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Figure 1. PixHt-Lab renders realistic reflection and soft shadows on general shadow receivers for 2D cutouts. (a) shows the object cutout
and composition background. (b) SSN [45] cannot render soft shadows on walls due to its ground plane assumption. (c) SSG [44] renders
specular reflection, but the shadow on the wall is uniformly softened. (d) Our PixHt-Lab renders realistic soft shadows on the wall guided
by 3D-aware buffer channels. The shadow is softened according to the background geometry with more realistic details. PixHt-Lab also

renders realistic reflections with physically-based surface materials.

Abstract

Lighting effects such as shadows or reflections are key
in making synthetic images realistic and visually appealing.
To generate such effects, traditional computer graphics uses
a physically-based renderer along with 3D geometry. To
compensate for the lack of geometry in 2D Image composit-
ing, recent deep learning-based approaches introduced a
pixel height representation to generate soft shadows and re-
flections. However, the lack of geometry limits the quality of
the generated soft shadows and constrain reflections to pure
specular ones. We introduce PixHt-Lab, a system leverag-
ing an explicit mapping from pixel height representation to
3D space. Using this mapping, PixHt-Lab reconstructs both
the cutout and background geometry and renders realistic,
diverse, lighting effects for image compositing. Given a sur-
face with physically-based materials, we can render reflec-
tions with varying glossiness. To generate more realistic
soft shadows, we further propose to use 3D-aware buffer
channels to guide a neural renderer. Both quantitative and

qualitative evaluations demonstrate that PixHt-Lab signifi-
cantly improves soft shadow generation.

1. Introduction

Image compositing is a powerful tool widely used for
image content creation, combining interesting elements
from different sources to create a new image. One challeng-
ing task is adding lighting effects to make the compositing
realistic and visually appealing. Lighting effects often in-
volve complex interactions between the objects in the com-
positing, so their manual creation is tedious. It requires a
significant amount of effort, especially for soft shadows cast
by area lights and realistic reflections on the glossy surface
with the Fresnel effect [59].

Many methods that generate lighting effects for 3D
scenes have been well-studied [18], but 3D shapes are of-
ten unavailable during image compositing. Recent advance-
ments in deep learning made significant progress in lighting
effect generation in 2D images, especially for shadow gen-



eration. A series of generative adversarial networks (GAN5)
based methods [13,24,57,65] have been proposed to auto-
matically generate hard shadows to match the background
by training with pairs of shadow-free and shadow images.
Those methods only focus on hard shadow generation, and
their generated hard shadow cannot be edited freely. More
importantly, the light control of those methods is implicitly
represented in the background image. In real-world image
creation scenarios, however, the background is often well-lit
or even in pure color under a studio lighting setting, making
those methods unusable. Also, editing the shadow is often
needed on a separate image layer when the image editing is
still incomplete.

To address these issues, a recent work SSN [45] proposes
to learn the mapping between the image cutouts and the cor-
responding soft shadows based on a controllable light map.
Although it achieves promising results, it assumes that the
shadow receiver is just a ground plane and the object is al-
ways standing on the ground, which limits its practical us-
age. This limitation is addressed by SSG [44], which pro-
poses a new 2.5D representation called pixel height, which
is shown to be better suited for shadow generation than pre-
vious 2.5D presentations like depth map. Hard shadow on
general shadow receivers can be computed by a ray tracing
algorithm in the pixel-height space. A neural network ren-
derer is further proposed to render the soft shadow based on
the hard shadow mask. It achieves more controllability and
it works in more general scenarios, but the lack of 3D geom-
etry guidance makes the soft shadows unrealistic and prone
to visual artifacts when they are cast on general shadow re-
ceivers like walls. In addition, SSG proposes an algorithm
to render the specular reflection by flipping the pixels ac-
cording to their pixel height. However, the use case is very
limited as it cannot be directly applied to simulate realistic
reflection effects on more general materials (see Fig. 1 (c)).

We introduce a controllable pixel height based system
called PixHt-Lab that provides lighting effects such as soft
shadows and reflections for physically based surface mate-
rials. We introduce a formulation to map the 2.5D pixel
height representation to the 3D space. Based on this map-
ping, geometry of both the foreground cutout and the back-
ground surface can be directly reconstructed by their cor-
responding pixel height maps. As the 3D geometry can
be reconstructed, the surface normal can also be computed.
Using a camera with preset extrinsic and intrinsics, light ef-
fects, including reflections, soft shadows, refractions, etc.,
can be rendered using classical rendering methods based on
the reconstructed 3D geometry or directly in the pixel height
space utilizing the efficient data structure (See Sec. 3.3) de-
rived from the pixel height representation.

As the soft shadow integration in classical rendering al-
gorithms is slow, especially for large area lights, we pro-
pose to train a neural network renderer SSG++ guided by

3D-aware buffer channels to render the soft shadow on gen-
eral shadow receivers in real time. Quantitative and qualita-
tive experiments have been conducted to show that the pro-
posed SSG++ guided by 3D-aware buffer channels signifi-
cantly improve the soft shadow quality on general shadow
receivers than previous soft shadow generation works.

Our main contributions are:

* A mapping formulation between pixel height and the
3D space. Rendering-related 3D geometry properties,
e.g., normal or depth, can be computed directly from
the pixel height representation for diverse 3D effects
rendering, including reflection and refraction.

* A novel soft shadow neural renderer, SSG++, guided
by 3D-aware buffer channels to generate high-quality
soft shadows for general shadow receivers in image
composition.

2. Previous Work

Single Image 3D Reconstruction Rendering engines can
be used to perform image composition. However, they re-
quire a 3D reconstruction of the image, which is a challeng-
ing problem. Deep learning-based methods [21, 35, 36, 48]
have been proposed to perform dense 3D reconstruction via
low dimensional parameterization of the 3D models, though
rendering quality is impacted by the missing high-frequency
features. Many single-image digital human reconstruction
methods [3, 20, 22, 30, 40, 41, 62-64, 66] show promising
results, albeit they assume specific camera parameters. Di-
rectly rendering shadows on their reconstructed 3D models
yields hard-to-fix artifacts [44] in the contact regions, be-
tween the inserted object and the ground. More importantly,
those methods cannot be applied to general objects, which
limits their use for generic image composition.

Single Image Neural Rendering Image harmonization
blends a cutout within a background in a plausible way.
Classical methods achieve this goal by adjusting the appear-
ance statistics [15,31, 34,38, 54]. Recently, learning-based
methods [0, 16, 17,23,49, 55, 56] trained with augmented
real-world images were shown to provide more robust re-
sults. However, these methods focus on global color ad-
justment without considering shadows during composition.
Single image portrait relighting methods [46, 53, 67] adjust
the lighting conditions given a user-provided lighting envi-
ronment, although they only work for human portraits. [10]
considers the problem of outdoor scene relighting from a
single view using intermediary predicted shadow layers,
which could be trained on cutout objects, but their method
only produces hard shadows. Neural Radiance Field based
methods (e.g., [26,27,39,51]) propose to implicitly encode
the scene geometry, but require multiple images as input.



Soft Shadow Rendering is a well-studied technique in
computer graphics, whether for real-time applications [, 2,

,8,9,11,12,28,37,42,43,50,52,60] or global illumination
methods [7, 19,47, 58]. It requires exact 3D geometry as
input, preventing its use for image composition.

Recent neural rendering methods can address the lim-
ited input problem and render shadows for different sce-
narios. Scene level methods [32, 33] show promising re-
sults but require multiple input images. Generative adver-
sarial networks (GANs) have achieved significant improve-
ments on image translation tasks [14,25], and subject-level
shadow rendering methods [13,24,57,65] propose to render
shadow using GANs. Unfortunately, these methods have
two main limitations: they can only generate hard shadows,
and prevents user editability, which is desired for artistic
purposes. SSN [45] proposed a controllable soft shadow
generation method for image composition, but is limited to
the ground plane and cannot project shadows on complex
geometries. Recently, SSG [44] further proposed a new
representation called pixel height to cast soft shadows on
more general shadow receivers and render specular reflec-
tion on the ground. Unfortunately, the shadow quality of
SSG degrades on complex geometries as they are not ex-
plicitly taken into account by the network. Furthermore, its
reflection rendering is limited to specular surfaces. In con-
trast, our proposed SSG++ is guided by 3D geometry-aware
buffer channels that can render more realistic soft shadows
on generic shadow receivers. We further connect the pixel
height representation to 3D by using an estimated per-pixel
depth and normal, increasing the reflections’ realism.

3. Method

We propose a novel algorithm (Fig. 2) to render reflec-
tion and soft shadow to increase image composition real-
ism based on pixel height [44], which has been shown to be
more suitable for shadow rendering. Pixel height explicitly
captures the object-ground relation, and thus it better keeps
the object uprightness and the contact point for shadow ren-
dering. Moreover, it allows intuitive user control to annotate
or correct the 3D shape of an object.

Our first key insight is that 3D information that highly
correlates with rendering many 3D effects, e.g., spatial 3D
position, depth, normal, etc., can be recovered by a map-
ping (see Sec. 3.1) given the pixel height representation.
The second key idea is that soft shadows on general shadow
receivers are correlated with the relative 3D geometry dis-
tance between the occluder and the shadow receiver. Based
on the mapping from pixel height to 3D, several geometry-
aware buffer channels (see Sec. 3.2) are proposed to guide
the neural renderer to render realistic soft shadows on gen-
eral shadow receivers. Moreover, acquiring the 3D informa-
tion enables rendering additional 3D effects, e.g., reflections
and refractions.

Fig. 2 shows the overview of our method. Given the
2D cutout and background, the pixel height maps for the
cutout and background can be either predicted by a neural
network [44] or labeled manually by the user. 3D geom-
etry that is used in rendering can be computed using our
presented method (see Sec. 3.1). Finally, our renderer (see
Sec. 3.3) can add 3D effects to make the image composition
more realistic.

3.1. Connecting 2.5D Pixel Height to 3D

Here we describe the equation that connects 2.5D pixel
height to its corresponding 3D point, and Fig. 3 shows the
camera and relevant geometry and variables. We define O,
the foot point of O, as the origin of the coordinate system.
For convenience, we define the camera intrinsics by three
vectors: 1) the vector ¢ from the camera center O’ to the
top left corner of the image plane, 2) the right vector of the
image plane a, and 3) the down vector of the image plane b.
Any point P and its foot point () can be projected by the
camera centered at O’. The points P and () projected on
the image plane are denoted as P’ and Q.
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The relationship between a 3D point P and its projection
P’ is described by the projection Eq. 1 under the pinhole
camera assumption. From the definition of pixel height rep-
resentation, the foot point Q' of P’ in the image space is on
the ground plane, i.e., yo = 0. Solving Eq. 2 provides w:
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The pixel height representation has no pitch angle assump-
tion, thus P can be directly computed using the w in Eq. 3.
By re-projecting the P’ back, the 3D point P can be calcu-
lated as
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Horizon controllability is important as different hori-
zons will change the soft shadow distortion. However,
as shown in Fig. 4, changing the horizon will change the
camera pitch, which violates the no pitch assumption from
pixel height representation [44] and leads to tilted geome-
try. To resolve the issue, we propose to use a tilt-shift cam-
era model for our application. When the user changes the
horizon, the vector c in Fig. 3 will move vertically to align
the horizon to keep the image plane perpendicular to the
ground. In this way, the no-pitch assumption is preserved
for the correct reconstruction, as shown in Fig. 4 (d).
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Figure 2. System overview of PixHt-Lab. Given a 2D cutout and background, the pixel height maps for the cutout and background can be
either predicted by a neural network [44] or labeled manually by the user. 3D scene information and the relevant buffer channels can then
be computed from pixel height based on our formulation presented in Sec. 3.1. Finally, our neural renderer SSG++ renders the requested

lighting effects using the buffer channels (see Sec. 3.3).

Figure 3. Connecting pixel height to 3D. Given the camera at the
center O’ and its foot point O, a point P in 3D space with its foot
point Q. P’ and Q' are their projection positions on the image
plane. c is the vector from O’ to the up left corner of the image
plane. a and b are the right directions and down direction vector
relative to the image plane.

3.2.3D Buffer Channels for Soft Shadow Rendering

Our methods can be applied to arbitrary shape lights, but
for discussion purposes, we assume the light for our dis-
cussion is disk shape area light. It is challenging to ren-
der high-quality soft shadows for general shadow receivers
given only image cutouts and the hard shadow mask, as the
soft shadow is jointly affected by multiple factors: the light
source geometry, the occluder, the shadow receiver, the spa-
tial relationship between the occluder and the shadow re-
ceiver, etc. SSG [44] is guided by the cutout mask, the
hard shadow mask, and the disk light radius as inputs. The
shadow boundary is softened uniformly (see Figs. 1 and 6)
as SSG is unaware of the geometry-related information rel-
evant to soft shadow rendering. We propose to train a neu-
ral network SSG++ to learn how these complex factors will
jointly affect the soft shadow results.
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(c) Tilt-shift camera (d) Reconstructed by (c)

Figure 4. Tilt shift camera model. Horizon position is a con-
trollable parameter to change the shadow perspective shape. (a)
shows changing the horizon is equivalent to changing the pitch in
the classical model. (b) shows the reconstructed 3D model. (c)
shows we use a tilt-shift camera. (d) shows the 3D vertical line
can be preserved to be perpendicular to the ground after recon-
struction.

3D-Aware Buffer channels. Our SSG++ takes several
3D-aware buffer channels (see Fig. 5) relevant to soft
shadow rendering. The buffer channels are composed of
several maps: the cutout pixel height map; the gradient of
the background pixel height map; the hard shadow from the
center of the light L; the sparse hard shadows map; the rel-
ative distance map between the occluder and the shadow
receiver in pixel height space. For illustration purposes,
we composite foreground pixel height and background pixel
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Figure 5. Buffer channels. (a) illustrates how the buffer channels
are computed. See the text for more details. (b) shows the pixel
height maps of the foreground cutout and the background. (c) is
the hard shadow cast by the center of the disk area light L. (d) is
the sparse hard shadows map cast by A, B, C, D, which are four
extreme points of the area light L. (e) is the distance between EF'
in pixel height space.

(a)

height in Fig. 5 (b).

The cutout pixel height and background pixel height map
describe the geometry of the cutout and the background. In
our implementation, we use the gradient map of the back-
ground pixel height as input to make it translation invariant.
The pixel height gradient map will capture the surface ori-
entation similar to a normal map.

The sparse hard shadows map can also guide the network
to be aware of the shadow receiver’s geometry. Another im-
portant property of this channel is that the sparse hard shad-
ows describe the outer boundary of the soft shadow. The
overlapping areas of the sparse hard shadows are also a hint
of darker areas in the soft shadow. Experiments in Sec. 4
show this channel plays the most important role among all
the buffer channels. The four sparse hard shadows are sam-
pled from the four extreme points of the disk light L as
shown in Fig. 5.

The relative distance map in pixel height space defines
the relative spatial distance between the occluder and the
shadow receiver. The longer the distance, the softer the
shadow will be in general. This channel guides the network
to pay attention to shadow regions that have high contrast.
The formal definition of the relative distance in pixel height
space is: ||(up, vp, hp) — (g, vy, hyq)||3, Where p, g are two
points, u, v are the coordinates in the pixel space, h is the
pixel height.

Dataset and Training. We follow SSN [45] and SSG [44]
to generate a synthetic dataset to train SSG++. In practice,
we randomly picked 100 general foreground objects from
ModelNet [61] and ShapeNet [5] with different categories,
including human, plants, cars, desks, chairs, airplanes, etc.
We also picked different backgrounds: ground plane, T
shape wall, Cornell box, and curved plane. To cover diverse

relative positions between the foreground and background,
we randomly generate 200 scenes from the selected fore-
ground and background objects. For each scene, we further
randomly sampled 100 lights per scene from a different di-
rection with random area light sizes. In total, the synthetic
dataset has 20k training data. SSG++ follows the SSG ar-
chitecture. We implement the SSG++ using PyTorch [29].
The training takes 8 hrs on average to converge with batch
size 50 and learning rate 2¢~° in a RTX-3090.

3.3. Ray Tracing in Pixel Height Representation

Eq. 1 in Sec. 3.1 connects the pixel height to 3D. Al-
though we do not know the camera extrinsic and intrinsic
for the image cutout or the background, we can use a de-
fault camera to reconstruct the scene, given the pixel height.
When the 3D position for the 2D pixel can be computed, the
surface normal can be approximated if we assume neigh-
borhood pixels are connected. When the surface normal
can be reconstructed, 3D effects, including reflection, re-
fraction and relighting, can be rendered if surface materials
are given.

One can perform the 3D effects rendering using a clas-
sical graphics renderer to render lighting effects for im-
age compositing. We noticed that the pixel height space
naturally provides an acceleration mechanism for tracing.
Specifically, SSG [44] proposes a ray-scene intersection al-
gorithm in pixel height space. Although the ray-scene in-
tersection is designed for tracing visibility, it can be eas-
ily modified to trace the closest hit pixel given a ray origin
and ray direction in pixel height space. In the pixel height
space, the ray-scene intersection check happens only along
a line between the start and the end pixels. The complexity
of the ray-scene intersection check in pixel height space is
O(H) or O(W), without the need to check the intersection
with each pixel or each reconstructed triangle. Therefore,
in practice, we perform ray tracing in the pixel height space
in PixHt-Lab. We implemented the method using CUDA. It
took around 7s to render a noise free reflection for 512 x 512
resolution image with 200 samples per pixel. Reflection re-
sults on different surface materials can be found in Fig. 7.
Additional examples can be found in supplementary mate-
rials.

4. Experiments

Here we show quantitative (the benchmark, metrics for
comparison, ablation study) and qualitative evaluation of
the buffer channels by comparing to related work.

4.1. Quantitative Evaluation of Buffer Channels

Benchmark: To compare our 3D-aware buffer channels
fairly with SSN [45] that has ground plane assumption,
we build two evaluation benchmarks: 1) a ground-shadow
benchmark and 2) a wall-shadow benchmark.



Table 1. Comparison with SSN [45] and SSG [44] on the ground-
shadow benchmark.

Method RMSE| RMSE-s| SSIM{ ZNCC1
SSN 0.1207 0.1064 0.8379 0.6118
SSG 0.0254 0.0221 0.8547 0.5679
SSG++(ours) | 0.0165 0.0140 0.9216 0.8180

(a) SSG

(b) SSG-SS () SSG++  (d) GT

Figure 6. Effects of buffer channels. Best zoom-in. (a) shows the
shadows rendered by SSG will be softened uniformly. (b). shows
sparse hard shadow channels guide the neural network to be 3D-
aware. (c) shows SSG++ can render better quality in the relatively
darker regions(note the foot shadow in the second row). (d) is the
ground truth shadow rendered by the physically based renderer.

The two benchmarks share the same assets, but the
ground shadow benchmark only has shadows cast on the
ground plane, and the wall shadow benchmark always has
part of the shadows cast on walls. The foreground objects
in the assets are composed of 12 new models randomly
selected online with different types: robots, animals, hu-
mans, bottles, etc. The background objects in the assets are
four new backgrounds with different shapes: one wall cor-
ner, two wall corners, steps, and curved backgrounds to test
the generalization ability to unseen backgrounds. We ran-
domly generate 70 scenes using those unseen foregrounds
and background models with different poses of the fore-
ground and background.

We uniformly sample 125 lights with different posi-
tions and different area sizes per scene for the wall shadow
benchmark. As shadows on the ground have less variation
than the shadows on the wall, we sample eight lights with
different positions and different area sizes per scene for the
ground shadow benchmark. In total, the ground shadow
benchmark is composed of 560 data, and the wall shadow
benchmark is composed of 8,750 data. The resolution for
each data is 256 x 256.

Metrics: We use the per-pixel metric RMSE and a scale-
invariant RMSE-s [53]. Similar to [53], shadow inten-
sity may vary, but the overall shapes are correct. We also
used perception-based metrics SSIM and ZNCC to measure

Table 2. Result on the wall-shadow benchmark. We show the
effectiveness of each buffer channel. SSG-BH: SSG with back-
ground pixel height. SSG-D: SSG with XYH distance chan-
nel. SSG-D-BH: SSG with XYH distance and background pixel
height. SSG-SS: SSG with the sparse shadow channel. SSG-
SS-BH: SSG with sparse shadow channel and background pixel
height. SSG++: SSG with all the buffer channels.

Method RMSE| RMSE-s| SSIM{ ZNCC*t
SSG 0.0242 0.0209 0.8561 0.6460
SSG-BH 0.0248 0.0207 0.8587 0.6506
SSG-D 0.0230 0.0210 0.8739 0.6499
SSG-D-BH 0.0231 0.0201 0.8752 0.6719
SSG-SS 0.0164 0.0149 0.9139 0.8228
SSG-SS-BH 0.0184 0.0158 0.9136 0.8029
SSG-SS-D 0.0159 0.0139 0.9153 0.8494
SSN++(ours) | 0.0153 0.0136 0.9277 0.8575

shadow quality. Our SSIM implementation uses 11 x 11
Gaussian filter with o = 1.5, k1 = 0.01, ks = 0.03.

SSG++ on the ground-shadow benchmark. As SSN has
a ground plane assumption, we use the ground-shadow
benchmark to compare fairly. We compare our SSG++ with
SSN and the other soft shadow rendering network SSG pro-
posed recently on the ground-shadow benchmark. Results
are shown in Tab. 1. Our SSG++ outperforms SSN and SSG
in all metrics. Compared with the STOA SSG, SSG++ im-
proves RMSE by 35%, RMSE-s by 36%, SSIM by 7.8%,
ZNCC by 44%. The statistics show in the simplest ground
plane shadow receiver case, SSG++ still has significant im-
provement. Even in the simplest case, buffer channels sig-
nificantly improve the soft shadow rendering quality.

SSG++ on the wall-shadow benchmark. SSG++ and
SSG share the same backbone, but they are guided by dif-
ferent buffers. Therefore, we treat SSG as the basic baseline
and do the ablation study together in this section. Results
are shown in Tab. 2.

Our proposed SSG++ outperforms all the other meth-
ods guided by other subsets of the buffer channels. Each
buffer channel outperforms SSG in all the metrics, show-
ing that those 3D-aware buffer channels are useful to guide
the SSG to render better soft shadows. SSG-D-BN fixes
more errors than SSG-D or SSG-BN, showing that the com-
bination of relative distance in pixel height space helps the
neural network improve the soft shadow quality. SSG-SS
significantly outperforms all the previous baselines by im-
proving RMSE by 29% and SSIM by 4% than SSG-D-BH,
which shows that the sparse shadows channel plays the most
important role in guiding the SSG to render soft shadows.
Combining the sparse shadow channel with the relative dis-
tance channel only improves RMSE by 3% and SSIM by
0.15% than only using the sparse shadow channel as addi-



Figure 7. Reflection. PixHt-Lab can render reflection with different physical materials. From left to right, the ground surface glossness
increases. The top to bottom, the ground uses different 7 in Fresnel effects.
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Figure 8. Refraction. Given the cutout and the background in the
left image, the refraction lighting effect for the crystal ball can also
be rendered by PixHt-Lab.

tional channels while combing the sparse shadow channel
with the background pixel height channel performs worse
than only using the sparse shadow channels as an additional
channel for SSG, with RMSE degraded by 12% and SSIM
by 0.03%.

Our SSG++ combines the sparse shadow channel, the
relative distance channel, and the background pixel height
channel together and achieves the best performance, im-
proving in all the metrics significantly. Compared with
SSG, our SSG++ improves RMSE by 38%, RMSE-s by
33%, SSIM by 8% and ZNCC by 32%.

4.2. Qualitative Evaluation of Buffer Channels

Effects of buffer channels. Fig. 6 shows the effects of
the buffer channels. Fig. 6 (b). shows the sparse shadow

Figure 9. Real foreground and background examples created with
our GUI. Zoom in for the best view. Credit: Adobe Stock.

guides the neural network to render better contour shapes
as the sparse hard shadows are samples from the outer con-
tour of the shadow regions. However, when the geometry
has complex shapes, and the sparse hard shadows are mixed
together, e.g., the foot regions of the cat in the second row
of Fig. 6, the relative spatial information is ambiguous. The
relative distance map can further guide SSG++ to keep the
regions close to the objects dark instead of over soft(See
Fig. 6 (c) in the second row.).



Figure 10. More results. PixHt-Lab is agnostic to the cutout object categories. Lighting effects can be generated to general backgrounds.
PixHt-Lab can also generate multiple soft shadows shown in the first column. The first column uses a step background. The second column
uses a curved background. The third column uses a L shape wall background. The forth column uses a corner background.

5. Discussion

Light effects generated by PixHt-Lab. PixHt-Lab can
reconstruct the surface normal solely based the pixel height
inputs. As discussed in

PixHt-Lab does not have assumptions on the cutout ob-
ject types and background types. No matter for realistic
cutouts or cartoon cutouts, studio background or real world
background, PixHt-Lab can render the light effects. (see
Fig. 9 and Fig. 10 and the demo video showing the PixHt-
Lab system in the supplementary materials). Similar to
SSG, PixHt-Lab allows the user to intuitively control the
shadow direction and softness, control the horizon position
to tweak the shadow distortion, and change parameters to
control the physical parameters of the reflection. Our meth-
ods can also be applied to multiple object compositing and
multiple shadows. Please refer to supplementary materials
for more examples.

There exist more potential additions for PixHt-Lab and
other light effects such as refraction(see Fig. 8) could be im-
plemented. Parameters related to the refraction surface, like
the refraction index, can be controlled as well. We demon-
strate more results in the supplementary material.

Limitation. As PixHt-Lab is based on the pixel height
map and the common limitations for the pixel height rep-
resentation apply to our methods as well. One of them is
that it takes the image cutout as the proxy of the object and
the back face or hidden surface contributing to the light ef-
fect generation is missing. A back face prediction neural
network can be explored to address this problem. Another
limitation specific to PixHt-Lab is that the proposed method
uses the cutout color as the reflected color, which is not pre-
cise for cases when the surface has view-dependent colors.



6. Conclusion and Future Work

We propose a novel system PixHt-Lab for generat-
ing perceptually plausible light effects based on the pixel
height representation. The mapping between the 2.5D pixel
height and 3D has been presented to reconstruct the sur-
face geometry directly from the pixel height representa-
tion. Based on the reconstruction, more light effects, in-
cluding physically based reflection and refraction, can be
synthesized for image compositing. Also, a novel method
SSG++ guided by 3D-aware buffer channels is proposed
to improve the soft shadow quality that is cast on general
shadow receivers. Quantitative and qualitative experiments
demonstrate that the results and generalization ability of the
proposed SSG++ significantly outperforms previous deep
learning-based shadow synthesis methods. However, our
PixHt-Lab synthesize the light effect solely based on the
cutout colors. A back face prediction neural network may
address the issue and is worth future exploration.
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