.e., its defining/learned parameter set — is
randomized from the top. The authors of [1,28] suggested to discard attribution map methods which perform
poorly under this test — i.e., have a high SSIM measure between attributions obtained with the original and
the randomized model — under the assumption that those XAI methods are not affected by the model’s
learned parameters.

However, we observe a significant experimental gap between top-down randomization checks when used
as an evaluation measure, and occlusion-based evaluations of model faithfulness such as region perturbation
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[25]. Concretely, Guided Backpropagation (GB) [30] and Layer-wise Relevance Propagation (LRP) [6] exhibit
low randomization scores under the first type of measure and yet clearly outperform several gradient-based
methods in occlusion-based evaluations. We are interested to resolve this discrepancy.

We identify two shortcomings of top-down randomization checks when used as a measure of explanation
quality. Firstly, we show that uninformative attribution maps created with zero pixel-wise covariance — e.g.,
attribution maps generated from random noise — easily achieve high scores in top-down randomization
checks. Effectively, this makes top-down randomization checks favor attribution maps which are affected by
gradient shattering noise [8].

Secondly, we argue that the randomization-based sanity checks may always reward explanations that
change under randomization, even when such randomizations do not affect the output of the model (and
its invariances) significantly. Such invariance to randomization may result, e.g., from the presence of skip
connections in the model, but also due to the fact that randomization may be insufficient to strongly alter
the spatial distribution of activations in adjacent layers, something that we explain by the multiplicity and
redundancy of positive activation paths between adjacent layers in ReLU networks.

Along with our contributed theoretical insights and supporting experiments, the present note warns
against an unreflected use of model-randomization-based sanity checks as a sole criterion for selecting or
dismissing a particular attribution technique, and proposes several directions to enable a more precise and
informative use of randomization-based sanity checks for assessing how XAI performs on practical ML models.

1.1 Related work

Evaluating Attributions. Comparing different attribution methods qualitatively is not sufficiently objective,
and for that reason, a vast number of quantitative tests have been proposed in the past in order to measure
explanation quality, focusing on different desirable properties of attributions. Complexity tests [10,9,22]
advocate for sparse and easily understandable explanations, while robustness tests [3,9,21] measure how much
attributions change between similar samples or with slight perturbations to the input. Under the assumption
of an available ground truth explanation (e.g., a segmentation mask localizing the object(s) of interest),
localization tests [36,4,5] ask for attributed values to be concentrated on this ground truth area. Faithfulness
tests [25,3,9] compare the effect of perturbing certain input features on the model’s prediction to the values
attributed to those features, so that optimally perturbing the features with the largest attribution values
also affects the model prediction the most. Model randomization tests [1], which are the main focus of this
work, progressively randomize the model, stating that attributions should change significantly with ongoing
randomization.

Caveats of Model Randomization Tests. The authors of [1] find that a large number of attribution methods
seems to be invariant to model parameters, as their explanations do not change significantly under cascading
model randomization. However, various aspects of these sanity checks have recently been called into question:
For instance, these tests were performed on unsigned attributions. Specifically for Integrated Gradients
(IG) [33], [32] show that if the signed attributions are tested instead, this method suddenly passes cascading
model randomization instead of failing. This indicates that some of the results obtained in [1] for attribution
methods where the sign carries meaning may be skewed due to the employed preprocessing. Furthermore, [35]
argue for the distribution-dependence of model-randomization based sanity checks. The authors demonstrate
that some methods seem to fail the sanity checks in [1] due to the choice of task, rather than invariance
to model parameters. A similar observation is made by [16], who find that the same attribution methods
can perform very differently under model randomization sanity checks when the model and task are varied.
Note that the underlying assumption of [1] — that “good” attribution methods should be sensitive to model
parameters — is not called into question here. Rather, we posit that methods can fail the model randomization
sanity checks for other reasons than invariance to model parameters.

2 Observation: The Gap between Randomization-based Sanity Checks and
Measures of Model Faithfulness

Based on the assumption that a good explanation should attribute the highest values to the features that
most affect a model’s predictions, occlusion-type measures of model faithfulness [25,2,9] aim to quantify
explanation quality by measuring the correlation between attribution map scores and changes of the model
prediction under occlusion.

As such, these tests progressively randomize the data, and can thus be understood as complementary to
model-randomization-based sanity checks, which progressively randomize the model. Consequently, model-
randomization-based sanity checks depart towards the implausible due to partially randomized prediction
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models, while occlusion-based testing departs towards the implausible due to partially modified and outlier-like
images. As both types of test apply the same intuition of increasing randomization to different variables
(model and data) that (should) influence attribution maps, it is meaningful to compare their results, and
determine whether both tests agree in terms of explanation quality.

In the following, we therefore empirically compare the scores measured by randomization-based sanity
checks to the respective scores measured by faithfulness testing, for several methods. We use a variant of
occlusion in the spirit of [2] which replaces a region with a blurred copy to stay closer to the data manifold.
Details on our experimental setup can be found in the Supplement (Section A.1).

As already known from [1]| (and also shown in the Supplement, see Figures App.2 and App.3), Guided
Backpropagation [30] performs poorly under model randomization-based sanity checks when compared to
three gradient-based attribution methods, namely the Gradient itself, Gradient x Input (GI) and IG. However,
when measuring model faithfulness by a modified iterative occlusion test similar to [25] on the attribution
maps, we find that the same GB, and also several LRP variants outperform the Gradient, Gradient x Input
and Integrated Gradient substantially, as can be seen in Figure 1 and in the Supplement in Section A.3.
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Fig. 1: Results of model faithfulness via occlusion testing, by measuring the correlation to iterative occlusion
with a kernel size of 15. The comparison shows the Gradient, Gradient x Input, Integrated Gradients, Guided
Backpropagation and several variants of LRP. The occlusion is performed by taking patches from a blurred
copy of the original image. The figure shows the softmax scores. Legend is given in Figure 2. Lower is better.
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Fig. 2: Results of top-down model randomization-based sanity checks with SSIM after normalization of
attribution maps by their second moment. Note that the model randomization experiment uses no kernel size.
Lower 1is better.

Due to the conceptual parallels between both tests discussed above, we find this extreme divergence
surprising, and are interested in resolving this gap. Therefore, we will investigate the underlying reasons for
this theoretically and experimentally in the following sections.

3 The Sensitivity of SSIM Minimization Towards Noise

The model-randomization-based sanity checks proposed by [1] use SSIM as a measure of distance between
attribution maps. As we will demonstrate in this section, SSIM (and, by extension, several other distance
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measures, see Supplement Sections C and D) may be flawed in this application, with randomly generated
attributions scoring optimally. We consider a setup where we use two different models, yielding two different
attribution maps A and B. The following considerations apply to patches of the two attribution maps or
whole attribution maps.

We can identify a fundamental issue: The SSIM between any two attribution maps can be minimized by
a statistically uncorrelated random attribution process. This is due to the reason that the SSIM contains
a product where one term relies on a covariance between two patches, see e.g. Equation 6 in [23], which is
reproduced here:

2puapp +C1 204+ Cy
ph +up+Croy+op+ 0o

(1)

In the above term, pa, up and 0%, 0% are the per-patch means and variances for one patch location
computed for two different input attribution maps A and B, o4p their covariance. C; and Cy are constants
depending on the possible input range of A and B, e.g. [0,1] or [0,255].

In the following, we will consider attribution maps within the framework of random variables. The next
theorem is applied to patches of two attribution maps A, B coming from different prediction mappings, such
as those obtained by a model and a partially randomized model. The patches are extracted at the same
position of an image.

Theorem 1. Consider the set of all random variables with expected means pa, pup for each image patch
being fixed and with non-negative expected covariance for each patch oap > 0.

Then the expected SSIM absolute value is minimized by a random wvariable with zero covariance. In
particular, an upper bound on the minimum is given by
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The proof is in the Supplement in Section B. This theorem has two consequences.

Firstly, even if we question the requirements of the theorem and thus allow negative patch correlations
oap < 0, the observation remains valid that we can obtain very small expected absolute values of the SSIM
measure by using any randomized attribution map which is statistically independent over pixels of input
images and therefore not informative.

Secondly, the proof of Theorem 1 is not affected by division of the term o4 by constants. Consequently,
when using normalization on the attribution maps, the result from Theorem 1 still holds that attributions
with zero patch-wise correlation attain very low scores among all normalized attribution maps.

Interestingly, this explains why certain gradient-based methods with rather noisy attribution maps pass
this type of model randomization-based sanity checks with the best scores in the sense of lowest SSIM values.
Gradients are known for ReLLU-networks to have statistics which resemble noise processes, as has been shown
in [8]. This carries over to Gradient x Input and to a lesser degree to smoothed versions like Integrated
Gradient [33] and SmoothGrad [29].

Theorem 1 has one important consequence: One cannot disentangle the effects of model randomization
from the amount of noise in an attribution process in model randomization sanity checks. Therefore it
is problematic to use this type of model-randomization-based sanity check to compare or rank different
attribution maps against each other.

4 Randomization Leaves the Model and Explanations Partly Unchanged

The section above has highlighted that explanations may score highly in the sanity check due to including
further random factors in the explanation, which contradicts the principle that an explanation should faithfully
depict the function to explain and not a random component. This concerns the measurement process after
randomization.

In this section, we review the top-down randomization process itself. We will explain why it actually
makes sense to underperform in model-based randomization checks, contrary to a first glance intuition.

Specifically, we will show that certain activation statistics of the network are only mildly affected by
top-down randomization and thus cause low-noise explanations before and after randomization to retain some
similarity.
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Fig.3: Diagram of a neural network where the top few layers have been randomized (shown in brown).
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Fig. 4: Experiment where one randomizes parameters of torchvision’s VGG-16 pretrained model between layer
12 and the model output, and compute LRP explanations (results shown for 5 different seeds). Explanations
of the neural network output before and after randomization for the true class are shown on the right.
Explanation of activations at layer 12 are shown on the bottom left.

4.1 Preservation of Irrelevance in Explanations

We first start with an empirical observation that features found to be irrelevant for a given task tend to remain
irrelevant after randomization. Our experiment is based on torchvision’s VGG-16 pretrained model, where we
keep the mapping from the input to layer 12 unchanged and randomize the remaining layers. We apply LRP
with the zB-rule in the first layer, redistribution in proportion to squared activations in the pooling layers,
LRP-v in the convolution layers with layer-wise exponential decay from v = 1.0 to v = 0.01, and LRP-0 in
the dense layers. We inspect in Fig. 4 (right) explanations produced before and after randomization.

We observe that many spatial structures are retained before and after randomization, specifically, relevant
or negatively contributing pixels are found before and after randomization on the facial and hat features,
on the outline of the fish, on the finger contours, on the flagstick, on the ball, on the hole, etc. Conversely,
some features remain irrelevant before and after randomization, e.g. the lake surface, the skin and the grass.
Such similarities lead to similarity scores before and after randomization that remain significantly above zero,
especially if considering heatmaps absolute scores.

We now provide a formal argument showing that for an explanation to be faithful, some irrelevant features
must necessarily remain irrelevant after randomization, thereby raising the similarity score. Let us denote by
Or the parameters that are randomized and write the model as a composition of the non-randomized and the
randomized part:

f(@,0r) = g(¢(x),0r) - 3)

The function is depicted in Figure 3. The first part ¢ contains the non-randomized layers (and can be
understood as a feature extractor). The second part g contains the randomized layers (and can be interpreted
as the classifier). We make the following two observations:

1. If the function ¢ is does not respond to some input feature x;, then g o ¢ also should not respond to z;
(no matter whether the function g is the classifier or its randomized variant),
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Fig. 5: Effect of randomization on output logits on a ResNet-34 model for three images from ImageNet. Each
point in the scatter plot is a logit for a particular class before and after randomization. Columns correspond
to different layers being randomized.

2. If g o ¢ does not respond to x; then an attribution technique should reflect this lack of response by
assigning a score 0 to that feature. We note that this property of attributing low relevance input features
to which the model does not respond is present in common explanation methods, for example, methods
such as IG, where the gradient occurs as a multiplicative factor, LRP-type explanations, where relevance
propagates mostly along connections with non-zero weights, or explanations derived from axioms such as
the Shapley value whose ‘null-player’ axiom also relates explanation properties to model unresponsiveness.

These two observations can be summarized in the following logical clause:

¢(x) unresponsive to x;
= Vg : g o ¢(x) unresponsive to x;
= Vg : &{go¢(x)} small, (4)

where &;{-} denotes the relevance of feature z; for explaining the prediction given as argument. In other
words, one should expect that any function ¢ (randomized or not) built on ¢ shares a similar pattern of low
relevances, and such a pattern originates from the lack of response of ¢ to certain input features. Therefore,
we conclude that a top-down randomization process as performed in [1] can only alter explanations to a
limited extent, and only a less faithful (e.g. noisy) explanation would enable further improvement w.r.t. the
top-down randomization metric.

To verify that the explanation structure is indeed to some extent controlled by ¢, we compute explanations
directly at the output of the function ¢ (sum of activations) and show the results in Figure 4 (bottom left).
We observe a correlation between feature relevance w.r.t. those activations and feature relevance w.r.t. the
model output. For example, the lake, the grass, or more generally uniform surfaces are already less relevant
at the output of ¢, and continue to be so when considering the output of g. This is consistent with our
theoretical argument that feature irrelevance of some features to classifier output ¢ is inherited to a significant
degree from the feature map ¢.

4.2 Preservation of a Baseline Explanation

We show that for certain neural network architectures, specifically architectures that contain skip connections,
a faithful explanation must further retain an additive baseline component before and after randomizations.
We first demonstrate the presence of such additive component on the popular ResNet [12] model and then
propose an explanation for its necessity. The ResNet is structured as a sequence of multiple modules where
each module is structured as a sequence of parameterized layers, equipped with skip connections. The skip
connections enable to better propagate the forward and backward signal as they simply replicate the activation
and gradients from layer to layer.



Shortcomings of Sanity Checks for Evaluation of Explanations 7

randomized layer

Or
2 f(z)

locally additive surrogate A(.Q?

)
T f(x)

— B(x)

Fig. 6: Top: ResNet-like structure where only one branch contains (randomizable) parameters at a particular
layer. Bottom: Additive surrogate of the original model.

Fig. 5 shows for a ResNet-34 model and the same images as before how randomizing weights at some layer
affects logit scores before and after randomization. Each point in the scatter plot is one of the 1000 class
logits. We observe significant correlation between the logit before and after randomization. This suggests that
the model remains unchanged to a large extent and a faithful explanation should reflect such lack of change
by producing a similar explanation.

Corresponding explanations are shown in Figure 7 for the logit associated to the true class: When
randomizing “layer4.2.conv2” of ResNet-34, the explanation remains largely the same (cf. column 2 and 5).
The LRP explanation technique enables to assess contribution of different components of the neural network,
and in our case, we can identify the role of the skip connection and the weighted path (cf. columns 3, 4, 6,
7). Interestingly, the explanation component that passes through the skip connection remains practically
unchanged after randomization, thereby faithfully reflecting the lack of change at the output of the network
(cf. Figure 5). The (weaker) contribution of the weighted path is strongly affected by randomization but its
addition does not affect the overall explanation significantly.

We propose a formal argument that predicts the presence (and necessity) of an additive component for a
broader range of faithful explanation methods, beyond LRP. Consider the simple architecture drawn in Fig.
6 (top) that mimics parts of a ResNet: a feature extractor, a skip connection layer, and a few top-layers.
Locally approximating the top layers as a linear model (and verifying that the approximation holds under
a sufficient set of perturbations of the input z), then one can decompose this approximated model in two
terms, one that depends on the randomized parameter g, and another term that is constant w.r.t. 0.

f(x;0r) = A(z;0r) + B(x) ()

(cf. Fig. 6, bottom). In this model, randomization only affects the first component and thus preserves some of
the original logit information. This is what we observe empirically in Fig. 5 through high correlation scores of
logit before and after randomization. If we further assume usage of an explanation technique satisfying the
linearity property, then the explanation of the surrogate f decomposes as:

E{f(x;0r)} = E{A(x;0r)} + E{B(2)} (6)

i.e. an explanation component that is affected by randomization and another explanation component that
remains constant. This constancy under randomization prevents that optimal scores in terms of a single-
layer randomization-based sanity check metric are achieved. Hence, our analysis predicts that attempts to
score higher in the sanity check metric would require degrading the faithfulness of the explanation (e.g. by
introduction of noise in the explanation, or by spuriously removing the additive component).

4.3 Probabilistic Preservation of Highly Activated Features in the Unrandomized Feature
Layers

In this section we show that with high probability over draws of random parameters 6z in Equation (3),
regions of ¢(z) with high activations will contribute highly to the output f, even when its value changes due
to randomization in g. Unlike in the previous section, this holds for any ReLU network.
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Fig.7: Effect of parameter randomization of "layer4.2.conv2" on ResNet-34 Explanations. To generate
explanations, LRP-3 was applied in convolution layers, and LRP-¢ in dense layers. Despite random parameter
re-initialization, only the part of the explanation that is propagated through the weighted path changes
significantly. Due to the skip connections being unaffected, the total explanations barely change despite
randomization.

This observation can be explained when considering how activations are propagated to the next layer
in a randomized network. One can show that small activations have a rather low probability to obtain the
same average contribution to the output of a neuron as large activations, when being weighted in a linear
combination with zero-mean normal weights. This statement is formulated for a single neuron in Theorem 2.

Theorem 2 (Low probability for small activations to achieve the same average contribution to
the output as large activations).

Suppose we have two sets of non-negative activations, Xy and Xg such that the activations of one set are
by a factor of at least K larger than of the other set:

min z; > K max x (7)
T €Xp z;€Xg

Then the probability under draws of zero-mean normal weights w ~ N(0,02) that the summed contribution
of neurons in Xg surpasses the summed contribution of neurons in X, that is

0< Z wyr; < Z WsTs , (8)

r€Xp rs€Xg

is the tail-CDF P(Z > K) of a Cauchy-distribution with parameter v = Ili((i‘l and input value of at least K.

The proof of Theorem 2 is in Supplement Section E. For probability estimates based on activation statistics
of trained networks see Section I of the supplement.

To note, Theorem 2 is independent of any explanation method used. It is a statement about the preservation
of relative scales of forward pass activations. It says that even though the function output value itself changes
substantially under randomization, channels with large activation values still contribute highly to the output.

This effect has an impact on explanation value scales: In ReLU networks, with neurons being modeled as
y = max(0, Y, w;z; + b), the differences in contributions of two inputs w;z; to a neuron output y in many
cases translate to differences in explanation scores R(x;) which the inputs z; will receive.

Many explanation methods R(-) satisfy for non-decreasing activations the monotonicity property that if
we consider two inputs x;, x; which have no other connections except to neuron y, and the network assigns
positive relevance R(y) > 0 to y, then

w;x; > w;x; > 0 implies |R(x;)| > |R(z;)] . 9)
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This holds for Gradient x Input, Shapley values, and 3-LRP. See Supplement Section F for a proof.

Using the monotonicity property to go from activations to explanations, we can conclude that the
probability is low to achieve equally large absolute explanation values >y [R(w;x;)| for inputs from the
small valued set X in Theorem 2, when compared to Y, .y |[R(w;z;)| from the set of large values Xp,.”

Therefore, with high probability, explanations are also dominated by regions which have channels in the
last unrandomized feature map with large activation values.

Theorem 2 and the subsequent backward pass argument hold for a single neuron. We can see that what
the theoretical result predicts for a single neuron is consistent with what we observe empirically for the whole
network exemplarily in Figure 4 and generally in explanations computed with GB and LRP. The above
provides a theoretical justification for the exemplary observations in Figure 4, where one can see salient
structures from the input image in the explanation heatmaps after top-down network randomization.

In brief, explanation heatmaps will be dominated with high probability by regions with high activations
irrespective of randomization on top, thus showing limited variability under randomization. This has im-
plications regarding the usage of top-down randomization tests to compare attribution methods: a higher
variability does not imply a better explanation, when it is beyond what can be expected from the dominating
high activations in the forward pass.

A further property which is preserved is shown in the Supplement Section G. The randomization-based
sanity check fails to account for these necessary invariances of the model and explanation under randomization.
This misalignment is particularly strong if testing the effect of randomization on the absolute attribution
scores instead of the signed attribution scores. The necessity to use signed scores rather than absolute ones,
as well as the limited change to the explanation one can expect under randomization of parameters was also
emphasized in [32].

Given the discrepancy between model faithfulness measures and top-down model-based randomization
checks, we remark that model faithfulness testing changes an input sample towards a partially implausible
sample. Therefore it is not a perfect criterion. Another drawback is the non-uniqueness of local modifications.
Different choices of local modifications will yield different measurements. However, model faithfulness testing
assesses a property of explanations for a given trained model.

Model randomization changes a trained model into a predominantly implausible model given the training
data. Therefore it is not clear what practical aspect of a given realistically trained model top-down model
randomization intends to measure. It seems to be unrelated to any use-case in the deployment of a well-trained
model. This makes it challenging to suggest an improvement for top-down model-based randomization checks.

In contrast, bottom-up randomization could exhibit different (and ecologically valid) properties, because
it removes strongly activated features from a model, which were the starting point in Theorem 2.

5 Conclusion and Outlook

In this paper, we have argued against the practice of using top-down randomization-based sanity checks
[1] for the purpose of ranking XAI methods. Our study is motivated by a substantial empirical discrepancy
between the similarity scores produced by the randomization approach, and occlusion-based methods for
evaluating faithfulness, in particular region perturbation [25].

Note that our theoretical and empirical results do not contradict the overall claim of [1] that a perturbation
of the parameters of the model should induce a perturbation of the model and its prediction behavior, which
in turn should also perturb the explanation. The issue is instead that the similarity score should only be used
as a binary test to support the presence or absence of an effect of randomization on the explanation, but not
to discriminate between two methods that pass the randomization test.

We have presented two main factors that explain the discrepancy between randomization-based similarity
scores and the outcome of input perturbation tests: Firstly, the similarity scores used to measure the effect of
randomization can be decreased artificially (and significantly) by introducing noise in the explanation. Such
noise can be inherited from the gradient, which is typically highly varying and largely decoupled from the
actual prediction for deep architectures.

Secondly, model randomization only alters the prediction behavior to a certain extent, often due to fixed
elements in the model such as skip connections or invariances inherited from the lower layers. Hence, a
maximally dissimilar explanation after randomization may not account for the partly unchanged prediction
behavior of the randomized model.

9 If we intend to achieve equal averaged (instead of summed) absolute explanation values IXSIT > |R(wiz;)],
corresponding to two regions Xg and X with equal explanation scores, then a version of Theorem 2 holds in which

Yo = ggl‘ is inverted. See Supplement Section E for a proof.

z,€Xs/L,
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These factors suggest directions for achieving a better correlation between similarity scores after randomiza-
tion and evaluations of explanation faithfulness. These include (1) to only measure change w.r.t. input features
to which the model is not invariant to (such features can be identified by attributing intermediate-layer
activations to the input layer and retaining only input features with non-zero attribution scores), and (2)
to identify the non-baseline component of the function, and only assess whether the explanation of that
non-baseline component has been randomized (e.g. to exclude from the explanation what passes through the
skip connections).

Nevertheless, these possible refinements are challenging to characterize formally, or must address the
specificity of individual architectures, thereby losing the universality of the original randomization test.
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Appendix

A Details on Experiments

A.1 Randomization-based Sanity Checks vs. Faithfulness

The ResNet-50 and DenseNet-121 are used as provided by the Torchvision package of PyTorch [24]. For the
EfficientNet-B0 we resort to a pretrained model provided by the github of Luke Melas [19]. All results are
averaged over the first 1000 images from the ImageNet validation set.

For model-randomization-based sanity checks testing we reset the layers as per the initialization introduced
by [11]. We report model randomization for a partial set of layers, as these results are in already known from
[1], which makes an exhaustive computation for each layer unnecessary. For the ResNet-50 we randomize
the fully connected layer, and in each step we randomize all layers from the last randomized layer until the
next layer with name .convl as per Torchvision until we have randomized 16 .convl-named layers. For
the DenseNet-121 we also randomize the fully connected layer, and in each step we randomize all layers
from the last randomized layer until the next third layer with name .conv1 until we have randomized 63
.convl-named layers. For the EfficientNet-B0O we randomize the fully connected layer, and in each step we
randomize all layers from the last randomized layer until the next layer with name ._depthwise_conv until
we have randomized 17 ._depthwise_conv-named layers.

For the perturbation-based testing we create a blurred version of the original image, using a constant
blur kernel of kernel size 15. We perform the perturbation by replacing a region of kernel size 8 or 15 in the
original image by a patch from the blurred version. We do this for the 30 regions in an image which have the
highest average attribution map score. Unlike the random draw for a patch used [25], using a blurred copy
results in a less pronounced outlier structure due to preservation of color statistics while removing texture.
We measure the decrease of the prediction function under the iterative replacement of the highest scoring
patches of the image by the corresponding patches from the blurred copy.

A.2 Forward Pass-Adaptive (-rule

It is used in the experiments for model faithfulness estimation. The idea is based on the interpretation that
% in LRP-$ is the fraction of redistributed negative to positive relevance. An adaptive way to determine
its value can be derived by setting it equal to the corresponding fraction % of the input statistics of
a neuron, and solving it for § as in:
B = i(wiw)
1+8 3 (wimg)
— 2 i(wimy)

doi(wimi) = > (wiz;) -

We use a value of 5, = min(3,3.0) in all experiments.

(10)

= 0=

(11)

A.3 Additional Results of Model Faithfulness Experiments

Please see Figure App.1 for results with a kernel size of 8.

B Proof of Theorem 1

Proof. Consider the term in Equation (1) of the main paper. Since we consider processes with o 45 > 0, this
attains the minimum at o045 = 0, resulting in

min 2uapp +C1 2045 + C
oan>0 | P4 + ph +Cr o4 + 0%+ Co
s Gl oap+C

(12)

= —_— 13
WA+ 1%+ Cr oanz0 0% + 05+ Cs (13)
_ 2paps + Ci Co 14
- 2+ 2 C 2 2 ( )
Ha ,LLB+ 10A+UB+02
2\,uAuB|+Cl Cy
S 2 2 C 2 2 C (15)
i +up+Cioy +op+0C2
2 2 +C C
<:LLA+lu‘B+ 1 2 (16)

T A+ uh+Cioh +og+Co
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(a) ResNet50
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(b) DenseNet121
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(c) EfficientNet-B0

Fig. App.1: Results of model faithfulness testing by measuring the correlation to iterative occlusion with
a kernel size of 8. The comparison shows the gradient, gradient x input, integrated gradient, guided
backpropagation and several LRP approaches. The occlusion is performed by taking patches from a blurred
copy of the original image. The figure shows the softmax scores. Lower is better.

The last inequality holds due to +2ab < a? + b2.
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C The Sensitivity of Spearman Rank Correlation Minimization Towards Noise

In Section 3 of the main paper we demonstrated the sensitivity of the SSIM metric towards random attributions.
The same (in terms of ranks) holds for the other distance metric employed by [I]|, the Spearman Rank
Correlation, given as
OR(A)R(B) (17)
TR(A)TR(B)
with R(A) and R(B) being the ranks derived from attribution maps A and B. The following Theorem
and Proof show the sensitivity of this metric’s minimization towards random noise analogously to Theorem 1
and the corresponding Proof:

Theorem 3. Consider the set of all statistical processes with non-negative expected covariance between the
corresponding ranks o gayr(B) = 0.

Then the expected Spearman Rank Correlation is minimized by a statistical process with zero covariance
between the corresponding ranks.

Proof. Consider the term in Equation (17). Since 0r(4)r(5) > 0, and the standard deviations o g4, 0 g5y > 0,
this attains the minimum at o)) = 0, resulting in

min (0'R<A>R<B>) (18)
orR(A)R(B)20 \ OR(A)OR(B)
0
- Y _y (19)
UR(A)UR(B)

Of course, the ranks and their covariance depend not only on the attribution maps, but also on the
employed ranking function. However, if simply the sorted indices of attribution maps (or their absolute values)
are used as ranks, then ora)rp) > 0 iff cap > 0, and Theorem 3 holds for all statistical processes with
non-negative expected covariance o4 > 0.

D The Sensitivity of Normalized MSE Maximization Towards Noise

One may consider to replace the SSIM by a Mean-Squared Error (MSE). This comes with another topic to
be considered: Different methods to compute attribution maps may exhibit different patch-wise variances,
which will affect the scale of differences used in model-randomization-type sanity checks unrelated to the
effects coming from the model randomization itself. This raises the question of how to normalize attribution
maps in order to ensure a comparability of the distances computed using different attribution methods.

We consider for the case of MSE attribution maps which are normalized by dividing the attribution map
by the square-root of its average second moment estimate:

A Ao 20)

(24)” (e Sww i)

where Ay, ,, is the value of the attribution map at pixel location (h,w) and H, W denote the attribution map
height and width, respectively. This ensures that the average squared distance of an attribution score per
pixel from the attribution value of 0 is 1. One may ask why we did not choose the more common standard
deviation '°. Standard deviation normalizes the average squared distance of a pixel-score from the mean of
a patch to be one. However, the mean score over the pixels of the different attribution methods (such as
gradient with ¢5-norm over the RGB-subpixels, also known as Sensitivity [7,27], gradient with averaging over
the RGB-subpixels, gradient x input and integrated gradients) has no particular meaning for explaining
the prediction in the context of the above methods. The value of zero (0) has for all of above methods the
meaning of being the estimate of non-contribution to the prediction, which justifies the choice of second
moment estimates. Thus we ensure an equal average distance from the point of no-contribution by this type of
normalization. This ensures better comparability of distances among attribution maps computed for different
attribution map processes.

e 1/2
10 (E[Aiw] - (E[Ah,w])2) for reference



Shortcomings of Sanity Checks for Evaluation of Explanations 15

Using the MSE does not resolve the issue that a zero covariance attribution map yields the best results
among all statistical processes with non-negative covariances o 45 > 0. In the following A, B can be single
subpixels. It directly translates to patches when using E[||A — B||3] instead.

The following theorem is again meant to be used with two different attribution maps A, B, e.g., coming
from a model and a partially randomized variant of it, over the same patch location.

Theorem 4. Consider the set of all statistical processes with non-negative expected covariance for each patch
oap > 0. Then the expected MSE can be mazximized by using a statistical process with zero covariance and

the mazimal value is 2 — QW
Proof.
A B 2
E <E[A2]1/2 - E[BQ]1/2> 1 (21)
2 2
_ BT, E[AB] N E[B?] )
E[A?] T E[A%'V2E[B?)'/?  E[B?]
—9_ 9AB B HALB
=2 QE[AQ]l/QE[BQ]l/Q QE[AQ]l/QE[B2]1/2 (23)
<2-29 HAUB (24>

E[A?]'/2E[B?]1/2

With respect to the influence of means, for papup ~ 0, this would result in a MSE of 2. Note that we
can observe from Figure App.3 that the MSE indeed attains a value close to 2.0 for certain methods which
perform well in model-randomization-type sanity checks, such as gradient and integrated gradient. In light of
above theorem, this finding is conspicuous as it may indicate a correlation o 4p and means p4, up close to
zero, in the sense of high gradient shattering noise.

This result shows, that the contribution from the randomization of a model and the noise from the
attribution map process are still entangled when using MSE for model-randomization-type sanity checks.
Consequently, using attribution map processes with a lower degree of correlation within a patch makes them
appear more favorable when using model-randomization-type sanity checks to compare attribution maps.
As noted before, a lower degree of correlation may originate from using a process with a high amount of
zero-correlation noise, and in the worst case, from a statistically independent random process.

On a side note, using an unnormalized MSE would result in

E [(A - B)ﬂ — B[A% — 2E|AB] + E[B?| (25)
= 0124 — 204 + 0123
+ E[A]? — 2E[A|E[B] + E[B)? (26)
=04+ 0+ (pa—pp)* — 2048 (27)
<o%+ o+ (ua—ps)’ (28)

This would again be a measure that is maximized among the set of processes with non-negative covariance
by using 045 = 0 and additionally be sensitive to increasing patch-wise variances 0%, 0% in processes. The
proposed normalization by the second moment puts a bound on the sensitivity to patch-wise variances.

In summary, this section shows that replacing minimization of a similarity by maximization of a well-known
squared distance still retains a sensitivity and possible preference towards attribution map methods with low

correlation when viewed as a statistical process.

D.1 A Note on Normalization

The scores obtained from different attribution methods generally do not share the same range of values.
Therefore, in order to compare them, some sort of normalization is required, however, care has to be taken
in doing so as to not alter or destroy any information provided by attributions. The seminal work on
model-randomization-based sanity checks [1] uses normalization by division with statistics using the maximal
absolute value of an attribution map. This, however, may introduce additional variance in the measurement
when computing differences of attribution maps:

Minima or maxima are the only statistics among quantile estimators which do not converge for an
increasing sample size to a finite expectation. One can easily see this by considering random draws from a
normal distribution. The maximum will tend to infinity as the sample size n — oo increases.
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More formally, as noted in [31], the distribution of several known quantile estimators for the p-th quantile
of a distribution is approximately normal with a variance of

nf(F~1(p))
where f(-) is the density, F(-) the cumulative density of the distribution which is used to draw samples used
to compute the p-th quantile estimator, and n is the sample size. Thus for quantile estimators p ~ 0, p ~ 1
with values F~1(p) at the tails of the distribution, where the value of the density f(-) is low, the variance o>
will become unbounded, as long as f(F~1(p)) decays faster than O(p~!) or O((1 — p)~'), which is the case
for a higher degree polynomial or exponential decay.

It should be noted that normalization aiming at a proper perception by the human eye and normalization
for the sake of comparability of distances are non-equivalent goals. The former needs to ensure a bounded
range, and color intensities which are well perceivable.

Normalization by the maximum yields a high variance of the estimator, and, while suitable for visualization
to the human eye, does not preserve a quantity useful for the comparison of distances across different models
under parameter randomization. For this reason we will consider a different normalization as outlined above.

E Proof of Theorem 2

Proof. To see this, consider two sets of non-negative input activations for a neuron, X and Xg. We assume
that each input from X, is by a factor of K larger than each input from Xg such that:

min z; > K max x . (30)
z1€XL z:€Xs

In order for a single x; to have at least the same effect on the output as a single x; > 0, it requires
wsTs > wyx; and thus for the weights wy > Kw;. This corresponds to a ratio distribution of two zero-mean
normal variables, which is known to have a Cauchy density, as for example shown in [13]

W 1 1 O
oK)= — o y= 31
f<wz ) MK+ T g (3D
The quantity of interest in this case is the tail-CDF
w9
P<‘2K>_IC’DF,Y(K). (32)
wy

In order for each of the neurons in the small-value set to have the same summed contribution to the
output, we require

Z Welg > Z wyTy . (33)
z,€Xs T€XL
This can be combined together as follows.
Z wexs and Z W] (34)
rxs€Xs r€Xy

are normally distributed random variables with respect to draws of the weights w with zero mean and
variances

o5 = Z 2?2 and o = Z z? . (35)

rs€Xs reXrp

Thus, for Eme x, Wiry > 0 the requirement in Equation (33) translates into the probability of the ratio

ZISEXS WsTs

>1 36
ZGJ{EXL wyry ( )

This is the cumulative tail probability P(Z > 1) =1 — CDF, (1) with a parameter v; given as

o gs - ZQ:SEXS ‘Tz
M =3 — = P) (37)
oL ZwleXL J;l
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The Cauchy distribution obtains larger cumulative tail probabilities for larger values of the parameter ~.
Therefore for an upper bound on cumulative tail probabilities, we need to obtain an upper bound on ~;.

Z 2
"= isQ (38)
aflEXL
sz €Xs MaXs,eXs T (39)
ZLEXL miNg, Xy, xl
| Xs| max,, exq (40)
| Xr|ming,ex, z7
Eqé‘so) ‘XS‘%mina:LEXL $l2 (41)
S | X 1| ming,ex, o7

_ X1
“\xE 12)

where we used Equation (30) to get a term depending on K. Plugging in this upper bound v into the CDF
shows

1 1-0
CDF,, (1) = 0.5 + — arctan( ) (43)
v "}/1
1 K
= 0.5+ — arctan (44)
T | Xs|
Xl
X
= CDF,,(K), 72 = | Xs| (45)
Xzl

Therefore we obtain the cumulative tail CDF of a Cauchy distribution from the value of K onwards

P(Z > K) with a parameter v, = ‘@((il‘

Section I in this supplement provides estimates for this probability for three trained deep neural networks
which provides empirical evidence for the sparsity.

If one would consider average contributions

s s_ 5 46
e 2w |XL\ 2w (46)

| XL
[Xs[*

A reason to consider such averages instead of sums would be the case when one is interested to analyze
when two regions of an input would achieve the same average explanation score per input element of the
respective regions. This case corresponds in an attribution map to two regions with the same average color
intensity per pixel.

then one would obtain the analogous result with an inverted parameter vz qvg =

This can be shown as follows. If we consider

1
@ Z WeTg and Z wyT] (47)

rs€Xs :I:zeXL

then these are normally distributed random variables with respect to draws of the weights w with zero mean
and variances

1 2
E d E . 48
os = XsF x5 and o, = x} (48)

rs€Xg ’I'ZEXL
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The difference to the proof above is a multiplicative factor in v; in Equation (38) of

_ X
| Xs|

R 97 I 2. 97 By .1 B .97
T X T Xl X | Xs|

F The Monotonicity Property of selected Explanation Methods

We show here that several explanation methods satisfy the positive monotonicity property that if we consider
two inputs x;, x; which have no other connections except to neuron y, then w;z; > w;x; > 0 implies

[R(xi)| = [R(x)] -

F.1 DPositive Monotonicity for Gradient X Input

= g(z wrTk + b)

k
of 0z af ,
0z Oz (@) = Bz g(

Zwkxk+b>0,wixi > w;T; >0=
k

R(z;) =

)wixi

IR(,) \ ‘Ig hwiad
>|R<mj|—\ \|g iwsz;]

In fact, a stronger version holds here: |w;x;| > |w;z;| implies |R(x;)| > |R(z;)]

F.2 Positive Monotonicity for Shapley Values

This holds when w;x; > w;z; > 0 and the activation function g is monotonously non-decreasing. In that case,

for all subsets S :i ¢ S,j ¢ S:

f(Su{i}) = Q(Z wrTk + b+ w;x;)
kesS

> g()  wrak +b+wjz;) = f(SU{5})
keS

= (i) = > _cs(F(SU{i}) = f(5))
S
> s (F(SUL) = £(5) = 6())
S

where

SO
o a(f)

are the normalizing constants used in the exact computation of Shapley values.

(56)

(60)
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F.3 Positive Monotonicity for LRP-3

R(i) = R(=)(1 + 6>zif;ii;:)+

. 5 (wixi),
B ) oy
i Ty 1) = R(z 7(w1x1)+
wis > 0= Ri) = RE)(1+ )5 0 - (62)
. N — R(s (wjz;)+
wyz; >0 RG) = RE1+0) g (63)
wW;T; > w;T; > 0= (’wll‘z)Jr > (wja:j)+ (64)
N - (wiwi)+
> IR()| = [RE)I(1+ )= polt (65)
> [R(j) (66)

In fact, a stronger version holds here: |w;z;| > |w;z;| and sign(w;z;) = sign(w;z;) implies |R(z;)| >
|R(z;)| -

G Positive Explanation Score Dominance in ReLU Networks with Positive
Logits

In this section we briefly show another property to hold, when explaining positive logits in ReL U networks

with non-positive biases, irrespective of the randomization.

The property is that the positive evidence will dominate the negative evidence in every layer until the
input, under the condition that the explanation is additive for ReLU units with positive outputs. An exception
to it would occur when one has large positive biases, and one would attribute explanation scores to the bias
terms itself.

Consider a positive logit f(z) as a linear combination of the last layer activations #Y) with a non-positive
bias b < 0:

0<f(z Z w " (z) (67)

0<R (Z wip'P) (x)) - Z R (wiqsgm (x)) (68)

We can see that the explanations for the last layer activations must sum to a positive value as well. Now let
us consider the output of a ReLU feature

o) (x) = ReLU (Z wed" ™ () + b> . (69)
k

If the negative contributions to it dominate, then the output value of the ReLU is zero. This has the meaning

that this neuron detects no feature. In this case R (wi(bgL) (m)) = 0, and no explanation scores will be

propagated back to its inputs d);f_l)(:c), that is R( ;CL_U(SC)) = 0 received along this path from QSEL)(:E).
If positive contributions to it dominate, then 0 < ReLU and we use the same idea as in the previous
section:

0 <ReLU (Zw P ( > Zwm@ 2 (70)
k

0" (x) = ReLU <Zwk¢“ V(@ >+b>

=R <wi¢§L) (x)) =R (ReLU (Z wkqsﬁ”(a:)))
=" R(wio" " (2)) (71)

k
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(a) ResNet50 (b) DenseNet121 (c) EfficientNet-B0

Fig. App.2: The figure shows the results of top-down model randomization-based sanity checks with SSIM
after normalization of attribution maps by their second moment. Lower is better.
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(a) ResNet50 (b) DenseNet121 (c) EfficientNet-B0

Fig. App.3: The figure shows the results of top-down model randomization-based sanity checks with MSE
after normalization of attribution maps by their second moment. Of note is also the score of gradient-based
results close to the value of 2 in comparison with the upper bound in Equation (24). Higher is better.

:0<ZR(wz¢<L (z)) = ZZmek (2)) (72)

We use here only additivity of explanations R(-), and non-assignment of explanation scores to bias terms.
In summary, combining equation (68) with (72) shows that the sum of relevances in layer L — 1 is positive
and equal to the initial logit relevance. Iterating this through all layers proves the claim until the input. In
practice, explaining positive logits with methods which satisfy such an additivity, will result in dominantly
positive explanations.

H Top-down Model Randomization based Experiments

Please see Figures App.2 and App.3 for the results. For better comparability all attribution maps were
normalized by the square root of their second moment (not their variance) as discussed in Section D. The
results are in principle known from [1].

I Probabilities of overtaking large activations from forward pass activation
statistics

This Section computes an upper bound for the probability of overtaking according to Theorem 2 for given
trained models from Resnet-50, DenseNet-121 and EfficientNet-B0 architectures. This shows that in practice
these probabilities are small.

To do this, we compute for a given image the forward pass activations, and pool them in every layer
across spatial and channel dimensions (because usually a convolution kernel takes all channels as input). Next
we compute a set of quantile estimators for these activation values in the range from 0.95 down to 0.1 in 0.05
decrements. This yields 18 quantile estimators for every layer of the net and for one image. We compute the
mean value of these estimators over 1000 images from the ImageNet validation set.
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Theorem 2 tail probabilities
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Fig. App.4: Lower probabilities support Theorem 2 better.

|Xs|
XL

pair (gp,q) of a high quantile g, € {0.95,...,0.85} and a low quantile ¢, € {0.5,...,0.1}. K is given as the

V(an) o o [ Xs| _ q
V(o) whereas +y is given as X = o

the relative fractions of the amount of bottom-k% activations to the amount of observed top-k% activations.

Finally we can plug this into the Cauchy cumulative tail density P,(Z > K) to obtain the probabilities.

Each plot shows on the x-axis the low quantile ¢; € {0.5,...,0.1}, and on the y-axis P, (Z > K). It shows
one graph of probabilities P,(Z > K) for each value of the high quantile g, € {0.95,0.9,0.85}. The graphs
are color coded according to g,.

The results are shown in Figures App.4, App.5 and App.6.

We can see rather low probabilities despite the Cauchy distribution having a low order polynomial decay.
Note that the EfficientNet can have negative activation statistics for some lower layers. In this case K is
computed using the inverse (because in this case one wants to overtake the absolute larger negative values
using the absolute smaller negative values).

Some graphs, like for Resnet-50 levels 9 and 12 remain almost flat zero because the mean activation is
very close to zero for the bottom-50% values due to a strong sparsity in these layers. See Section J for the
fraction of non-positive activations as an explanation, and compare the graph against Resnet-50 Level 6 and
the corresponding statistics in Section J. We have verified that for higher bottom-% values one would see
small positive overtaking probabilities P, (Z > K).

After that we can compute estimates for the value of v = and K from this information for every

ratio of quantile estimator values K > which corresponds to

J Activation Statistics

This section shows the fraction of non-positive activations. Results are shown in Figure App.7. One can
see that for ResNet-50 and DenseNet-121, most layers have at least 30% zero activations. The amount of
nonpositive activations is less for the EfficientNet-B0, which makes sense as this is less wide than other
architectures. From layer 11 onwards it has also at least 20% zeros. Note that activations can get truly
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Fig. App.5: Lower probabilities support Theorem 2 better.

negative for the Efficientnet as a result of using the Swish activation function. Therefore seeing 100% in layer

0,1,3,5

is not a mistake.
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Fig. App.6: Lower probabilities support Theorem 2 better.
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Fig. App.7: Non-positive activations per layer. Higher values indicate a higher fraction of non-positive

activations.
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