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Abstract

Model inversion (MI) attacks aim to infer and recon-
struct private training data by abusing access to a model.
MI attacks have raised concerns about the leaking of sen-
sitive information (e.g. private face images used in train-
ing a face recognition system). Recently, several algorithms
for MI have been proposed to improve the attack perfor-
mance. In this work, we revisit MI, study two fundamental
issues pertaining to all state-of-the-art (SOTA) MI algo-
rithms, and propose solutions to these issues which lead to
a significant boost in attack performance for all SOTA MI.
In particular, our contributions are two-fold: 1) We ana-
lyze the optimization objective of SOTA MI algorithms, ar-
gue that the objective is sub-optimal for achieving MI, and
propose an improved optimization objective that boosts at-
tack performance significantly. 2) We analyze “MI overfit-
ting”, show that it would prevent reconstructed images from
learning semantics of training data, and propose a novel
“model augmentation” idea to overcome this issue. Our
proposed solutions are simple and improve all SOTA MI at-
tack accuracy significantly. E.g., in the standard CelebA
benchmark, our solutions improve accuracy by 11.8% and
achieve for the first time over 90% attack accuracy. Our
findings demonstrate that there is a clear risk of leak-
ing sensitive information from deep learning models. We
urge serious consideration to be given to the privacy im-
plications. Our code, demo, and models are available
at https://ngoc-nguyen-0.github.io/re-
thinking_model_inversion_attacks/.

1. Introduction

Privacy of deep neural networks (DNNs) has attracted
considerable attention recently [2, 3, 31, 41, 42]. Today,
DNNs are being applied in many domains involving pri-
vate and sensitive datasets, e.g., healthcare, and security.
There is a growing concern of privacy attacks to gain knowl-
edge of confidential datasets used in training DNNs. One
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important category of privacy attacks is Model Inversion
(MI) [7, 10, 13, 14, 22, 47, 49, 52, 53] (Fig. 1). Given ac-
cess to a model, MI attacks aim to infer and reconstruct fea-
tures of the private dataset used in the training of the model.
For example, a malicious user may attack a face recognition
system to reconstruct sensitive face images used in training.
Similar to previous work [7,47,52], we will use face recog-
nition models as the running example.

Related Work. MI attacks were first introduced in [14],
where simple linear regression is the target of attack. Re-
cently, there is a fair amount of interest to extend MI to com-
plex DNNs. Most of these attacks [7, 47, 52] focus on the
whitebox setting and the attacker is assumed to have com-
plete knowledge of the model subject to attack. As many
platforms provide downloading of entire trained DNNs for
users [7, 52], whitebox attacks are important. [52] proposes
Generative Model Inversion (GMI) attack, where generic
public information is leveraged to learn a distributional
prior via generative adversarial networks (GANs) [15, 45],
and this prior is used to guide reconstruction of private
training samples. [7] proposes Knowledge-Enriched Dis-
tributional Model Inversion (KEDMI), where an inversion-
specific GAN is trained by leveraging knowledge provided
by the target model. [47] proposes Variational Model Inver-
sion (VMI), where a probabilistic interpretation of MI leads
to a variational objective for the attack. KEDMI and VMI
achieve SOTA attack performance (See Supplementary E
for further discussion of related work).

In this paper, we revisit SOTA MI, study two issues
pertaining to all SOTA MI and propose solutions to these is-
sues that are complementary and applicable to all SOTA MI
(Fig. 1). In particular, despite the range of approaches pro-
posed in recent works, common and central to all these ap-
proaches is an inversion step which formulates reconstruc-
tion of training samples as an optimization. The optimiza-
tion objective in the inversion step involves the identity loss,
which is the same for all SOTA MI and is formulated as the
negative log-likelihood for the reconstructed samples under
the model being attacked. While ideas have been proposed
to advance other aspects of MI, effective design of the iden-
tity loss has not been studied.
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Figure 1. Overview and our contributions. 1⃝ We consider the problem of the Model Inversion (MI) attack to reconstruct private training
data based on model parameters. Our work makes two foundational contributions to MI attacks. 2⃝ First, we analyse the optimization
objective of existing SOTA MI algorithms and show that they are sub-optimal. Further, we propose an improved optimization objective
that boosts MI attack performance significantly (Sec 3.1). 3⃝ Second, we formalize the concept of “MI overfitting” showing that it
prevents reconstructed images from learning identity semantics of training data. Further, we propose a novel “model augmentation” idea to
overcome this issue (Sec 3.2). 4⃝ Our proposed method significantly boosts MI attack accuracy. E.g. In the standard CelebA benchmark,
our method boosts attack accuracy by 11.8%, achieving above 90% attack accuracy for the first time in contemporary MI literature.

To address this research gap, our work studies subtleties of
identity loss in all SOTA MI, analyzes the issues and pro-
poses improvements that boost the performance of all SOTA
significantly. In summary, our contributions are as follows:

• We analyze existing identity loss, argue that it could be
sub-optimal for MI, and propose an improved identity
loss that aligns better with the goal of MI (Fig. 1 2⃝).

• We formalize the concept of MI overfitting, analyze its
impact on MI and propose a novel solution based on
model augmentation. Our idea is inspired by the con-
ventional issue of overfitting in model training and data
augmentation as a solution to alleviate the issue (Fig. 1
3⃝).

• We conduct extensive experiments to demonstrate that

our solutions can improve SOTA MI algorithms (GMI
[52], KEDMI [7], VMI [47]) significantly. Our solutions
achieve for the first time over 90% attack accuracy under
standard CelebA benchmark (Fig. 1 4⃝).

Our work sounds alarm over the rising threats of MI
attacks, and urges more attention on measures against the
leaking of private information from DNNs.

2. General Framework of SOTA MI Attacks

Problem Setup. In MI, an attacker abuses access to a
model M trained on a private dataset Dpriv . The attacker
can access M , but Dpriv is not intended to be shared. The
goal of MI is to infer information about private samples
in Dpriv. In existing work, for the desired class (label) y,
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Table 1. Categorizing SOTA MI attacks based on their difference
in latent code distribution and prior loss. pGAN(z) is a GAN prior.
G and D are generator and discriminator of a GAN.

Method Latent distribution q(z) Prior loss Lprior

GMI [52] Point estimate δ(z− z0) −D(G(z))

KEDMI [7] Gaussian N (µ,Σ) − logD(G(z))

VMI [47]
Gaussian N (µ,Σ) or
Normalizing Flow [26]

Distance w.r.t. GAN prior
DKL(q(z)||pGAN(z))

MI is formulated as the reconstruction of an input x which
is most likely classified into y by the model M . For in-
stance, if the problem involves inverting a facial recogni-
tion model, given the desired identity, MI is formulated as
the reconstruction of facial images that are most likely to
be recognized as the desired identity. The model subject
to MI attacks is called target model. Following previous
works [7, 47, 52], we focus on whitebox MI attack, where
the attacker is assumed to have complete access to the tar-
get model. For high-dimensional data such as facial images,
this reconstruction problem is ill-posed. Consequently, var-
ious SOTA MI methods have been proposed recently to
constrain the search space to the manifold of meaningful
and relevant images using a GAN: using a GAN trained on
some public dataset Dpub [52], using an inversion-specific
GAN [7], and defining variational inference in latent space
of GAN [47].

Despite the differences in various SOTA MI, common
and central to all these methods is an inversion step –called
secret revelation in [52]–, which performs the following op-
timization:

q∗(z) = argmin
q(z)

Ez∼q(z){Lid(z; y,M) + λLprior(z)}

(1)
Here Lid(z; y,M) = − logPM (y|G(z)) is referred to as
identity loss in MI [52], which guides the reconstruction of
x = G(z) that is most likely to be recognized by model M
as identity y, and Lprior is some prior loss, and q∗(z) is the
optimal distribution of latent code used to generate inverted
samples by GAN (x = G(z); z ∼ q∗(z)). Importantly, all
SOTA MI methods use the same identity loss Lid(z; y,M),
although they have different assumption about q(z) and the
prior loss Lprior (see Table 1 and Supplementary for more
details on each algorithm). While advances observed by
improving q(z) and Lprior, the design of more effective
Lid has been left unnoticed in all SOTA MI algorithms.
Therefore, our work instead focuses on Lid, analyzes issues,
and proposes improvement for Lid that can lead to a per-
formance boost in all SOTA MI. To simplify notations, we
denote Lid(z; y,M) by Lid(x; y) when appropriate, where

x = G(z) is the reconstructed image.

3. A Closer Look at Model Inversion Attacks

3.1. An Improved Formulation of MI Identity Loss

In this section, we discuss our first contribution and take
a closer look at the optimization objective of identity loss,
Lid(x; y). Existing SOTA MI methods, namely GMI [52],
KEDMI [7] and VMI [47] formulate the identity loss as an
optimization to minimize the negative log likelihood of an
identity under model parameters (i.e. cross-entropy loss).
Particularly, the Lid(x; y) introduced in Eqn. 1 for an in-
version targeting class k can be re-written as follows:

Lid(x; y = k) = − log
exp(pT wk)

exp(pT wk) +
∑N

j=1,j ̸=k exp(pT wj)
(2)

where p refers to penultimate layer activations [6, 35] for
sample x and wi refers to the last layer weights for the ith

class 1in target model M .

Existing identity loss (Eqn. 2) used in SOTA MI meth-
ods [7,47,52] is sub-optimal for MI (Fig. 1 2⃝). Although
the optimization in Eqn. 2 accurately captures the essence
of a classification problem (e.g. face recognition), we postu-
late that such formulation is sub-optimal for MI. We provide
our intuition through the lens of penultimate layer activa-
tions, p (Fig. 1 2⃝). In a classification setting, the main ex-
pectation for p is to be sufficiently discriminative for class k
(e.g. recognize between ‘Peter’, ‘Simon’ and ‘David’). This
objective can be achieved by both maximizing exp(pT wk)

and/or minimizing
∑N

j=1,j ̸=k exp(p
T wj) in Eqn. 2. On

the contrary, the goal of MI is to reconstruct training data.
That is, in addition to p being sufficiently discriminative for
class k, successful inversion also requires p to be close to
the training data representations for class k represented by
wk (i.e. an inversion targeting ‘Simon’ needs to reconstruct
a sample close to the private training data of ‘Simon’; Fig.
1 2⃝). Specifically, we argue that MI requires a lot more
attention on maximizing exp(pT wk) compared to minimiz-
ing

∑N
j=1,j ̸=k exp(p

T wj) in Eqn. 2.
Motivated by this hypothesis, we conduct an analysis to

investigate the proximity between private training data and
reconstructed data in SOTA MI methods using penultimate
layer representations [6, 34, 35, 39]. Particularly, our analy-
sis using KEDMI [7] (SOTA) shows several instances where
using Eqn. 2 for identity loss is unable to reconstruct data
close to the private training data. We show this in Fig. 2 (top
row). Consequently, our analysis motivates the search for an
improved identity loss focusing on maximizing exp(pT wk)
for MI.

1p is concatenated with 1 at the end to include bias as wi includes
biases at the end.
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Private 
Training 
Sample 

Closest 
Reconstructed  

Sampleiter=0 iter=600 iter=1200 iter=1800 iter=2400

Private Training Data Reconstructed Data

KNN Dist = 2533.67 KNN Dist = 1395.50 KNN Dist = 1310.41 KNN Dist = 1278.06 KNN Dist = 1247.28

KNN Dist = 2533.67 KNN Dist = 1287.64 KNN Dist = 1175.58 KNN Dist = 1175.28 KNN Dist = 1168.55

KEDMI (Baseline)  |  Attack Accuracy: 80.53% 

[Our Contribution 1] KEDMI +   |  Attack Accuracy: 92.47% Llogit
id

Identity: 57, 143, 232

Figure 2. Visualization of the penultimate layer representations (Dpriv = CelebA [33], Dpub = CelebA [33], Target Model = IR152 [7],
Evaluation Model = face.evoLve [8], Inversion iterations = 2400) for private training data and reconstructed data using KEDMI [7].
Following the exact evaluation protocol in [7], we use face.evoLve [8] to extract representations. We show results for 3 randomly chosen
identities. We include KNN distance (for different iterations) and final attack accuracy following the protocol in [7]. For each identity, we
also include randomly selected private training data and the closest reconstructed sample at iteration=2400. 1⃝ Identity loss in SOTA MI
methods [7, 47, 52] (Eqn. 2) is sub-optimal for MI (Top). Using penultimate representations during inversion, we observe 2 instances
(e.g. target identity 57 and 143) where KEDMI [7] (using Eqn. 2 for identity loss) is unable to reconstruct data close to private training data.
Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed identity loss, Llogit

id (Eqn. 3), can effectively
guide the reconstruction of data close to private training data (Bottom). This can be clearly observed using both penultimate layer
representations and KNN distances for all 3 target classes 57, 143 and 252. We show similar results using additional MI algorithms
(GMI [52], VMI [47]) and target classifiers (face.evoLve, VGG16) in Supplementary Figures D.2, D.5 and D.8. Best viewed in color.

Logit Maximization as an improved MI identity loss. In
light of our analysis / observations above, we propose to
directly maximize the logit, pT wk, instead of maximizing
the log likelihood of class k for MI. Our proposed identity
loss objective is shown below:

Llogit
id (x; y = k) = −pT wk + λ||p − preg||22 (3)

where λ(> 0) is a hyper-parameter and preg is used for
regularizing p. Particularly, if the regularization in Eqn. 3
is omitted and hence ||p|| is unbounded, a crude simplified
way to solve Eqn. 3 is to maximize ||p||. Hence, we use
preg to regularize p. Given that the attacker has no access to
private training data, we estimate preg by a simple method
using public data (See Supplementary C.3). We remark that
p = Mpen(x) where x = G(z) and Mpen() operator returns
the penultimate layer representations for a given input.

Our analysis shows that our proposed identity loss,
Llogit
id (Eqn. 3), can significantly improve reconstruction

of private training data compared to existing identity loss
used in SOTA MI algorithms [7,47,52]. This can be clearly
observed using both penultimate layer representations and

KNN distances in Fig. 2 (bottom row). Here KNN Dist
refers to the shortest Euclidean feature distance from a re-
constructed image to private training images for a given
identity [7, 52]. Our proposed Llogit

id can be easily plugged
in to all existing SOTA MI algorithms by replacing Lid with
our proposed Llogit

id in Eqn. 1 (in the inversion step) with
minimal computational overhead.

3.2. Overcoming MI Overfitting in SOTA methods

In this section, we discuss our second contribution. In
particular, we formalize a concept of MI overfitting, ob-
serve its considerable impacts even in SOTA MI methods
[7, 47, 52], and propose a new, simple solution to overcome
this issue (Fig. 1 3⃝). To better discuss our MI overfitting
concept, we first review the conventional concept of over-
fitting in machine learning: Given the fixed training dataset
and our goal of learning a model, conventionally, overfitting
is defined as instances which during model learning (train-
ing stage), the model fits too closely to the training data
and adapts to the random variation and noise of training
data, failing to adequately learn the semantics of the train-
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ing data [1, 38, 44, 50, 54]. As the model lacks semantics of
training data, it could be observed that the model performs
poorly under unseen data (Fig. 1 3⃝ a⃝).

1

Lid(x; y, M) 0.003

L i
d(x

;y,
M

′ )

MI Overfitting 
(26.7%)

M = IR152

Lid(x; y, M)

M′ = VGG16

M = IR152

Lid(x; y, M)

L i
d(x

;y,
M

au
g)

Maug = EfB0
MI Overfitting 

(37.5%)

32

Private Training

MI Overfitting

0.006 0.095 0.007

Data

0.006 0.007

Figure 3. Qualitative / Quantitative studies to demonstrate MI
overfitting in SOTA methods. We demonstrate this observation
using KEDMI [7]. We use Dpriv = CelebA [33], Dpub = CelebA
[33] and M = IR152 [7]. 1⃝ We show qualitative results to illus-
trate MI overfitting. We show 6 identities, top: private data, bot-
tom: reconstructed data from M . The reconstructed samples have
fit too closely to M during inversion resulting in samples with lack
of identity semantics. Particularly, we remark that these samples
have very low identity loss under the target model M . 2⃝ Quan-
titative results validating the prevalence of MI overfitting in
SOTA MI methods. We use an additional target classifier M ′ =
VGG16 released by [7,52] to quantitatively verify the presence of
MI overfitting using identity loss. For 1,500 reconstructed samples
from M , we visualize their identity loss w.r.t. M and M ′ in the
scatter plot and respective histograms. Particularly, we find that
there are 26.7% of samples with low identity loss under the target
model M , but large identity loss under unseen VGG16 model M ′,
hinting that these samples might lack identity semantics. This re-
sult shows that MI overfitting is a considerable issue even in SOTA
MI methods. Note that VGG16 is used here only for analysis and is
not part of our solution, as private data is not available. 3⃝ Model
Augmentation to alleviate MI overfitting during inversion. We
repeat the above analysis, with M ′ = VGG16 replaced by Maug

= EfficientNet-B0. Importantly, Maug is trained by public data
using knowledge distillation [19]. We similarly observe samples
with large identity loss under Maug .

Overfitting in MI. We formalize the concept of overfitting
in MI (Fig. 1 3⃝ b⃝). Given the fixed (target) model and
our goal of learning reconstructed samples, we define MI
overfitting as instances which during model inversion, the
reconstructed samples fit too closely to the target model
and adapt to the random variation and noise of the target
model parameters, failing to adequately learn semantics of
the identity. As these reconstructed samples lack identity
semantics, it could be observed that they perform poorly
under another unseen model.

Analysis. In what follows, we discuss our analysis to
demonstrate MI overfitting and understand its impact in
SOTA. See Fig. 3 for analysis setups and results. In par-
ticular, in Fig. 3 1⃝, we show some reconstructed samples
which achieve low identity loss under the target model M ,
yet they lack identity semantics. In Fig. 3 2⃝, we show that
for a considerable percentage of reconstructed samples from
target model M with low identity loss under M , their iden-
tity loss under another unseen model M ′ is large as shown
in the scatter plot and histograms, hinting that these sam-
ples might have suffered from MI overfitting and lack iden-
tity semantics. We note that the identity loss under M ′ is
obtained by feeding the reconstructed sample into M ′ in a
forward pass. We also note that SOTA KEDMI [7] is used
in this analysis but the issue persists in [47, 52].

Our proposed solution to MI overfitting. We propose a
novel solution based on model augmentation. Our idea is
inspired by the conventional issue of overfitting in model
training and data augmentation as a solution to alleviate the
issue. In particular, for conventional overfitting, augment-
ing the training dataset could alleviate the issue [29]. There-
fore, we hypothesize that by augmenting the target model
we can alleviate MI overfitting.

Specifically, we propose to apply knowledge distillation
(KD) [19], with target model Mt as the teacher, to train
augmented models M

(i)
aug . Importantly, as we do not have

access to the private data, during KD, each M
(i)
aug is trained

on the public dataset to match its output to the output of
Mt. We select different network architectures for M (i)

aug and
they are different from Mt (Detailed discussion in the Sup-
plementary B.1 and B.2). After performing KD, we apply
M

(i)
aug together with the target model Mt in the inversion

step and compute the identity loss (with model augmenta-
tion):

Laug
id (x; y) = γt · Lid(x; y,Mt)

+ γaug ·
Naug∑
i=1

Lid(x; y,M
(i)
aug)

(4)

Here, γt and γaug are two hyper-parameters. In particu-
lar, we use γt = γaug = 1

Naug+1 , where Naug is the number
of augmented models. Laug

id in Eqn. 4 is used to replace Lid

in the inversion step in Eqn. 1. Furthermore, our proposed
Llogit
id in Eqn. 3 can be used in Eqn. 4 to combine the im-

provements. See details in Supplementary C.1.

In Fig. 3 3⃝, we analyze the performance of M (i)
aug . Simi-

lar to using the unseen model M ′, we observe samples with
large identity loss under M

(i)
aug , suggesting that samples

with MI overfitting perform poorly under M
(i)
aug as these

samples lack identity semantic.
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Table 2. We follow the exact the experiment setups in [7] for GMI [52] and KEDMI [7]. For VMI [47], we follow the exact experiment
setups in [47]. In total, we conduct 72 experiments spanning 18 setups to demonstrate the effectiveness of our proposed method.

Method Private Dataset Public Dataset Target model Evaluation Model Model Augmentation

GMI [52] /
KEDMI [7]

CelebA [33] CelebA / VGG16 [40] /
IR152 [17] /
face.evoLve [9]

face.evoLve EfficientNet-B0 [43],
EfficientNet-B1 [43],
EfficientNet-B2 [43]

FFHQ [24]

CIFAR-10 [28] CIFAR-10 VGG16 ResNet-18 [17]
MNIST [30] MNIST CNN(Conv3) CNN(Conv5) CNN(Conv2), CNN(Conv4)

VMI [47] CelebA CelebA ResNet-34 [17] IR-SE50 [12]
EfficientNet-B0,
EfficientNet-B1,
EfficientNet-B2

MNIST EMNIST [11] ResNet-10 ResNet-10 CNN(Conv2), CNN(Conv4)

4. Experiments
In this section, we evaluate the performance of the pro-

posed method in recovering a representative input from the
target model, against current SOTA methods: GMI [52],
VMI [47], and KEDMI [7]. More specifically, as our pro-
posed method identifies two major limitations in current
Lid(x; y) –used commonly in all SOTA MI approaches–
we will evaluate the improvement brought by our improved
identity loss Llogit

id , and model augmentation Laug
id for all

SOTA MI approaches.

4.1. Experimental Setup

In order to have a fair comparison, when evaluating our
method against each SOTA MI approach, we follow the ex-
actly same experimental setup of that approach. In what
follows, we discuss the details of these setups.

Dataset. Following previous works, we evaluate the pro-
posed method on different tasks: face recognition and digit
classification is used for comparison with all three SOTA
approaches, and image classification is used for compari-
son with GMI [52], and KEDMI [7]. For the face recogni-
tion task, we use CelebA dataset [33] that includes celebrity
images, and the FFHQ dataset [24] which contains images
with larger variation in terms of background, ethnicity, and
age. The MNIST handwritten digits dataset [30] is used for
digit classification. We utilize the CIFAR-10 dataset [28]
for image classification.

Data Preparation Protocol. Following previous SOTA ap-
proaches [7, 47, 52], we split each dataset into two disjoint
parts: one part is used as private dataset Dpriv for training
target model, and another part is used as a public dataset
Dpub to extract the prior information. Most importantly,
throughout all experiments, public dataset Dpub has no
class intersection with private dataset Dpriv used for train-
ing target model. Note that this is essential to make sure
that adversary uses Dpub only to gain prior knowledge about
features that are general to that task (i.e., face recognition),
and does not have access to information about class-specific
and private information used for training target model.

Models. Following previous works, we implement several
different models with varied complexities. As GMI [52] and
KEDMI [7] use exactly similar model architecture in exper-
iments, for comparison with these two algorithms, we use
the same models. More specifically, for face recognition
on CelebA and FFHQ, we use VGG16 [40], IR152 [17],
and face.evoLve [9]–as SOTA face recognition model. For
digit classification on MNIST, we use a CNN with 3 con-
volutional layers and 2 pooling layers. Finally, for image
classification, following [7] we use VGG16 [40]. For a
fair comparison with VMI, we follow its design in [47] and
use ResNet-34 for face recognition CelebA, and ResNet-
10 for digit classification on MNIST. The details of the tar-
get models, augmented models and datasets used in exper-
iments are summarized in Table 2. We remark that when
comparing our proposed method with each of the SOTA MI
approaches, we use exactly the same target model and GAN
for both SOTA and our approach.

Evaluation Metrics. To evaluate the performance of a MI
attack, we need to assess whether the reconstructed image
exposes private information about a target label/identity. In
this work, following the literature, we conduct both qualita-
tive evaluations by visual inspection, and quantitative eval-
uations using different metrics, including:

• Attack Accuracy (Attack Acc). Following [7, 47, 52],
we use an evaluation model that predicts the label/identity
of the reconstructed image. Similar to previous works, the
evaluation model is different from the target model (dif-
ferent structure/ initialization seed), but it is trained on the
same private dataset (see Table 2). Intuitively, consider-
ing a highly accurate evaluation model, it can be viewed
as a proxy for human inspection [52]. Therefore, if the
evaluation model infers high accuracy on reconstructed
images, it means these images are exposing private infor-
mation about the private dataset, i.e. high attack accuracy.

• K-Nearest Neighbors Distance (KNN Dist). KNN Dist
indicates the distance between the reconstructed image
for a specific label/id and corresponding images in the
private training dataset. More specifically, it measures the
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shortest feature distance from the reconstructed image to
the real images in the private dataset, given a class/id. It is
measured as l2 distance between two images in the feature
space, i.e., the penultimate layer of the evaluation model.

+ LOM

Existing
SOTA

(Ours)
+ MA
(Ours)

Private

Data
Training

 () ()Attack 
Acc.

KNN 
Dist

80.53% 1247.28

92.47% 1168.55

84.73% 1220.23

92.93% 1138.62

KEDMI

+ LOMMA
(Ours)

Figure 4. Qualitative / Quantitative (Top1 Attack Acc., KNN Dist)
results to demonstrate the efficacy of our proposed method. We use
KEDMI [7] (SOTA), Dpriv = CelebA [33], Dpub = CelebA [33]
and M = IR152 [17]. As one can observe, our proposed method
achieves better reconstruction of private data both visually and
quantitatively (validated by KNN results) resulting in a significant
boost in attack performance.

4.2. Experimental Results

Comparison with previous state-of-the-art. We use GMI
[52], KEDMI [7], and VMI [47] as SOTA MI baselines.
We reproduce all baseline results using official public im-
plementations. We report results for GMI and KEDMI for
CelebA/ CelebA experiments in Table 3. We report VMI
results for CelebA/ CelebA experiments in Table 4. For
each baseline setup, we report results for 3 variants: • LOM
(Logit Maximization, Sec. 3.1), • MA (Model Augmenta-
tion, Sec. 3.2), • LOMMA (Logit Maximization + Model
Augmentation). The details are as follows:

1. + LOM (Ours): We replace existing identity loss, Lid

with our improved identity loss Llogit
id (Sec. 3.1).

2. + MA (Ours): We replace existing identity loss, Lid

with our proposed Laug
id (Sec. 3.2).

3. + LOMMA (Ours): We combine both Llogit
id (Sec. 3.1)

and Laug
id (Sec. 3.2) for model inversion.

As one can clearly observe from Table 3 and Table 4, our
proposed methods yield significant improvement in MI at-
tack accuracy in all experiment setups showing the efficacy
of our proposed methods. Further, by combining both our
proposed methods, we significantly boost attack accuracy.
The KNN results also clearly show that our proposed meth-
ods are able to reconstruct data close to the private training
data compared to existing SOTA MI algorithms. Particu-
larly, we improve the KEDMI baseline [7] attack accuracy
by 12.4% under IR152 target classifier. We show private

Table 3. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Following exact experi-
ment setups in [7], here Dpriv = CelebA, Dpub = CelebA, eval-
uation model = face.evoLve. We report top 1 accuracies, the im-
provement compared to the SOTA MI (Imp.), and KNN distance.
Top 5 attack accuracies are included in the Supplementary A.2.
The best results are in bold. By alleviating both these major prob-
lems in MI algorithms, we achieve new SOTA MI performance
(face.evoLve: 81.40% → 93.20%).

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
CelebA/CelebA/IR152

KEDMI 80.53 ± 3.86 - 1247.28
+ LOM (Ours) 92.47 ± 1.41 11.94 1168.55
+ MA (Ours) 84.73 ± 3.76 4.20 1220.23
+ LOMMA (Ours) 92.93 ± 1.15 12.40 1138.62
GMI 30.60 ± 6.54 - 1609.29
+ LOM (Ours) 78.53 ± 3.41 47.93 1289.62
+ MA (Ours) 61.20 ± 4.34 30.60 1389.99
+ LOMMA (Ours) 82.40± 4.37 51.80 1254.32

CelebA/CelebA/face.evoLve

KEDMI 81.40 ± 3.25 - 1248.32
+ LOM (Ours) 92.53 ± 1.51 11.13 1183.76
+ MA (Ours) 85.07 ± 2.71 3.67 1222.02
+ LOMMA (Ours) 93.20 ± 0.85 11.80 1154.32
GMI 27.07 ± 6.72 - 1635.87
+ LOM (Ours) 61.67 ± 4.92 34.60 1405.35
+ MA (Ours) 74.13 ± 4.32 47.06 1352.25
+ LOMMA (Ours) 82.33 ± 3.51 55.26 1257.50

CelebA/CelebA/VGG16

KEDMI 74.00 ± 3.10 - 1289.88
+ LOM (Ours) 89.07 ± 1.46 15.07 1218.46
+ MA (Ours) 82.00 ± 3.85 8.00 1248.33
+ LOMMA (Ours) 90.27 ± 1.36 16.27 1147.41
GMI 19.07 ± 4.47 - 1715.60
+ LOM (Ours) 69.67 ± 4.80 50.60 1363.81
+ MA (Ours) 51.73 ± 6.03 32.66 1467.68
+ LOMMA (Ours) 77.60 ± 4.64 58.53 1296.26

training data and reconstructed samples for KEDMI [7] un-
der IR152 target model including all 3 variants in Fig. 4. We
remark that in the standard CelebA benchmark, our method
boosts attack accuracy significantly thereby achieving more
than 90% attack accuracy (Table 3) for the first time in
contemporary MI literature. We also include CIFAR-10,
MNIST and additional results in Supplementary A.1.

Cross-dataset. Following [7], we conduct a series of ex-
periments to study the effect of distribution shift between
public and private data on attack performance and KNN dis-
tance. We use FFHQ [24] as the public dataset. In partic-
ular, we use FFHQ as public data for CelebA experiments.
We train GAN models and three model augmentations using
the public data. We remark that such setups closely replicate
real-world MI attack scenario. We report top 1 accuracy
and KNN distance for IR152, face.evoLve, and VGG16 tar-
get classifiers in Table 6. It is well known that baseline
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Table 4. We follow exact the experiment setup of [47] for VMI
experiments. Specifically, we use StyleGAN [23] and Flow model
[26] to learn the distribution of z. The best results are in bold.
Following exact experiment setups in [47], here Dpriv = CelebA,
Dpub = CelebA, target model = ResNet-34, evaluation model = IR-
SE50. We report top 1 attack accuracies, the improvement com-
pared to the SOTA MI (Imp.), and KNN distance (KNN Dist).
The top 5 attack accuracies are included in the Supplementary.
The best results are in bold. By alleviating both these major prob-
lems in MI algorithms, we improve the attack accuracy by 14.94%
(59.96% → 74.90%).

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
CelebA/CelebA/ResNet-34

VMI 59.96 ± 0.27 - 1.144
+ LOM (Ours) 68.34 ± 0.36 8.38 1.131
+ MA (Ours) 64.16 ± 0.27 4.20 1.140
+ LOMMA (Ours) 74.90 ± 0.34 14.94 1.109

Table 5. Results for SOTA defense model BiDO-HSIC [36]: Fol-
lowing exact experiment setups in BiDO-HSIC, Dpriv = CelebA,
Dpub = CelebA, evaluation model = face.evoLve, target model =
BiDO-HSIC. We report top 1 attack accuracies (Attack Acc.), and
KNN distance (KNN Dist).

Method GMI KEDMI
Attack Acc ↑ KNN Dist ↓ Attack Acc ↑ KNN Dist ↓

No Def. 19.07 ± 4.47 1715.60 74.00 ± 3.10 1289.88
Def. Model 5.20 ± 2.75 1962.58 42.80 ± 5.02 1469.75
+ LOM (Ours) 55.80 ± 3.64 1397.05 64.33 ± 1.82 1360.57
+ MA (Ours) 23.93 ± 5.50 1634.84 49.27 ± 4.02 1413.81
+ LOMMA (Ours) 62.13 ± 4.04 1358.54 70.47 ± 2.36 1293.25

attack performances will degrade due to distribution shift
between public and private data [7]. But we remark that our
proposed methods consistently improves the baseline SOTA
attack performances. i.e. Our method boosts the attack ac-
curacy of IR152 target model from 52.87% → 77.27%.

MI under SOTA defense models. We further evaluate our
method on SOTA MI defense models provided by BiDO-
HSIC [36]. Specifically, we use the exact GAN and de-
fense models provided by BiDO-HSIC which are trained
on CelebA dataset. We then transfer knowledge from the
defense model to Maug = {Efficientnet-B0, Efficientnet-
B1, Efficientnet-B2} using Dpub. Results using GMI and
KEDMI are shown in Table 5. We observe that SOTA de-
fense BiDO-HSIC is rather ineffective for our proposed MI.

5. Discussion
Conclusion. We revisit SOTA MI and study two issues per-
taining to all SOTA MI approaches. First, we analyze exist-
ing identity loss in SOTA and argue that it is sub-optimal
for MI. We propose a new logit based identity loss that
aligns better with the goal of MI. Second, we formalize the
concept of MI overfitting and show that it has a consider-
able impact even in SOTA. Inspired by conventional data
augmentation, we propose model augmentation to allevi-
ate MI overfitting. Extensive experiments demonstrate that

Table 6. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Here Dpriv = CelebA,
Dpub = FFHQ, evaluation model = face.evoLve. We report top
1 accuracies, the improvement compared to the SOTA MI (Imp.),
and KNN distance. Top 5 attack accuracies are included in the
Supplementary. The best results are in bold. By alleviating both
these major problems in MI algorithms, we improve the attack ac-
curacy 24.40% (IR152: 52.87% → 77.27%).

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
CelebA/FFHQ/IR152

KEDMI 52.87 ± 4.96 - 1418.83
+ LOM (Ours) 67.73 ± 2.29 14.86 1325.28
+ MA (Ours) 64.13 ± 4.49 11.26 1373.42
+ LOMMA (Ours) 77.27 ± 2.01 24.40 1292.80
GMI 17.20 ± 5.31 - 1701.76
+ LOM (Ours) 56.00 ± 5.20 38.80 1427.59
+ MA (Ours) 50.80 ± 6.89 33.60 1462.92
+ LOMMA (Ours) 72.00 ± 6.62 54.80 1338.35

CelebA/FFHQ/face.evoLve
KEDMI 51.87 ± 3.88 - 1440.19
+ LOM (Ours) 69.73 ± 2.47 17.86 1379.73
+ MA (Ours) 65.73 ± 3.51 13.86 1379.09
+ LOMMA (Ours) 73.20 ± 2.24 21.33 1321.00
GMI 14.27 ± 4.42 - 1744.47
+ LOM (Ours) 47.93 ± 4.87 33.66 1498.19
+ MA (Ours) 46.07 ± 4.88 31.80 1500.10
+ LOMMA (Ours) 64.33 ± 4.69 50.06 1386.33

CelebA/FFHQ/VGG16
KEDMI 41.27 ± 3.50 - 1490.09
+ LOM (Ours) 55.07 ± 1.88 13.80 1438.72
+ MA (Ours) 52.07 ± 2.92 10.80 1428.77
+ LOMMA (Ours) 62.67 ± 2.29 21.40 1366.94
GMI 10.93 ± 3.47 - 1766.27
+ LOM (Ours) 44.40 ± 5.96 33.47 1508.84
+ MA (Ours) 34.93 ± 4.52 24.00 1547.93
+ LOMMA (Ours) 58.73 ± 6.18 47.80 1415.06

our solutions can improve SOTA significantly, achieving for
the first time over 90% attack accuracy under the standard
benchmark. Our findings highlight rising threats based on
MI and prompt serious consideration on privacy of machine
learning.

Limitations and Ethical Concerns. We follow previous
work in experimental setups. The scale of our experiments
is comparable to previous works. Furthermore, extension of
our methods for blackbox/ label-only attacks can be consid-
ered in future. While our improved MI methods could have
negative societal impacts if it is used by malicious users,
our work contributes to increased awareness about privacy
attacks on DNNs.
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ity details to support our findings. We provide Pytorch
code, demo and pre-trained models (target models/ evalu-
ation models/ augmented models) at: https://ngoc-
nguyen-0.github.io/re-thinking_model_
inversion_attacks/.
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A. Additional experimental results
In this section, we provide additional experimental re-

sults that are not included in the main paper. More specifi-
cally, first, we evaluate the effect of the proposed method on
improving SOTA approaches in new tasks including image
classification and digit classification. Then, we use alterna-
tive metrics for evaluating SOTA MI approaches with and
without proposed improvements on identity loss Lid. The
additional experimental results in this section further sup-
port effectiveness of the proposed approach on improving
MI attacks.

A.1. Experimental results on CIFAR-10 and
MNIST

In Sec. 4.2 of the main paper, we mostly focus on the
face recognition task (on the CelebA dataset) and show

https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/


that the proposed method significantly improves SOTA ap-
proaches by increasing Attack Acc (inference accuracy on
reconstructed samples by an evaluation model; see Sec. 4.1.
of the main paper) and decreasing KNN Dist (distance be-
tween the reconstructed samples of a specific class/id and
corresponding data in the private dataset Dpriv; see Sec.
4.1).

Table A.1. We report top 1 accuracies, the improvement compared
to the SOTA MI (Imp.), and KNN distance for two experiment
setups. Following exact experiment setups in [7]. For CIFAR-
10 experiments, Dpriv = CIFAR-10, Dpub = CIFAR-10, Mt =
VGG16, evaluation model = ResNet-18. For MNIST experiments,
Dpriv = MNIST, Dpub = MNIST, Mt = CNN(Conv3), evaluation
model = CNN(Conv5). The best results are in bold.

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
CIFAR-10/CIFAR-10/VGG16

KEDMI 95.2 ± 7.96 - 78.24
+ LOM (Ours) 100 ± 0 4.80 52.12
+ MA (Ours) 100 ± 0 4.80 53.17
+ LOMMA (Ours) 100 ± 0 4.80 63.41
GMI 43.20 ± 19.80 - 96.11
+ LOM (Ours) 80.80 ± 14.65 37.60 70.47
+ MA (Ours) 80.00 ± 18.01 36.80 93.46
+ LOMMA (Ours) 95.20 ± 7.96 52.00 80.30

MNIST/MNIST/CNN(Conv3)

KEDMI 46.40 ± 14.65 - 120.99
+ LOM (Ours) 55.20 ± 8.94 8.80 100.18
+ MA (Ours) 75.20 ± 6.57 28.80 72.38
+ LOMMA (Ours) 100.00 ± 0.00 53.60 58.81
GMI 8.00 ± 1.52 - 126.61
+ LOM (Ours) 15.20 ± 15.12 7.20 161.90
+ MA (Ours) 66.40 ± 19.86 58.40 78.38
+ LOMMA (Ours) 80.80 ± 17.38 72.80 83.56

Table A.2. We follow exact the experiment setup of [47] for the
VMI experiments. Specifically, we use DCGAN and Flow model
to learn the distribution of z.

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
MNIST/EMNIST/ResNet-10

VMI 94.60 ± 0.13 - 68.53
+ LOM (Ours) 98.60 ± 0.09 4.00 88.13
+ MA (Ours) 98.98 ± 0.02 4.38 58.81
+ LOMMA (Ours) 100.00 ± 0.00 5.40 52.62

In this section, we provide results for other tasks. More
specifically, as mentioned in Sec. 4.1, for GMI [52], and
KEDMI [7], following their own setup, we use digit classi-
fication task MNIST dataset, and object classification task
on the CIFAR-10 dataset. For each task, Table A.1 tabulates
the performance of the SOTA approach together with three
variants of our proposed approach:

1. + LOM (Ours): We replace existing identity loss, Lid

with our improved identity loss Llogit
id (Sec. 3.1).

2. + MA (Ours): We replace existing identity loss, Lid

with our proposed Laug
id (Sec. 3.2).

3. + LOMMA (Ours): We combine both Llogit
id and Laug

id

for model inversion.

As one can see, on average each of the proposed solutions
drastically improves the SOTA approaches, and combining
these two solutions works even better.

Table A.3. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Following exact experi-
ment setups in [7], here Dpriv = CelebA, Dpub = CelebA, eval-
uation model = face.evoLve. We report top-5 accuracies, the im-
provement compared to the SOTA MI (Imp.), and FID scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/CelebA/IR152

KEDMI 98.00 ± 1.96 - 28.06
+ LOM (Ours) 98.67 ± 0.00 0.67 39.03
+ MA (Ours) 98.33 ± 1.19 0.33 28.38
+ LOMMA (Ours) 98.67 ± 0.37 0.67 36.78
GMI 55.67 ± 7.14 - 57.11
+ LOM (Ours) 93.00 ± 3.41 37.33 48.87
+ MA (Ours) 89.00 ± 4.10 33.33 45.24
+ LOMMA (Ours) 97.67 ± 2.41 42.00 45.02

CelebA/CelebA/face.evoLve

KEDMI 97.33 ± 1.73 - 31.26
+ LOM (Ours) 99.33 ± 0.18 2.00 42.45
+ MA (Ours) 98.00 ± 0.94 0.67 32.08
+ LOMMA (Ours) 99.33 ± 0.33 2.00 38.69
GMI 45.33 ± 8.05 - 59.76
+ LOM (Ours) 84.33 ± 4.49 39.00 44.27
+ MA (Ours) 92.00 ± 2.25 46.67 51.15
+ LOMMA (Ours) 93.67 ± 2.42 48.33 44.07

CelebA/CelebA/VGG16

KEDMI 93.33 ± 3.36 - 25.46
+ LOM (Ours) 99.00 ± 0.18 5.67 34.45
+ MA (Ours) 95.33 ± 1.60 2.00 24.65
+ LOMMA (Ours) 98.00 ± 0.61 4.67 33.91
GMI 40.33 ± 4.74 - 58.03
+ LOM (Ours) 89.33 ± 2.73 49.00 46.40
+ MA (Ours) 81.33 ± 5.88 41.00 44.90
+ LOMMA (Ours) 95.67 ± 2.16 55.34 43.21

Additionally, as mentioned in Sec. 4.1, for VMI [47],
following the setup in [47], we evaluate its performance for
digit classification on MNIST, and improvement brought by
the proposed method. Note that for a fair comparison, fol-
lowing VMI implementation in [47], in this experiment we
use EMNIST [11] as public dataset Dpub to acquire prior
knowledge. Results are shown in Table A.2 for three vari-
ants of our proposed method, which indicates better per-
formance in terms of both attack accuracy (reaching 100%
attack accuracy) and decreasing KNN Distance.
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A.2. Experimental Results with Additional Metrics

As mentioned in Sec. 4.1 of the main paper, Attack
Acc and KNN Dist are common metrics used in literature
to evaluate the MI attacks. In this section, we include re-
sults on two additional metrics namely: Top-5 Attack Acc
and FID [18]. Results in Table A.3, Table A.4, and Table
A.5 show that the proposed method achieves better perfor-
mance in terms of Top-5 Attack Acc, and FID value.

Table A.4. We report the results for VMI . Following exact exper-
iment setups in [47], here Dpriv = CelebA, Dpub = CelebA, Mt =
ResNet-34, evaluation model = IR-SE50. We report top-5 accura-
cies, the improvement compared to the SOTA MI (Imp.), and FID
scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/CelebA/ResNet-34

VMI 82.32 ± 0.21 - 16.82
+ LOM (Ours) 86.56 ± 0.27 4.24 25.42
+ MA (Ours) 86.16 ± 0.19 3.84 17.60
+ LOMMA (Ours) 91.02 ± 0.22 8.70 23.56

B. Ablation Study

B.1. Different number of augmented models Maug

In Sec 3.2, we propose a model augmentation idea with
augmented models Maug . Here, we experiment using a dif-
ferent number of networks for Maug . Table B.1 show that
increasing the number of the augmented models will im-
prove attack accuracy. We use 3 augmented models in our
main result as this configuration achieves a good tradeoff in
accuracy and computation.

B.2. Different network architectures for Maug

In this section, we provide additional results by using
different structures for augmenting the target model using
Maug in the MI process. Note that the architecture of all
these models is different from the one used for target model
Mt.

More specifically, we use three different combinations
for Maug , each of which contains three models: (i)
{EfficientNet-B0, EfficientNet-B1, EfficientNet-B2}, and
(ii) {DenseNet121, DenseNet161, DenseNet169}, and (iii)
{EfficientNet-B0, DenseNet121, MobileNetV3}. Results
in Table B.2 shows that +MA (Ours) consistently improves
the attack accuracy and KNN distance with different net-
work architectures.

B.3. The effect of different sizes of public dataset

We conduct additional experiments using different sizes
of Dpub (10%, 50%) to emulate the different quality of prior

Table A.5. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Following exact experi-
ment setups in [7], here Dpriv = CelebA, Dpub = FFHQ, evalu-
ation model = face.evoLve. We report top-5 accuracies, the im-
provement compared to the SOTA MI (Imp.), and FID scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/FFHQ/IR152

KEDMI 85.33 ± 4.01 - 41.71
+ LOM (Ours) 88.67 ± 1.18 3.33 50.84
+ MA (Ours) 87.67 ± 2.28 2.33 39.88
+ LOMMA (Ours) 92.00 ± 0.57 6.60 45.67
GMI 36.33 ± 3.98 - 47.72
+ LOM (Ours) 80.33 ± 4.21 44.00 40.18
+ MA (Ours) 84.00 ± 5.35 47.67 35.41
+ LOMMA (Ours) 90.33 ± 3.16 54.00 37.58

CelebA/FFHQ/face.evoLve

KEDMI 80.67 ± 2.83 - 38.09
+ LOM (Ours) 91.33 ± 0.47 10.67 47.30
+ MA (Ours) 88.67 ± 2.44 8.00 35.94
+ LOMMA (Ours) 94.00 ± 0.68 13.33 47.51
GMI 33.33 ± 6.18 - 52.84
+ LOM (Ours) 74.67 ± 4.78 41.33 44.01
+ MA (Ours) 72.00 ± 4.64 38.67 35.58
+ LOMMA (Ours) 89.00 ± 2.73 55.67 40.03

CelebA/FFHQ/VGG16

KEDMI 74.00 ± 4.05 - 36.18
+ LOM (Ours) 81.67 ± 1.19 7.67 43.76
+ MA (Ours) 80.33 ± 3.27 6.33 35.02
+ LOMMA (Ours) 85.33 ± 1.98 11.33 40.26
GMI 25.67 ± 5.13 - 53.17
+ LOM (Ours) 70.67 ± 3.92 45.00 42.60
+ MA (Ours) 62.33 ± 5.36 36.67 36.04
+ LOMMA (Ours) 86.33 ± 5.17 60.67 35.59

information. The results for KEDMI [7] are shown in Table
B.3. The key observations are:

• Baseline attack accuracies are poorer under limited Dpub,
i.e. Dpub = 10%.

• Our proposed method can outperform existing SOTA un-
der varying degrees of prior information although the im-
provement obtained by KD is marginal under Dpub =
10%.

C. Additional analysis and details on experi-
mental setups

C.1. Details on combining Llogit
id and Laug

id

We provide details of combining Llogit
id and Laug

id . We
substitute Llogit

id (Eqn. 3 of main paper) into Laug
id (Eqn. 4

of main paper) for an inversion targeting class k of the target
model Mt, using augmented model M (i)

aug . In particular,
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Table B.1. We report top-1 attack accuracies, the improvement compared to the SOTA MI (Imp.), and KNN distance for using different
numbers Naug of network Maug . Following exact experiment setups in [7], here method = KEDMI, Dpriv = CelebA, Dpub = CelebA,
Mt = IR152, evaluation model = face.evoLve. We select Maug from the set of 4 networks including EfficientNet-B0, EfficientNet-B1,
EfficientNet-B2, EfficientNet-B3. The number of network Maug increases from 0 (Baseline KEDMI) to 4. It shows that using more Maug

improves the attack accuracy and KNN distance.

Method Naug Maug Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - - 80.53 ± 3.86 - 1247.28
+ MA 1 EfficientNet-B0 81.20 ± 3.75 0.67 1234.16
+ MA 2 EfficientNet-B0, EfficientNet-B1 84.47 ± 2.99 3.94 1223.56
+ MA 3 EfficientNet-B0, EfficientNet-B1, EfficientNet-B2 84.73 ± 3.76 4.20 1220.23
+ MA 4 EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3 85.87 ± 2.63 5.34 1217.15

Table B.2. We report top-1 attack accuracies, the improvement compared to the SOTA MI (Imp.), and KNN distance for different structures
of network Maug . Following exact experiment setups in [7], here method = KEDMI, Dpriv = CelebA, Dpub = CelebA, Mt = IR152,
evaluation model = face.evoLve. We select different network architectures for our experiment. Specifically, we use Ours-1 = {EfficientNet-
B0 [43], EfficientNet-B1 [43], EfficientNet-B2 [43]}, Ours-2 = {DenseNet121 [21], DenseNet161 [21], DenseNet169 [21]}, Ours-3 =
{EfficientNet-B0, DenseNet121 [21], MobileNetV3-large [20]}. It shows that using different network architectures Maug consistently
improves the attack accuracy and KNN distance.

Method Maug Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - 80.53 ± 3.86 - 1247.28
+ MA (Ours-1) EfficientNet-B0, EfficientNet-B1, EfficientNet-B2 84.73 ± 3.76 4.20 1220.23
+ MA (Ours-2) DenseNet121, DenseNet161, DenseNet169 89.07 ± 3.32 8.54 1211.73
+ MA (Ours-3) EfficientNet-B0, DenseNet121, MobileNetV3-large 86.53 ± 1.98 6.00 1204.94

starting from Eqn. 4 of the main paper:

Laug
id (x; y) = γt · Lid(x; y,Mt)

+γaug ·
Naug∑
i=1

Lid(x; y,M
(i)
aug)

= γt · Llogit
id (x; y,Mt)

+γaug ·
Naug∑
i=1

Llogit
id (x; y,M (i)

aug)

= γt · (−pT
t wt,k + λ||pt − preg||22)

+γaug ·
Naug∑
i=1

(−(p(i)
aug)

T (w(i)
aug,k)

+λ||p(i)
aug − preg||22)

≈ γt · (−pT
t wt,k)

+γaug ·
Naug∑
i=1

(−(p(i)
aug)

T (w(i)
aug,k))

+λ′||pt − preg||22 (5)

Here, pt, wt,k are penultimate layer activation and last layer
weight for the target model Mt; p(i)

aug , w(i)
aug,k are penul-

timate layer activation and last layer weight for the aug-

mented model M (i)
aug . Note that one regularization is suf-

ficient as shown in the last step. Eqn. 5 above is used in
Eqn. 1 of the main paper in the inversion step using the
proposed method.

C.2. Details on improving KEDMI baseline

We apply a simple technique that is introduced by GMI
[52] to get better results for KEDMI [7]. Specifically, after
model inversion, and sampling z from the learned distribu-
tion, we clip all elements of z into [−1, 1], which is shown
to be beneficial in [52]. In Table C.1, we observe that clip-
ping z help to boost the attack accuracy of KEDMI and the
reconstructed images are more similar to the private dataset
as KNN distances are reduced. Therefore, for all the exper-
iments with KEDMI in the main paper and Supp, we clip z
to get better results and we compare with this better version
of KEDMI.

C.3. Additional details on computing preg

In Sec. 3.1, we propose an improved formulation for
identity loss Llogit

id which includes a regularization term
||p − preg||22 to prevent unbound growth of norm during
optimization. Here we provide additional details on com-
puting preg .

Given that the attacker has no access to private training
data, we estimate preg by a simple method using public
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Table B.3. Sensitivity of the proposed method to prior information, Dpub: We use Dpriv/Dpub = CelebA, Mt = face.evoLve, evaluation
= face.evoLve and KEDMI [7]. We report top 1 MI attack accuracy and KNN distance using 10%, 50% and 100% of Dpub. As GAN is
trained on Dpub, it affects the baseline KEDMI and our proposed method. The results show that + LOM and + MA consistently improve
upon the baseline.

Dpub = 10% Dpub = 50% Dpub = 100%

Attack Acc ↑ KNN Dist ↓ Attack Acc ↑ KNN Dist ↓ Attack Acc ↑ KNN Dist ↓
KEDMI 58.33 ± 5.25 1450.06 79.07 ± 3.76 1265.37 81.40 ± 3.25 1248.32
+ LOM (Ours) 67.27 ± 1.83 1395.38 89.27 ± 0.96 1202.45 92.53 ± 1.51 1183.76
+ MA (Ours) 61.80 ± 3.03 1421.83 82.20 ± 2.77 1244.21 85.07 ± 2.71 1222.02
+ LOMMA (Ours) 74.40 ± 2.21 1328.79 89.67 ± 0.76 1170.37 93.20 ± 0.85 1154.32

Table C.1. We apply a simple technique that is introduced by GMI [52] to get better baseline results for KEDMI [7]. We report the results
for KEDMI with and without z clipping for IR152, face.evoLve, and VGG16 target model. Following exact experiment setups in [7], here
Dpriv = CelebA, Dpub = CelebA, evaluation model = face.evoLve. We report top-1 attack accuracies, the improvement compared to the
SOTA MI (Imp.), and KNN distance. The improvement using z clipping is clear.

Method Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI w/o z clipping 78.53 ± 3.45 - 1270.87
KEDMI with z clipping 80.53 ± 3.86 2.00 1247.28

CelebA/CelebA/face.evoLve
KEDMI w/o z clipping 78.00 ± 4.09 - 1290.62
KEDMI with z clipping 81.40 ± 3.25 3.40 1248.32

CelebA/CelebA/VGG16
KEDMI w/o z clipping 67.93 ± 4.24 - 1345.03
KEDMI with z clipping 74.00 ± 3.10 6.07 1289.88

data. We firstly construct the set of penultimate layer fea-
tures of public data using the target model and estimate the
mean µpen and variance σ2

pen:

µpen =
1

N

N∑
i=1

Mpen(xi) (6)

σ2
pen =

1

N

N∑
i=1

(Mpen(xi)− µpen)
2 (7)

where xi is a sample from public dataset Dpub, and Mpen()
operator returns the penultimate layer representations of the
target model Mt for a given input x. We analyze two ways
to estimate preg as follow:

• Fixed preg where preg = µpen.

• preg is sampled using the prior distribution
N (µpen, σpen).

Empirically, we use N = 5, 000 images from the public
dataset Dpub to estimate µpen and σpen. The results show
that using preg which is sampled from N (µpen, σpen) gives
better performance than using fixed preg = µpen (see Table
C.2). Therefore, all the results reported in the main paper

Table C.2. We report the results for KEDMI using a fixed preg

or sampling from a distribution approximated for preg . We use
three different target models: IR152, face.evoLve, and VGG16.
Following exact experiment setups in [7], here Dpriv = CelebA,
Dpub = CelebA, evaluation model = face.evoLve. We report top-
1 attack accuracies, the improvement compared to the SOTA MI
(Imp.), and KNN distance.

Method Attack Acc ↑ KNN dist ↓
CelebA/CelebA/IR152

+ LOM (Fixed preg) 92.27 ± 1.37 1155.92
+ LOM (Ours) 92.47 ± 1.41 1168.55

CelebA/CelebA/face.evoLve
+ LOM (Fixed preg) 90.40 ± 1.68 1257.95
+ LOM (Ours) 92.53 ± 1.51 1183.76

CelebA/CelebA/VGG16
+ LOM (Fixed preg) 85.60 ± 1.79 1259.60
+ LOM (Ours) 89.07 ± 1.46 1218.46

use the preg ∼ N (µpen, σpen). We remark again that preg

is estimated from public dataset.
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Table C.3. We report the results for KEDMI with different λ val-
ues using IR152 as target model. Following exact experimental
setups in [7], here Dpriv = CelebA, Dpub = CelebA, evaluation
model = face.evoLve. We report top-1 attack accuracies, the im-
provement compared to the SOTA MI (Imp.), and KNN distance.

Method λ Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - 80.53 ± 3.86 - 1247.28
+ LOM 0 90.33 ± 1.64 9.80 1198.39
+ LOM 0.5 89.53 ± 1.21 9.00 1175.35
+ LOM 1.0 92.47 ± 1.41 11.94 1168.55
+ LOM 2.0 91.87 ± 1.09 11.34 1125.54
+ LOM 10.0 85.80 ± 1.24 5.27 1110.80

C.4. Details on regularization parameter λ

In Sec 3.1 of the main paper, the regularization term
||p − preg||22 includes a parameter λ which controls the ef-
fect of this term. In this section, we evaluate the effect
of this parameter by examining different values of λ on
model inversion performance. Results in Table C.3 show
that attack accuracy is improved over SOTA KEDMI with
our proposed logit loss even without the regularization term
(λ = 0). However, we get better results if the regularization
is added e.g. λ = 1.0. Due to its better performance, we use
λ = 1.0 in all experiments with the proposed method.

C.5. Computational overhead

In order to investigate the computational overhead intro-
duced by our proposed method, in this section, we report
the running time for reconstructing images of 300 identi-
ties on CelebA/CelebA/IR152 setup for KEDMI and GMI,
and 100 identities on CelebA/CelebA/ResNet-34 for VMI.
All the experiments of KEDMI and GMI are performed on
an NVIDIA GeForce RTX 3090 GPU, and the experiments
of VMI are performed on an NVIDIA RTX A5000 GPU.
The results in Table C.4 show that + LOM does not affect
the training time compared to the baseline. However, + MA
adds some computational overhead as it uses additional net-
works Maug during the inversion.

C.6. Hyperparameters

In the experiments of GMI and KEDMI, we do the inver-
sion using SGD optimizer with the learning rate lr = 0.02
in 2400 iterations which are used from the released code
of KEDMI 2. We set γt = γaug = 100/(Naug + 1) and
λ = 100, where Naug is the number of models used for
augmented model Maug . We estimate preg for each clas-
sifier by using N = 5, 000 images from the public dataset
Dpub. In the experiments of VMI, we use 20 epochs (equal
to 3120 iterations) to learn the distribution of each identity.

2https://github.com/SCccc21/Knowledge-Enriched-DMI

Table C.4. Computational complexity of different algorithms in
terms of average running time (GPU hours) using single GPU. We
use KEDMI, GMI, and VMI approaches as the baseline. We have
also included the running time Ratio when compared to the corre-
sponding baseline.

Method RunTime (hrs) Ratio

KEDMI 0.35 1.00
+ LOM (Ours) 0.35 1.00
+ MA (Ours) 0.60 1.71
+ LOMMA (Ours) 0.60 1.72

GMI 1.61 1.00
+ LOM (Ours) 1.61 1.00
+ MA (Ours) 2.83 1.76
+ LOMMA (Ours) 2.85 1.77

VMI 364.67 1.00
+ LOM (Ours) 368.24 1.01
+ MA (Ours) 368.69 1.01
+ LOMMA (Ours) 379.41 1.04

C.7. Dataset

Experiments of KEDMI and GMI. We follow exact
experimental setups in [7]. For the CelebA task, we use
the dataset divided by [7] for all of the experiments. In
particular, the private dataset has 30,027 images of 1000
identities and the public dataset has 30000 images that are
non-overlapping identities with the private dataset. In the
experiments in Table 5 (main paper), we use FFHQ [24]
as the public dataset to train GAN and distill knowledge to
augmented models. For MNIST and CIFAR-10 tasks, the
private dataset contains images with labels from 0 to 4 and
the public dataset includes the rest of the dataset with labels
from 5 to 9.

Experiments of VMI. We follow exact experimental
setup in [47]. We use the CelebA dataset and MNIST
dataset for VMI experiments. For CelebA, we follow [47] to
divide the dataset into two parts. The first part contains im-
ages of 1000 most frequent identities which uses as private
dataset. The rest of dataset is used as public dataset. For
the experiments on MNIST dataset, we use EMNIST [11]
as public dataset to train GAN and Maug .

D. Additional Visualizations

D.1. Additional Results for GMI

Similar to results reported for KEDMI (Figure 4, main
paper), in this section, we show results for GMI [52] under
IR152 target classifier to show the efficacy of our proposed
methods. The result is shown in Figure D.1.
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Figure D.1. Qualitative / Quantitative (Top1 Attack Acc., KNN
Dist) results to demonstrate the efficacy of our proposed method.
We use GMI [52], Dpriv = CelebA [33], Dpub = CelebA [33]
and M = IR152 [17]. As one can observe, our proposed method
achieves better reconstruction of private data both visually and
quantitatively (validated by KNN results) resulting in a significant
boost in attack performance.

D.2. Penultimate layer visualization for GMI,
KEDMI and VMI

In this section, we show additional penultimate layer
visualizations to support our formulation of Llogit

id as an
improved MI Identity Loss. We show visualizations for
GMI [52] and VMI [47] in Figures D.2 and D.5 respectively.
Further, we show penultimate layer visualization for an ad-
ditional target classifier, face.evoLve using KEDMI [7] in
Figure D.8 to validate our findings.

D.3. Our reconstruction results

Given that the goal of MI is to reconstruct private train-
ing data, in this section, we show reconstructed samples for
5 additional setups using our proposed method. We show
reconstruction results using GMI [52] and VMI [47] in Fig-
ures D.7 and D.9 respectively. Further, we show additional
reconstruction results for GMI and KEDMI using a differ-
ent target classifier (face.evoLve) in Figures D.3 and D.4
to validate the efficacy of our proposed method. Finally,
we show reconstruction results for Cross-dataset MI in Fig-
ure D.6. We remark that cross-dataset MI is a challenging
attack setup due to large distribution shift between private
and public data. Following [47], we use FFHQ [24] as the
public dataset. To conclude, we remark that the samples re-
constructed using our proposed method closely resembles
the private training data in many instances, and this is quan-
titatively validated using MI attack accuracy.

E. Additional Related work

Given a trained model, Model Inversion (MI) aims to
extract information about training data. Fredrikson et al.

[14] propose one of the first methods for MI. The authors
found that attackers can extract genomic and demographic
information about patients using the ML model. In [13],
Fredrikson et al. extended the problem to the facial recog-
nition setup where the authors can recover the face images.
In [49], Yang et al. proposed adversarial model inversion
which uses the target classifier as an encoder to produce a
prediction vector. A second network takes the prediction
vector as the input to reconstruct the data.

Instead of performing MI attacks directly on high-
dimensional space (e.g. image space), recent works have
proposed to reduce the search space to latent space by train-
ing a deep generator [7,47,48,52]. In particular, a generator
is trained on an auxiliary dataset that has a similar structure
to the target image space. In [52], the authors proposed
GMI which uses a pretrained GAN to learn the image struc-
ture of the auxiliary dataset and finds the inversion images
through the latent vector of the generator. Chen et al. [7]
extend GMI by training discriminator to distinguish the real
and fake samples and to be able to predict the label as the
target model. Furthermore, the authors proposed modeling
the latent distribution to reduce the inversion time and im-
prove the quality of reconstructed samples. VMI [47] pro-
vides a probabilistic interpretation for MI and proposes a
variational objective to approximate the latent space of tar-
get data.

Zhao et al. [53] propose to embed the information of
model explanations for model inversion. A model explana-
tion is trained to analyze and constrain the inversion model
to learn useful activations. Another MI attack type is called
label-only MI attacks which attackers only access the pre-
dicted label without a confidence probability [10, 22]. Re-
cently, Kahla et al. [22] propose to estimate the direction
to reach the target class’s centroid for an MI attack. In
this work, we instead focus on a different problem and pro-
pose two improvements to the identity loss which is com-
mon among all SOTA MI approaches. In future work,
we hope to explore model inversion for different tasks in-
cluding multimodal learning and data-centric applications
[4, 5, 16, 25, 27, 32, 37, 46, 51].
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Figure D.2. Visualization of the penultimate layer representations (Dpriv = CelebA [33], Dpub = CelebA [33], Mt = IR152 [17], Evaluation
Model = face.evoLve [8], Inversion iterations = 2400) for private training data and reconstructed data using GMI [52]. Following exact
evaluation protocol in [7], we use face.evoLve [8] to extract representations. We show results for 3 randomly chosen identity. We include
KNN distance (for different iterations) and final attack accuracy following the protocol in [7]. For each identity, we also include a randomly
selected private training data and the closest reconstructed sample at iteration=2400. 1⃝ Identity loss in SOTA MI methods [7, 47, 52]
(Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations during inversion, we observe 2 instances (e.g.
target identity 57 and 232) where GMI [52] (using Eqn. 2, main paper for identity loss) is unable to reconstruct data close to private training
data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed identity loss, Llogit

id (Eqn. 3, main
paper), can effectively guide reconstruction of data close to private training data (Bottom). This can be clearly observed using both
penultimate layer representations and KNN distances for all 3 target classes 57, 143 and 232. Best viewed in color.
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Figure D.3. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [33], Dpub = CelebA
[33], Mt = face.evoLve [8], Evaluation Model = face.evoLve [8], Inversion iterations = 2400) using GMI [52]. We remark that these results
are obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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Figure D.4. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [33], Dpub = CelebA
[33], Mt = face.evoLve [8], Evaluation Model = face.evoLve [8], Inversion iterations = 2400) using KEDMI [7]. We remark that these
results are obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper). We remark that in the standard CelebA

benchmark, our method boosts attack accuracy significantly, achieving more than 90% attack accuracy for the first time in contemporary
MI literature.
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Figure D.5. Visualization of the penultimate layer representations (Dpriv = CelebA [33], Dpub = CelebA [33], Mt = ResNet34 [47],
Evaluation Model = IR-SE50 [47], Inversion epochs = 30) for private training data and reconstructed data using VMI [47]. Following exact
evaluation protocol in [47], we use IR-SE50 to extract representations. We show results for 3 randomly chosen identity. We include KNN
distance and final attack accuracy. Given that we strictly follow [47], we remark that due to the use of IR-SE50 evaluation classifier to
extract penultimate layer representations, the features have different scales resulting in lower KNN distances (compared to KEDMI and
GMI results). For each identity, we include a randomly selected private training data and the closest reconstructed sample (epoch = 30).
1⃝ Identity loss in SOTA MI methods [7,47,52] (Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations

during inversion, we observe an instance (e.g. target identity 29) where VMI [47] (using Eqn. 2, main paper for identity loss) is unable to
reconstruct data close to private training data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed
identity loss, Llogit

id (Eqn. 3, main paper), can effectively guide reconstruction of data close to private training data (Bottom). This
can be observed using penultimate layer representations and KNN distances for all 3 target classes 29, 28 and 42. Best viewed in color.
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Figure D.6. Cross-dataset MI results. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv =
CelebA [33], Dpub = FFHQ [24], Mt = IR152 [17], Evaluation Model = face.evoLve [8], Inversion iterations = 2400) using KEDMI [7].
Cross-dataset MI is a challenging setup due to the large distribution shift between private and public data. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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Figure D.7. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [33], Dpub = CelebA
[33], Mt = IR152 [17], Evaluation Model = face.evoLve [8], Inversion iterations = 2400) using GMI [52]. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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Figure D.8. Visualization of the penultimate layer representations (Dpriv = CelebA [33], Dpub = CelebA [33], Mt = VGG16 [40],
Evaluation Model = face.evoLve [8], Inversion iterations = 2400) for private training data and reconstructed data using KEDMI [7].
Following exact evaluation protocol in [7], we use face.evoLve [8] to extract representations. We show results for 3 randomly chosen
identity. We include KNN distance (for different iterations) and final attack accuracy following the protocol in [7]. For each identity, we
also include a randomly selected private training data and the closest reconstructed sample at iteration=2400. 1⃝ Identity loss in SOTA
MI methods [7, 47, 52] (Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations during inversion, we
observe 2 instances (e.g. target identity 207 and 116) where KEDMI [7] (using Eqn. 2, main paper for identity loss) is unable to reconstruct
data close to private training data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed identity
loss, Llogit

id (Eqn. 3, main paper), can effectively guide reconstruction of data close to private training data (Bottom). This can be
clearly observed using both penultimate layer representations and KNN distances for all 3 target classes 50, 207 and 116. Best viewed in
color.
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Figure D.9. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [33], Dpub = CelebA
[33], Mt = ResNet34 [47], Evaluation Model = IR-SE50 [12], Inversion epochs = 30) using VMI [47]. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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