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Abstract

A plethora of attribution methods have recently been de-
veloped to explain deep neural networks. These methods
use different classes of perturbations (e.g, occlusion, blur-
ring, masking, etc) to estimate the importance of individ-
ual image pixels to drive a model’s decision. Neverthe-
less, the space of possible perturbations is vast and cur-
rent attribution methods typically require significant com-
putation time to accurately sample the space in order to
achieve high-quality explanations. In this work, we intro-
duce EVA (Explaining using Verified Perturbation Analysis)
– the first explainability method which comes with guaran-
tees that an entire set of possible perturbations has been
exhaustively searched. We leverage recent progress in ver-
ified perturbation analysis methods to directly propagate
bounds through a neural network to exhaustively probe a
– potentially infinite-size – set of perturbations in a single
forward pass. Our approach takes advantage of the bene-
ficial properties of verified perturbation analysis, i.e., time
efficiency and guaranteed complete – sampling agnostic –
coverage of the perturbation space – to identify image pixels
that drive a model’s decision. We evaluate EVA systemat-
ically and demonstrate state-of-the-art results on multiple
benchmarks. Our code is freely available: github.com/
deel-ai/formal-explainability

1. Introduction
Deep neural networks are now being widely deployed in

many applications from medicine, transportation, and secu-
rity to finance, with broad societal implications [40]. They

Proceedings of the IEEE / CVF Computer Vision and Pattern Recog-
nition Conference (CVPR), 2023.

Figure 1. Manifold exploration of current attribution meth-
ods. Current methods assign an importance score to individ-
ual pixels using perturbations around a given input image x.
Saliency [56] uses infinitesimal perturbations around x, Occlu-
sion [71] switches individual pixel intensities on/off. More recent
approaches [17,43,46,48,49] use (Quasi-) random sampling meth-
ods in specific perturbation spaces (occlusion of segments of pix-
els, blurring, ...). However, the choice of the perturbation space un-
doubtedly biases the results – potentially even introducing serious
artifacts [26, 29, 38, 64]. We propose to use verified perturbation
analysis to efficiently perform a complete coverage of a perturba-
tion space around x to produce reliable and faithful explanations.

are routinely used to making safety-critical decisions – of-
ten without an explanation as their decisions are notoriously
hard to interpret.

Many explainability methods have been proposed to gain
insight into how network models arrive at a particular deci-
sion [17,24,43,46,48,49,53,55,61,65,71]. The applications
of these methods are multiple – from helping to improve
or debug their decisions to helping instill confidence in the
reliability of their decisions [14]. Unfortunately, a severe
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limitation of these approaches is that they are subject to a
confirmation bias: while they appear to offer useful expla-
nations to a human experimenter, they may produce incor-
rect explanations [2, 23, 59]. In other words, just because
the explanations make sense to humans does not mean that
they actually convey what is actually happening within the
model. Therefore, the community is actively seeking for
better benchmarks involving humans [12, 29, 37, 45].

In the meantime, it has been shown that some of our
current and commonly used benchmarks are biased and
that explainability methods reflect these biases – ultimately
providing the wrong explanation for the behavior of the
model [25, 29, 64]. For example, some of the current fi-
delity metrics [7, 18, 27, 34, 48] mask one or a few of the
input variables (with a fixed value such as a gray mask) in
order to assess how much they contribute to the output of
the system. Trivially, if these variables are already set to
the mask value in a given image (e.g., gray), masking these
variables will not yield any effect on the model’s output and
the importance of these variables is poised to be underesti-
mated. Finally, these methods rely on sampling a space of
perturbations that is far too vast to be fully explored – e.g.,
LIME on a image divided in 64 segments image would need
more than 1019 samples to test all possible perturbations.
As a result, current attribution methods may be subject to
bias and are potentially not entirely reliable.

To address the baseline issue, a growing body of work is
starting to leverage adversarial methods [8,29,31,42,50] to
derive explanations that reflect the robustness of the model
to local adversarial perturbations. Specifically, a pixel or
an image region is considered important if it allows the
easy generation of an adversarial example. That is if a
small perturbation of that pixel or image region yields a
large change in the model’s output. This idea has led to
the design of several novel robustness metrics to evaluate
the quality of explanations, such as Robustness-Sr [29]. For
a better ranking on those robustness metrics, several meth-
ods have been proposed that make intensive use of adversar-
ial attacks [29, 70], such as Greedy-AS for Robustness-Sr.
However, these methods are computationally very costly –
in some cases, requiring over 50 000 adversarial attacks per
explanation – severely limiting the widespread adoption of
these methods in real-world scenarios.

In this work, we propose to address this limitation by
introducing EVA (Explaining using Verified perturbation
Analysis), a new explainability method based on robustness
analysis. Verified perturbation analysis is a rapidly growing
toolkit of methods to derive bounds on the outputs of neural
networks in the presence of input perturbations. In contrast
to current attributions methods based on gradient estimation
or sampling, verified perturbation analysis allows the full
exploration of the perturbation space, see Fig. 1. We use a
tractable certified upper bound of robustness confidence to

derive a new estimator to help quantify the importance of
input variables (i.e., those that matter the most). That is, the
variables most likely to change the predictor’s decision.

We can summarize our main contributions as follows:

• We introduce EVA, the first explainability method guar-
anteed to explore its entire set of perturbations using Ver-
ified Perturbation Analysis.

• We propose a method to scale EVA to large vision models
and show that the exhaustive exploration of all possible
perturbations can be done efficiently.

• We systematically evaluate our approach using several
image datasets and show that it yields convincing results
on a large range of explainability metrics

• Finally, we demonstrate that we can use the proposed
method to generate class-specific explanations, and we
study the effects of several verified perturbation analysis
methods as a hyperparameter of the generated explana-
tions.

2. Related Work

Attribution Methods. Our approach builds on prior attri-
bution methods in order to explain the prediction of a deep
neural network via the identification of input variables that
support the prediction (typically pixels or image regions for
images – which lead to importance maps shown in Fig. 1).
“Saliency” was first introduced in [4] and consists in using
the gradient of a classification score. It was later refined
in [57, 61, 63, 65, 72] in the context of deep convolutional
networks for classification. However, the image gradient
only reflects the model’s operation within an infinitesimal
neighborhood around an input.Hence, it can yield mislead-
ing importance estimates [22] since gradients of the current
large vision models are noisy [61]. Other methods rely on
different image perturbations applied to images to produce
importance maps that reflect the corresponding change in
classification score resulting from the perturbation. Meth-
ods such as “Occlusion” [72], “LIME” [49], “RISE” [48],
“Sobol” [17] or “HSIC” [46] leverage different sampling
strategies to explore the space of perturbations around the
image. For instance, Occlusion uses binary masks to oc-
clude individual image regions, one at a time. RISE and
HSIC combines these discrete masks to perturb multiple re-
gions simultaneously. Sobol uses continuous masks for a
finer exploration of the perturbation space.

Nevertheless, none of these methods are able to system-
atically cover the full space of perturbations. As a result,
the corresponding explanations may not reliably reflect the
true importance of pixels. In contrast, our approach comes
with strong guarantees that can be derived from the verified
perturbation analysis framework as it provides bounds on
the perturbation space.



Robustness-based Explanation. To try to address the
aforementioned limitations, several groups [8,19,29,32,33,
42, 60] have focused on the development of a new set of
robustness-based evaluation metrics for trustworthy expla-
nations. These new metrics are in contrast with the previ-
ous ones, which consisted in removing the pixels consid-
ered important in an explanation by substituting them with
a fixed baseline – which inevitably introduces bias and ar-
tifacts [25, 26, 29, 38, 64]. Key to these new metrics is the
assumption that when the important pixels are in their nom-
inal (fixed) state, then perturbations applied to the comple-
mentary pixels – deemed unimportant – should not affect
the model’s decision to any great extent. The corollary
that follows is that perturbations limited to the pixels con-
sidered important should easily influence the model’s deci-
sion [29,42]. Going further along the path of robustness, ab-
ductive reasoning was used in [32] to compute optimal sub-
sets with guarantees. The challenge consists in looking for
the subset with the smallest possible cardinality – to guar-
antee the decision of the model. This work constituted one
of the early successes of formal methods for explainability,
but the approach was limited to low-dimensional problems
and shallow neural networks. It was later extended to relax
the subset minimum explanation by either providing mul-
tiple explanations, aggregating pixels in bundles [6] or by
using local surrogates [9].

Some heuristics-oriented works also propose to optimize
these new robustness based criteria and design new methods
using a generative model [47] or adversarial attacks [29].
The latter approach requires searching for the existence or
lack of an adversarial example for a multitude of `p balls
around the input of interest. As a result, the induced com-
putational cost is quite high as the authors used more than
50000 computations of adversarial examples to generate a
single explanation.

More importantly, a failure to find an adversarial pertur-
bation for a given radius does not guarantee that none exists.
In fact, it is not uncommon for adversarial attacks to fail to
converge – or fail to find an adversarial example – which
will result in a failure to output an importance score. Our
method addresses these issues while drastically reducing
the computation cost. An added benefit of our approach is
that verified perturbation analysis provides additional guar-
antees and hence opens the doors of certification which is a
necessity for safety-critical applications.

Verified Perturbation Analysis. This growing field of re-
search focuses on the development of methods that outer-
approximate neural network outputs given some input per-
turbations. Simply put, for a given input x and a bounded
perturbation δ, verification methods yield minimum f(x)

and maximum f(x) bounds on the output of a model. For-
mally ∀ δ s.t ||δ||p ≤ ε:

f(x) ≤ f(x+ δ) ≤ f(x).

This allows us to explore the whole perturbation space with-
out having to explicitly sample points in that space.

Early works focused on computing reachable lower
and upper bounds based on satisfiability modulo theo-
ries [16, 36], and mixed-integer linear programming prob-
lems [66]. While these early results were encouraging,
the proposed methods struggled even for small networks
and image datasets. More recent work has led to the in-
dependent development of methods for computing looser
certified lower and upper bounds more efficiently thanks
to convex linear relaxations either in the primal or dual
space [51]. While looser, those bounds remain tight enough
to yield non-ubiquitous robustness properties on medium
size neural networks. CROWN (hereafter called Back-
ward) uses Linear Relaxation-based Perturbation Analysis
(LiRPA) and achieves the tightest bound for efficient single
neuron linear relaxation [58, 67, 73]. In addition, linear re-
laxation methods offer a wide range of possibilities with a
vast trade-off between “tigthness” of the bounds and effi-
ciency. These methods form two broad classes: ‘forward’
methods which propagate constant bounds (more generally
affine relaxations from the input to the output of the net-
work) also called Interval Bound Propagation (IBP, For-
ward, IBP+Forward) vs. ‘backward’ methods which bound
the output of the network by affine relaxations given the
internal layers of the network, starting from the output to
the input. Note that these methods can be combined, e.g.
(CROWN + IBP + Forward). For a thorough description of
the LiRPA framework and theoretical analysis of the worst-
case complexities of each variant, see [68]. In this work,
we remain purposefully agnostic to the verification method
used and opt for the most accurate LiRPA method applica-
ble to the predictor. Our approach is based on the formal
verification framework DecoMon, based on Keras [15].

3. Explainability with Verified Perturbation
Analysis

Notation. We consider a standard supervised machine-
learning classification setting with input space X ⊆ Rd, an
output space Y ⊆ Rc, and a predictor function f : X → Y
that maps an input vector x = (x1, . . . , xd) to an output
f(x) = (f1(x), . . . , fc(x)). We denote B = {δ ∈
Rd : ||δ||p ≤ ε} the perturbation ball with radius ε > 0,
with p ∈ {1, 2,∞}. For any subset of indices u ⊆
{1, . . . , d}, we denote Bu the ball without perturbation on
the variables in u: Bu = {δ : δ ∈ B, δu = 0} and B(x)
the perturbation ball centered on x. We denote the lower
(resp. upper) bounds obtained with verification perturbation
analysis as f(x,B) =

(
f
1
(x,B), . . . , f

c
(x,B)

)
, and

f(x,B) =
(
f1(x,B), . . . , f c(x,B)

)
. Intuitively, these



bounds delimit the output prediction for any perturbed sam-
ple in B(x).

3.1. The importance of setting the importance right

Different attribution methods implicitly assume different
definitions of the notion of importance for input variables
based either on game theory [43], the notion of conditional
expectation of the score logits [48], their variance [17] or on
some measure of statistical dependency between different
areas of an input image and the output of the model [46].
In this work, we build on robustness-based explainability
methods [29] which assume that a variable is important if
small perturbations of this variable lead to large changes
in the model decision. Conversely, a variable is said to
be unimportant if changes to this variable only yield small
changes in the model decision. From this intuitive assertion,
we construct an estimator that we call Adversarial overlap.

3.2. Adversarial overlap
We go one step beyond previous work and propose to

compute importance by taking into account not only the
ability of individual variables to change the network’s de-
cision but also its confidence in the prediction. Adversarial
overlap measures the extent to which a modification on a
group of pixels can generate overlap between classes, i.e.
generate a point close to x such that the attainable maxi-
mum of an unfavorable class c′ can match the minimum of
the initially predicted class c.

Indeed, if a modification of a pixel – or group of pixels –
allows generating a new image that changes the decision of
f , this variable must be considered important. Conversely,
if the decision does not change regardless of the value of
the pixel, then the pixel can be left at its nominal value and
should be considered unimportant.

Among the set of possible variable perturbations δ
around a point x, we, therefore, look for points that can
modify the decision with the most confidence. Hence our
scoring criterion can be formulated as follows:

AOc(x,B) = max
δ∈B
c′ 6=c

fc′(x+ δ)− fc(x+ δ). (1)

Intuitively, this score represents the confidence of the
“best” adversarial perturbation that can be found in the per-
turbation ball B around x. Throughout the article, when c
is not specified, it is assumed that c = argmaxf(x).

In order to estimate this criterion, a naive strategy could
be to use adversarial attacks to search within B. However,
when they converge - which is not ensured, such methods
only explore certain points of the considered space, thus
giving no guarantee regarding the optimality of the solution.
Moreover, adversarial methods have no guarantee of suc-
cess and therefore cannot ensure a valid score under every
circumstance. Finally, the large dimensions of the current
datasets make exhaustive searches impossible.

To overcome these issues, we take advantage of one of
the main results from verified perturbation analysis to de-
rive a guaranteed upper bound on the criterion introduced
in Eq. 1. We can upper bound the adversarial overlap cri-
terion as follows:

AO(x,B) ≤ AO(x,B) = max
c′ 6=c

f c′(x,B)− f c(x,B).

The computation of this upper bound becomes tractable us-
ing any verified perturbation analysis method.

For example, AO(x,B) ≤ 0 guarantees that no adversar-
ial perturbation is possible in the perturbation space. Our
upper bound AO(x,B) corresponds to the difference be-
tween the verified lower bound of the class of interest c
and the maximum over the verified upper bounds among
the other classes. Thus, when important variables are mod-
ified (e.g the head of the dog in Fig. 2, using B), the lower
bound for the class of interest will get smaller than the up-
per bound of the adversary class. On the other hand, this
overlap is not possible when important variables are fixed
(e.g in Fig. 2 when the head of the dog is fixed, using Bu).
We now demonstrate how to leverage this score to derive an
efficient estimator of variable importance.

3.3. EVA

We are willing to assign a higher importance score for a
variable allowing (1) a change in a decision, (2) a greater
adversarial – thus a solid change of decision. Modifying all
variables gives us an idea of the robustness of the model.
In the same way, the modification of all variables without
the subset u allows quantifying the change of the strongest
adversarial perturbation and thus quantifies the importance
of the variables u. Intuitively, if an important variable u is
discarded, then it will be more difficult, if not impossible,
to succeed in finding any adversarial perturbation. Specif-
ically, removing the possibility to modify xu allows us to
reveal its importance by taking into account its possible in-
teractions.

The complexity of current models means that the vari-
ables are not only treated individually in neural network
models but collectively. In order to capture these higher-
order interactions, our method consists in measuring the
adversarial overlap allowed by all the variables together
AO(x,B) – thus taking into account their interactions – and
then forbidding to play on a group of variables AO(x,Bu)
to estimate the importance of u. Making the interactions
of u disappear reveals their importance. Note that sev-
eral works have mentioned the importance of taking into
account the interactions of the variables when calculating
the importance [17, 20, 30, 48]. Formally, we introduce
EVA (Explainability using Verified perturbation Analysis)

Note that with adversarial attacks, failure to find an adversarial exam-
ple does not guarantee that it does not exist.



x + δx

Bu(x)

B(x)

(1) B(x) are the points around x in a ball of radius ɛ. Bu(x) is a 
subset of B(x) where the variables u (the dog head) are left
untouched

(2) Without perturbating u , we can’t reach
any adversarial input, thus u is important

f(x + δ) 

…
c’ (e.g., ‘Cat’)

f(x + δ ’) 

…

c
c'

All outputs produced 
by points within B(x)

{

AO = Adversarial overlap

c (e.g., ‘Dog’)

(3) Attribution after computing
importance of each variables

u

Perturbations affecting all 
the variables except u

Perturbations affecting 
all the variables

ɛ

ɛx + δ ’

EVA(x, u) = AO(x, B) – AO(x, Bu)

Figure 2. EVA attribution method. In order to compute the importance for a group of variables u – for instance the dog’s head – the
first step (1) consists in designing the perturbation ball Bu(x). This ball is centered in x and contain all the possible images perturbed by
δ s.t ||δ||p ≤ ε, ||δu||p = 0 which do not perturb the variables u. Using verified perturbation analysis, we then compute the adversarial
overlap AO(x,Bu) which corresponds to the overlapping between the class c – here dog – and c′, the maximum among the other classes.
Finally, the importance score for the variable u corresponds to the drop in adversarial overlap when u cannot be perturbed, thus the
difference between AO(x,B) and AO(x,Bu). Specifically, this measures how important the variables u are for changing the model’s
decision.

that measure the drop in adversarial overlap when we fixed
the variables u:

EVA(x,u,B) ≡ AO(x,B)− AO(x,Bu). (2)

As explained in Fig. 2, the estimator requires two passes
of the perturbation analysis method; one for AO(B), and
the other for AO(Bu): the first term consists in measuring
the adversarial overlap by modifying all the variables, the
second term measures the adversarial surface when fixing
the variables of interest u. In other words, EVA measures
the adversarial overlap that would be left if the variables u
were to be fixed.

From a theoretical point of view, we notice that EVA -
under reasonable assumptions - yield the optimal subset of
variables to minimize the theoretical Robustness-Sr metric
(see Theorem C.6). From a computational point of view,
we can note that the first term of the adversarial over-
lap AO(x,B) – as it does not depend on u – can be cal-
culated once and re-used to evaluate the importance of any
other variables considered. Moreover, contrary to an it-
erative process method [21, 29, 32], each importance can
be evaluated independently and thus benefit from the par-
allelization of modern neural networks. Finally, the ex-
periments in Section 4 show that even with two calls to
AO per variables, our method remains much faster than
the one based on sampling or on adversarial attacks (such
as Greedy-AS or Greedy-AO, see appendix B).

In this work, the verified perturbation-based analysis
considered is not always adapted to high dimensional mod-
els, especially those running on ImageNet [13]. We are con-
fident that the verification methods will progress towards
more scalability in the near future, enabling the original ver-
sion of EVA on deeper models.

In the meantime, we introduce an empirical method that
allows to scale EVA to high dimensional models. This
method sacrifices theoretical guarantees, but the results sec-
tion reveals that it may be a good compromise.

3.4. Scaling to larger models
We propose a second version of EVA, which is a com-

bination of sampling and verification perturbation analysis.
The aim of this hybrid method is twofold: (i) take advantage
of sampling to approach the bounds of an intermediate layer
in a potentially very large model, (ii) then complete only
the rest of the propagations with verified perturbation anal-
ysis and thus move towards the native EVA method which
benefits from theoretical guarantees. Note that, combining
verification methods with empirical methods (a.k.a adver-
sarial training) has notably been proposed in [5] for robust
training.

Specifically, our technique consists of splitting the model
into two parts, and (i) estimating the bounds of an interme-
diate layer using sampling, (ii) propagating these empirical
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(1) Sampling N random
perturbations

h(·) g(·)
…
c'
c

ɛ

Set of all possible activations :
H = [min h(x + δ), max h(x + δ)], ||δ || < ɛ

B(x)

(3) Continue to propagate the bounds
using verified perturbation analysis

(2) Computing intermediate activations 
for the perturbated inputs x + δi

Empirical estimation of H :
P = [min h(x + δi), max h(x + δi)], i ∈ {1,…,N}B
x

B
x

f (·) = g ○ h(·)

x + δi

Figure 3. Scaling strategy. In order to scale to very large models, we propose to estimate the bounds of an intermediate layer’s activations
empirically by (1) Sampling N input perturbations and (2) calculating empirical bounds on the resulting activations for the layer h(·). We
can then form the set Px

B which is a subset of the true boundsHx
B since the sampling is never exhaustive. We can then plug this set into a

verified perturbation analysis method (3) and continue the forward propagation of the inputs through the rest of the network.

intermediate bounds onto the second part of the model with
verified perturbation analysis methods.

For the first step (i) we consider the original predictor f
as a composition of functions f(x) = g ◦ h(x). For deep
neural networks, h(·) is a function that maps input to an
intermediate feature space and g(·) is a function that maps
this same feature space to the classification.

We propose to empirically estimate bounds (hxB,h
x

B) for
the intermediate activations h(·) ∈ Rd′ using Monte-Carlo
sampling on the perturbation δ ∈ B. Formally:

∀j ∈ [0, . . . , d′], hxB[j] = min
δ1,...δi,...δn

iid∼U(B)
h(x+ δi)[j]

h
x

B[j] = max
δ1,...δi,...δn

iid∼U(B)
h(x+ δi)[j].

Obviously, since the sampling is never exhaustive, the
bounds obtained underestimate the true maximum h

x

B ≤
maxh(x + δ) and overestimates the true minimum hxB ≥
minh(x + δ) as illustrated in the Fig. 3. In a similar way,
we define hxBu

and h
x

Bu
when δ ∈ Bu. Once the empirical

bounds are estimated, we may proceed to the second step
and use the obtained bounds to form the new perturbation
set PxB = [hxB − h(x),h

x

B − h(x)].
Intuitively, this set bounds the intermediate activations ob-
tained empirically and can then be fed to a verified pertur-
bation verification method.

We then carry out the end of the bounds propagation in
the usual way, using verified perturbation analysis. This
amounts to computing bounds for the outputs of the net-
work for all possible activations contained in our empirical
bounds. The only change is that we no longer operate in
the pixel space x with the ball B, but in the activation space
h(·) with the perturbations set PxB . The importance score
of a set of variables u is then :

EVAhybrid(x,u,B) ≡ EVA(h(x),u,PxB ).

This hybrid approach allows us to use EVA on state-of-
the-art models and thus to benefit from our method while re-
maining tractable. We believe this extension to be a promis-
ing step towards robust explanations on deeper networks.

4. Experiments
To evaluate the benefits and reliability of our explainabil-

ity method, we performed several experiments on a stan-
dard dataset, using a set of common explainability met-
rics against EVA. In order to test the fidelity of the ex-
planations produced by our method, we compare them to
that of 10 other explainability methods using the (1) Dele-
tion, (2) Insertion, and (3) MuFidelity metrics. As it has
been shown that these metrics can exhibit biases, we com-
pleted the benchmark by adding the (4) Robustness-Sr met-
ric. Each score is averaged over 500 samples.

We evaluated these 4 metrics on 3 image classification
datasets, namely MNIST [41], CIFAR-10 [39] and Ima-
geNet [13]. Through these experiments, the explanations
were generated using EVA estimator introduced in Equa-
tion 2. The importance scores were not evaluated pixel-
wise but on each cell of the image after having cut it into
a grid of 12 sides (see Fig. 2). For MNIST and Cifar-10,
we used ε = 0.5, whereas for ImageNet ε = 5. Con-
cerning the verified perturbation analysis method, we used
(IBP+Forward+Backward) for MNIST, and (IBP+Forward)
on Cifar-10 and p = ∞. For computational purposes, we
used the hybrid approach introduce in Section 3.4 for Im-
ageNet using the penultimate layer (FC-4096) as the inter-
mediate layer h(·). We give in Appendix the complete set
of hyperparameters used for the other explainability meth-
ods, metrics considered as well as the architecture of the



MNIST Cifar-10 ImageNet

Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓ Time

Saliency [56] .193 .633 .378 .071 0.04 .171 .172 -.021 .026 0.16 .057 .126 .035 .769 0.36
GradInput [3] .222 .611 .107 .074 0.04 .200 .143 -.018 .095 0.17 .057 .050 .023 .814 0.36
SmoothGrad [61] .185 .621 .331 .070 1.91 .174 .181 .092 .048 9.07 .051 .069 .019 .809 9.63
VarGrad [54] .207 .555 .216 .077 1.76 .183 .211 -.012 .193 9.07 .098 .201 .021 .787 9.62
InteGrad [65] .209 .615 .108 .074 1.77 .194 .171 -.016 .154 7.19 .058 .052 .023 .813 8.39
Occlusion [3] .247 .545 .137 .082 0.04 .217 .290 .105 .232 1.13 .100 .266 .026 .821 4.97
GradCAM [53] n/a n/a n/a n/a n/a .297 .282 .056 .195 0.39 .073 .232 .036 .817 0.18
GradCAM++ [10] n/a n/a n/a n/a n/a .270 .326 .102 .094 0.39 .074 .285 .054 .800 0.19
RISE [48] .248 .558 .133 .093 2.26 .196 .273 .157 .385 20.5 .074 .276 .154 .818 1215
Greedy-AS [29] .260 .497 .110 .061 335 .205 .264 -.003 .013 4618 .088 .047 .023 .612 180056

EVA (ours) .089 .736 .428 .069 1.29 .164 .290 .352 .025 12.7 .070 .289 .048 .758 6454

Table 1. Results on Deletion (Del.), Insertion (Ins.), µFidelity (Fid.) and Robustness-Sr (Rob.) metrics. Time in seconds corresponds to
the generation of 500 (MNIST/CIFAR-10) and 100 (ImageNet) explanations on an Nvidia P100. Note that EVA is the only method with
guarantees that the entire set of possible perturbations has been exhaustively searched. Verified perturbation analysis with IBP + Forward
+ Backward is used for MNIST, with Forward only for CIFAR-10 and with our hybrid strategy described in Section.3.4 for ImageNet.
Grad-CAM and Grad-CAM++ are not calculated on the MNIST dataset since the network only has dense layers. The first and second best
results are in bold and underlined, respectively.

models used on MNIST and Cifar-10.

4.1. Comparison with the state of the art

There is a general consensus that fidelity is a crucial cri-
terion for an explanation method. That is, if an explanation
is used to make a critical decision, then users are expect-
ing it to reflect the true decision-making process underlying
the model and not just a consensus with humans. Failure to
do so could have disastrous consequences. Pragmatically,
these metrics assume that the more faithful an explanation
is, the faster the prediction score should drop when pixels
considered important are changed. In Table 1, we present
the results of the Deletion [48] (or 1 − AOPC [52]) met-
ric for the MNIST and Cifar-10 datasets on 500 images
sampled from the test set. TensorFlow [1] and the Keras
API [11] were used to run the models and Xplique [18] for
the explainability methods. In order to evaluate the meth-
ods, the metrics require a baseline and several were pro-
posed [29,64], but we chose to keep the choice of [29] using
their random baseline.

We observe that EVA is the explainability method get-
ting the best Deletion, Insertion, and µFidelity scores on
MNIST, and is just behind Greedy-AS on Robustness-Sr.
This can be explained by the fact that the Robustness met-
ric uses the adversarial attack PGD [44], which is the same
one used to generate Greedy-AS, thus biasing the adver-
sarial search. Indeed, if PGD does not find an adversarial
perturbation using a subset u does not give a guarantee of
the robustness of the model, just that the adversarial pertur-
bation could be difficult to reach with PGD.

For Cifar-10, EVA remains overall the most faithful
method according to Deletion and µFidelity, and obtains

the second score in Insertion behind Grad-Cam++ [10]. Fi-
nally, we notice that if Greedy-AS [29] allows us to ob-
tain a good Robustness-Sr score, but this comes with a con-
siderable computation time, which is not the case of EVA
which is much more efficient. Eventually, EVA is a very
good compromise for its relevance to commonly accepted
explainability metrics and more recent robustness metrics.

ImageNet After having demonstrated the potential of the
method on vision datasets of limited size, we consider the
case of ImageNet which has a significantly higher level of
dimension. The use of verified perturbation analysis meth-
ods other than IBP is not easily scalable on these datasets.
We, therefore, used the hybrid method introduced in Sec-
tion 3.4 in order to estimate the bounds in a latent space
and then plug those bounds into the perturbation analysis to
get the final adversarial overlap score.

Table 1 shows the results obtained with the empirical
method proposed in Section 3.4. We observe that even with
this relaxed estimation, EVA is able to score high on all the
metrics. Indeed, EVA obtains the best score on the Insertion
metric and ranks second on µFidelity and Robustness-Sr.
Greedy-AS ranks first on Robustness-Sr at the expense of
the other scores where it performs poorly. Finally, both
RISE and SmoothGrad perform well on all the fidelity met-
rics but collapse on the robustness metric. Extending results
with ablations of EVA, including Greedy-AO, are available
in Table 3.

Qualitatively, Fig. 5 shows examples of explanations
produced on the ImageNet VGG-16 model. The explana-
tions produced by EVA are more localized than Grad-CAM
or RISE, while being less noisy than the gradient-based or
Greedy-AS methods.



In addition, as the literature on verified perturbation anal-
ysis is evolving rapidly we can conjecture that the advances
will benefit the proposed explainability method. Indeed,
EVA proved to be the most effective on the benchmark
when an accurate formal method was used. After demon-
strating the performance of the proposed method, we study
its ability to generate class explanations specific.

4.2. Tighter bounds lead to improved explanations

Tightness↓ Del.↓ Ins.↑ Fid.↑ Rob.↓
IBP 4.58 .148 .588 .222 .077
Forward 2.66 .150 .580 .209 .078
Backward 2.36 .115 .607 .274 .074
IBP + Fo. + Ba. 1.55 .089 .736 .428 .069

Table 2. Impact of the verified perturbation analysis method
on EVA. Results of EVAon Tightness, Deletion (Del.), Insertion
(Ins.), Fidelity (Fid.) andRobustness-Sr (Rob.) metrics obtained
on MNIST. The Tightness score corresponds to the average adver-
sarial surface. A lower Tightness score indicates that the method
is more precise: it reaches tighter bound, resulting in better ex-
planations and superior scores on the other metrics. The first and
second best results are respectively in bold and underlined.

The choice of the verified perturbation analysis method
is a hyperparameter of EVA. Hence, it is interesting to see
the effect of the choice of this hyperparameter on the pre-
vious benchmark. We recall that only the MNIST dataset
could benefit from the (IBP+Forward+Backward) combo.
Table 2 reports the results of the fidelity metrics using other
verified perturbation analysis methods. We also report a
tightness score which corresponds to the average of the ad-
versarial overlap : Ex∼X (AO(x,B)). Specifically, a low
score indicates that the verification method is precise, mean-
ing that the over-approximation is closer to the actual value.
It should be noted that the true value is intractable, but re-
mains the same across all three tested cases. We observe
that the tighter the bounds, the higher the scores. This
allows us to conjecture that the more scalable the formal
methods will become, the better the quality of the gener-
ated explanations will be. We perform additional experi-
ments to ensure that the certified component of EVA score
is significant by comparing EVA to a sampling-based ver-
sion of EVA. The details of these experiments are available
in Appendix B.

4.3. Targeted Explanations

In some cases, it is instructive to look at the expla-
nations for unpredicted classes in order to get informa-
tion about the internal mechanisms of the models stud-
ied. Such explanations allow us to highlight contrastive
features: elements that should be changed or whose ab-
sence is critical. Our method allows us to obtain such
explanations: for a given input, we are then exclusively

Figure 4. Targeted explanations. Generated explanations for a
decision other than the one predicted by the model. The class ex-
plained is indicated at the bottom of each sample, e.g., the first
sample is a ‘4’ and the explanation is for the class ‘9’. As indi-
cated in section 4.3, the red areas indicate that a black line should
be added and the blue areas that it should be removed. More ex-
amples are available in the Appendix.

interested in the class we are trying to explain, without
looking at the other decisions. Formally, for a given tar-
geted class c′ the adversarial overlap (Equation 1) become
AO(x,B) = maxδ∈B fc′(x + δ) − fc(x + δ). More-
over, by splitting the perturbation ball into a positive one
B(+) =

{
δ ∈ B : δi ≥ 0, ∀i ∈ {1, ..., d}

}
and a negative

one B(−) =
{
δ ∈ B : δi ≤ 0, ∀i ∈ {1, ..., d}

}
, one can

deduce which direction – adding or removing the black line
in the case of gray-scaled images – will impact the most the
model decision.

We generate targeted explanations on the MNIST dataset
using (IBP+Forward+Backward). For several inputs, we
generate the explanation for the 10 classes. Fig. 7 shows
4 examples of targeted explanations, the target class c′ is
indicated at the bottom. The red areas indicate that adding
a black line increases the adversarial overlap with the tar-
get class. Conversely, the blue areas indicate where the in-
crease of the score requires removing black lines. All other
results can be found in the Appendix. In addition to fa-
vorable results on the fidelity metrics and guarantees pro-
vided by the verification methods, EVA can provide tar-
geted explanations that are easily understandable by hu-
mans, which are two qualities that make them a candidate
of choice to meet the recent General Data Protection Regu-
lation (GDPR) adopted in Europe [35]. More examples are
available in the Appendix H.

5. Conclusion
In this work, we presented the first explainability method

that uses verification perturbation analysis that exhaustively
explores the perturbation space to generate explanations.
We presented an efficient estimator that yields explanations
that are state-of-the-art on current metrics. We also de-
scribed a simple strategy to scale up perturbation verifica-
tion methods to complex models. Finally, we showed that
this estimator can be used to form easily interpretable tar-
geted explanations.

We hope that this work will for searching for safer and
more efficient explanation methods for neural networks –
and that it will inspire further synergies with the field of
formal verification.
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What i cannot predict, i do not understand: A human-
centered evaluation framework for explainability meth-
ods. Advances in Neural Information Processing Systems
(NeurIPS), 2021. 2

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image Database.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009. 5, 6

[14] Finale Doshi-Velez and Been Kim. Towards a rigorous sci-
ence of interpretable machine learning. ArXiv e-print, 2017.
1

[15] Ducoffe, Melanie. Decomon: Automatic certified perturba-
tion analysis of neural networks, 2021. 3

[16] Ruediger Ehlers. Formal verification of piece-wise linear
feed-forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis,
pages 269–286. Springer, 2017. 3

[17] Thomas Fel, Remi Cadene, Mathieu Chalvidal, Matthieu
Cord, David Vigouroux, and Thomas Serre. Look at the
variance! efficient black-box explanations with sobol-based
sensitivity analysis. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. 1, 2, 4

[18] Thomas Fel, Lucas Hervier, David Vigouroux, Antonin
Poche, Justin Plakoo, Remi Cadene, Mathieu Chalvidal,
Julien Colin, Thibaut Boissin, Louis Béthune, Agustin Pi-
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Figure 5. Qualitative comparison with other attribution methods. To allow for better visualization, the gradient-based methods (Saliency,
Gradient-Input, SmoothGrad, Integrated-Gradient, VarGrad) are clipped at the 2nd percentile. For more results and details on each method
and choice of hyperparameters, see Appendix.

MNIST Cifar-10 ImageNet

Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓ Time

Greedy-AS [29] .260 .497 .110 .061 335 .205 .264 -.003 .013 4618 .088 .047 .023 .612 180056

Greedy-AO .237 .572 .244 .063 290 .162 .283 .041 .024 2874 .086 .050 .023 .752 26762
EVAemp .101 .621 .378 .067 14.4 .184 .270 .397 .022 186.6 .070 .289 .048 .758 6454EVA (ours) .089 .736 .428 .069 1.29 .164 .290 .352 .025 12.7

Table 3. Results on Deletion (Del.), Insertion (Ins.), µFidelity (Fid.) and Robustness-Sr (Rob.) metrics. Time in seconds corresponds to
the generation of 100 explanations on an Nvidia P100. Note that EVA is the only method with guarantees that the entire set of possible
perturbations has been exhaustively searched. Verified perturbation analysis with IBP + Forward + Backward is used for MNIST, with
Forward only for CIFAR-10 and with our hybrid strategy described in Section.3.4 for ImageNet. Grad-CAM and Grad-CAM++ are not
calculated on the MNIST dataset since the network only has dense layers. Greedy-AO is the equivalent of Greedy-AS but with the AO
estimator. The first and second best results are in bold and underlined, respectively.

A. Qualitative comparison
Regarding the visual consistency of our method, Figure 5

shows a side-by-side comparison between our method and
the attribution methods tested in our benchmark. To allow
better visualization, the gradient-based methods were 2 per-
centile clipped.

B. Ablation studies
For a more thorough understanding of the impact of the

different components that made EVA - the adversarial over-
lap and the use of verification tools- we proposed differ-
ent ablation versions of EVA which are the following: (i)
Empirical EVA, (ii) GreedyAO which is the equivalent of

Greedy-AS but with the AO estimator. This allow us to per-
form ablation on the proposed AO estimator. Results can be
found in Table 3.

B.1. Empirical EVA.

In this section, we describe the ablation consisting in es-
timating EVA without any use of verified perturbation anal-
ysis – thus without any guarantees.

A first intuitive approach would be to replace verifica-
tion perturbation analysis with adversarial attacks (as used
in Greedy-AS [29]); we denote this approach as Greedy-AO.
In addition, we go further with a purely statistical approach
based on a uniform sampling of the domain; we denote this



approach EVAemp.
This estimator proves to be a very good alternative in

terms of computation time but also with respect to the con-
sidered metrics as shown in Section 4. Unfortunately the
lack of guarantee makes it not as relevant as EVA. Formally,
it consists in directly estimating empirically AO using N
randomly sampled perturbations.

ÂO(x,B) = max
δ1,···δi,···δN

iid∼U(B)
c′ 6=c

fc′(x+ δi)− fc(x+ δi).

(3)
We then denote accordingly EVAemp which uses ÂO:

EVAemp(x,u,B) = ÂO(x,B)− ÂO(x,Bu) (4)

C. EVA and Robustness-Sr

We show here that the explanations generated by
EVA provide an optimal solution from a certain stage to
the Robustness-Sr metric proposed by [29]. We admit a
unique closest adversarial perturbation δ∗ = min ||δ||p :
f(x + δ) 6= f(x), and we define ε, the radius of B as
ε = ||δ||p. Note that ||δ||p can be obtained by binary search
using the verified perturbation analysis method.

We briefly recall the Robustness-Sr metric. With x =
(x1, ..., xd), the set U = {1, ..., d}, u a subset of U : u ⊆ U
and u its complementary. Moreover, we denote the mini-
mum distance to an adversarial example ε∗u:

ε∗u =
{
min ||δ||p : f(x+ δ) 6= f(x), δu = 0

}
The Robustness-Sr score is the AUC of the curve

formed by the points {(1, ε∗(1)), ..., (d, ε
∗
(d))} where ε∗(k) is

the minimum distance to an adversarial example for the k
most important variables. From this, we can deduce that
||δ∗|| ≤ ε∗u, ∀u ⊆ {1, ..., d}.

The goal here is to minimize this score, which means for
a number of variables |u| = k, finding the set of variables
u∗ such that ε∗u is minimal. We call this set the optimal set
at k.

Definition C.1. The optimal set at k is the set of variables
u∗k such that

u∗k = argmin ε∗u
u⊆U, |u|=k

.

We note that finding the minimum cardinal of a variable
to guarantee a decision is also a standard research problem
[32, 33] and is called subset-minimal explanations.

Intuitively, the optimal set is the combination of vari-
ables that allows finding the closest adversarial example.
Thus, minimizing Robustness-Sr means finding the opti-
mal set u∗ for each k. Note that this set can vary drastically

from one step to another, it is therefore potentially impossi-
ble for attribution to satisfy this optimality criterion at each
step. Nevertheless, an optimal set that is always reached at
some step is the one allowing to build δ∗. We start by defin-
ing the notion of an essential variable before showing the
optimality of δ∗.

Definition C.2. Given an adversarial perturbation δ, we
call essentials variables u all variables such that |δi| >
0, i ∈ u. Conversely, we call inessentials variables vari-
ables that are not essential.

For example, if δ∗ has k essential variables, it is reach-
able by modifying only k variables. This allows us to char-
acterize the optimal set at step k.

Proposition C.3. Let u be the set of essential variables of
δ∗, then u is an optimal set for k, with k ∈ [[|u|, d]].

Proof. Let v be a set such that ε∗v < ε∗u, then ε∗v < ||δ∗||
which is a contradiction.

Specifically, as soon as we have the variables allowing
us to build δ∗, then we reach the minimum possible for
Robustness-Sr. We will now show that EVA allows us to
reach this in |u| steps, with |u| ≤ d by showing (1) that δ∗

essential variables obtain a positive attribution and (2) that
δ∗ inessential variables obtain a zero attribution.

Proposition C.4. All essential variables u w.r.t δ∗ have a
strictly positive importance score EVA(u) > 0.

Proof. Let us assume that i is essential and EVA(i) = 0,
then F (B) = F (Bi) which implies

max
δ∈B
c′ 6=c

fc′(x+δ)−fc(x+δ) = max
δ′∈Bi

c′ 6=c

fc′(x+δ
′)−fc(x+δ′)

by uniqueness of the adversarial perturbation, δ = δ′ which
is a contradiction as δ′ /∈ Bi since δ′i 6= 0 by definition of
an essential variable. Thus xi cannot be essential, which is
a contradiction.

Essentially, if the variable i is necessary to reach δ∗, then
removing it prevents the adversarial example from being
reached and lowers the adversarial overlap, giving a strictly
positive attribution.

Proposition C.5. All inessential variables v w.r.t. δ∗ have
a zero importance score EVA(v) = 0.

Proof. With i being an inessential variable, then δ∗i = 0. It
follow that δ∗ ∈ Bi ⊆ B. Thus

F (B) = max
δ∈B
c′ 6=c

fc′(x+ δ)− fc(x+ δ)

= fc′(x+ δ∗)− fc(x+ δ∗)



as δ∗ is the unique adversarial perturbation in B, similarly

F (Bi) = max
δ′∈B
c′ 6=c

fc′(x+ δ′)− fc(x+ δ′)

= fc′(x+ δ∗)− fc(x+ δ∗)

thus F (B) = F (Bi) and EVA(i) = 0.

Finally, since EVA ranks the essential variables of δ∗

before the inessential variables, and since δ∗ is the optimal
set from the step |u| to the last one d, then EVA provide the
optimal set, at least from the step |u|.

Theorem C.6. EVA provide the optimal set from step |u|
to the last step. With u the essential variables of δ∗,
EVA will rank the u variables first and provide the optimal
set from the step |u| to the last step.

Proof. Let u denote the essential variables of δ∗ and v the
inessential variables. Then according to Proposition C.4
and Proposition C.5, ∀i ∈ u,∀j ∈ v : EVA(i) > EVA(j).
It follow that u are the most important variables at step |u|.
Finally, according to Proposition C.3, u is the optimal set
for k, with k ∈ [[|u|, d]].

Figure 6. EVA yield optimal subset of variable from step |u|.
Robustness-Sr measures the AUC of the distances to the nearest
adversary for the k most important variables. With δ∗ the nearest
reachable adversarial perturbation around x, then EVA yield the
optimal set – the variables allowing to reach the nearest adversarial
example for a given cardinality – at least from ||u|| ≤ d step to
the last one, u being the so-called essential variables.

D. EVA and Stability
Stability is one of the most crucial properties of an ex-

planation. Several metrics have been proposed [7, 69] and
the most common one consists in finding around a point
x, another point z (in a radius r) such that the explanation
changes the most according to a given distance between ex-
planation d and a distance over the inputs ρ:

Stability(x, g) = max
z:ρ(z,x)≤r

d(g(x), g(z))

and g an explanation functional. It can be shown that the
proposed EVA estimator is bounded by the stability of the
model as well as by the radii ε and r, ε being the radius of
B and r the radius of stability. From here, we assume d and
ρ are the `2 distance.

Let assume that f is L-lipschitz. We recall that a func-
tion f is said L-lipschitz over X if and only if ∀(x, z) ∈
X 2, ||f(x)− f(z)|| ≤ ||x− z||.

Theorem D.1. EVA has bounded Stability Given a L-
lipschitz predictor f , ε the radius of B and r the Stability
radius, then

Stability(x,EVA) ≤ 4L(ε+ r)

Proof. With c′ 6= c we denote m(x) = fc′(x) − fc(x).
We note that by additivity of the Lipschitz constant m is
2L-Lipschitz.

Stability(x,EVA) = max
z:ρ(z,x)≤r

||EVA(x),EVA(z)||

= max
z:ρ(z,x)≤r

||max
δ
m(x+ δ)−max

δu
m(x+ δu)

−max
δ
m(z + δ) + max

δu
m(z + δu)||

≤ max
z:ρ(z,x)≤r

||max
δ
m(x+ δ)−max

δ
m(z + δ)||

+ ||max
δu

m(z + δu)−max
δu

m(x+ δu)||

= max
γ:||γ||≤r

||max
δ
m(x+ δ)−max

δ
m(x+ δ + γ)||

+ ||max
δu

m(x+ δu + γ)−max
δu

m(x+ δu)||

≤ 2L(||δ||+ ||γ||) + 2L(||δ||+ ||γ||)
= 4L(ε+ r)

E. Attribution methods
In the following section, we give the formulation of the

different attribution methods used in this work. The library
used to generate the attribution maps is Xplique [18]. By
simplification of notation, we define f(x) the logit score
(before softmax) for the class of interest (we omit c). We re-
call that an attribution method provides an importance score
for each input variable xi. We will denote the explanation
functional mapping an input of interest x = (x1, ..., xd) ∈
X as g : X → Rd.

Saliency [56] is a visualization technique based on the
gradient of a class score relative to the input, indicating in an
infinitesimal neighborhood, which pixels must be modified
to most affect the score of the class of interest.



g(x) = ||∇xf(x)||

Gradient� Input [55] is based on the gradient of a class
score relative to the input, element-wise with the input, it
was introduced to improve the sharpness of the attribution
maps. A theoretical analysis conducted by [3] showed that
Gradient� Input is equivalent to ε-LRP and DeepLIFT [55]
methods under certain conditions – using a baseline of zero,
and with all biases to zero.

g(x) = x� ||∇xf(x)||

Integrated Gradients [65] consists of summing the gra-
dient values along the path from a baseline state to the
current value. The baseline x0 used is zero. This inte-
gral can be approximated with a set of m points at regu-
lar intervals between the baseline and the point of interest.
In order to approximate from a finite number of steps, we
use a Trapezoidal rule and not a left-Riemann summation,
which allows for more accurate results and improved per-
formance (see [62] for a comparison). For all the experi-
ments m = 100.

g(x) = (x− x0)

∫ 1

0

∇xf(x0 + α(x− x0)))dα

SmoothGrad [61] is also a gradient-based explanation
method, which, as the name suggests, averages the gradi-
ent at several points corresponding to small perturbations
(drawn i.i.d from an isotropic normal distribution of stan-
dard deviation σ) around the point of interest. The smooth-
ing effect induced by the average help reducing the visual
noise, and hence improve the explanations. The attribu-
tion is obtained by averaging after sampling m points. For
all the experiments, we took m = 100 and σ = 0.2 ×
(xmax − xmin) where (xmin,xmax) being the input range
of the dataset.

g(x) = E
δ∼N (0,Iσ)

(∇xf(x+ δ))

VarGrad [28] is similar to SmoothGrad as it employs
the same methodology to construct the attribution maps: us-
ing a set ofm noisy inputs, it aggregates the gradients using
the variance rather than the mean. For the experiment, m
and σ are the same as Smoothgrad. Formally:

g(x) = V
δ∼N (0,Iσ)

(∇xf(x+ δ))

Grad-CAM [53] can only be used on Convolutional
Neural Network (CNN). Thus we couldn’t use it for the
MNIST dataset. The method uses the gradient and the
feature maps Ak of the last convolution layer. More pre-
cisely, to obtain the localization map for a class, we need

to compute the weights αkc associated to each of the fea-
ture map activation Ak, with k the number of filters and
Z the number of features in each feature map, with αck =
1
Z

∑
i

∑
j
∂f(x)

∂Ak
ij

and

g = max(0,
∑
k

αckA
k)

As the size of the explanation depends on the size (width,
height) of the last feature map, a bilinear interpolation is
performed in order to find the same dimensions as the input.
For all the experiments, we used the last convolutional layer
of each model to compute the explanation.

Grad-CAM++ (G+) [10] is an extension of Grad-CAM
combining the positive partial derivatives of feature maps
of a convolutional layer with a weighted special class score.
The weights α(k)

c associated to each feature map is com-
puted as follow :

αck =
∑
i

∑
j

[

∂2f(x)

(∂A
(k)
ij )2

2 ∂2f(x)

(∂A
(k)
ij )2

+
∑
i

∑
jA

(k)
ij

∂3f(x)

(∂A
(k)
ij )3

]

Occlusion [71] is a sensitivity method that sweeps a
patch that occludes pixels over the images using a baseline
state and use the variations of the model prediction to de-
duce critical areas. For all the experiments, we took a patch
size and a patch stride of 1

7 of the image size. Moreover, the
baseline state x0 was zero.

g(x)i = f(x)− f(x[xi=0])

RISE [48] is a black-box method that consists of prob-
ing the model with N randomly masked versions of the in-
put image to deduce the importance of each pixel using the
corresponding outputs. The masks m ∼ M are generated
randomly in a subspace of the input space. For all the ex-
periments, we use a subspace of size 7× 7, N = 6000, and
E(M) = 0.5.

g(x) =
1

E(M)N

N∑
i=0

f(x�mi)mi

Greedy-AS [29] is a greedy-like method which aggre-
gates step by step the most important pixels – the pixels that
allow us to obtain the closest possible adversarial example.
Starting from an empty set, we evaluate the importance of
the variables at each step. Formally, with u the feature set
chosen at the current step and u his complement. We define
b : P(u) → {0, 1}|u| a function which binarizes a sub-set
of the unchosen elements. Then, given the set of selected
elements u, we find the importance of the elements still not
selected, while taking into account their interactions. This
amounts to solving the following regression problem:



Figure 7. Targeted Explanations Attribution-generated explana-
tions for a decision other than the one predicted. Each column
represents the class explained, e.g., the first column looks for an
explanation for the class ‘0’ for each of the samples. As indicated
in section 4.3, the red areas indicate that a black line should be
added and the blue areas that it should be removed. More exam-
ples are available in the Appendix.

wt, ct = argmin
∑

v∈P(u)

(
(wtb(v) + c)− v(u ∪ v)

)2
The weights obtained indicate the importance of each

variable by taking into account these interactions. We spec-
ify that v(·) is defined here as the minimization of the dis-
tance to the nearest adversarial example using the variables
u ∪ v. In the experiments, the minimization of this objec-
tive is approximated using PGD [44] adversarial attacks, a
regression step (computation of wt) adds 10% of the vari-
ables and v is sampled using 1000 samples from P(u). Fi-
nally, the variables added first to get a better score.

F. Evaluation
For the purpose of the experiments, three fidelity metrics

have been chosen. For the whole set of metrics, f(x) score
is the score after the softmax of the models.

Deletion. [48] The first metric is Deletion, it consists in
measuring the drop in the score when the important vari-
ables are set to a baseline state. Intuitively, a sharper drop
indicates that the explanation method has well-identified
the important variables for the decision. The operation is
repeated on the whole image until all the pixels are at a

baseline state. Formally, at step k, with u the most im-
portant variables according to an attribution method, the
Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. For all
the experiments, and as recommended by [29], the baseline
state is not fixed but is a value drawn on a uniform distribu-
tion x0 ∼ U(0, 1).

Insertion. [48] Insertion consists in performing the in-
verse of Deletion, starting with an image in a baseline state
and then progressively adding the most important variables.
Formally, at step k, with u the most important variables ac-
cording to an attribution method, the Insertion(k) score is
given by:

Insertion(k) = f(x[xu=x0])

The baseline is the same as for Deletion.

µFidelity [7] consists in measuring the correlation be-
tween the fall of the score when variables are put at a base-
line state and the importance of these variables. Formally:

µFidelity = Corr
u⊆{1,...,d}
|u|=k

(∑
i∈u

g(x)i,f(x)− f(x[xu=x0])

)
For all experiments, k is equal to 20% of the total number

of variables and the baseline is the same as the one used by
Deletion.

G. Models
The models used were all trained using Tensorflow [1].

For MNIST, the model is a stacking of 5 dense layers com-
posed of (256, 128, 64, 32, 10) neurons respectively. It
achieves an accuracy score above 98% on the test set. Con-
cerning the Cifar-10 model, it is composed of 3 Convolu-
tional layers of (128, 80, 64) filters, a MaxPooling (2, 2),
and to Dense layer of (64, 10) neurons respectively, and
achieves 75% of accuracy on the test set. For ImageNet, we
used a pre-trained VGG16 [57].

H. Targeted explanations
In order to generate targeted explanations, we split the

calls to EVA(·, ·) in two: the first one with ‘positive’ pertur-
bations from B(+) (only positive noise), a call with ‘nega-
tive’ perturbations from B(−) (only negative-valued noise)
as defined in Section 4.3.

We then get two explanations, one for positive noise
φ

(+)
u = Fc(B(+)(x)) − Fc(B(+)

u (x)), the other for neg-
ative noise φ(−)

u = Fc(B(−)(x)) − Fc(B(−)u (x)). Intu-
itively, high importance for φ(+)

u means that the model is



sensitive to the addition of a white line. Conversely, high
importance for φ(−)

u means that removing it changes the
decision model. These two explanations being opposed, we

construct the final explanation as φu = φ
(+)
u −φ(−)

u . More
examples of results are given in Fig. 7.


