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Figure 1. Illustration of the SceneDiffuser, applicable to various scene-conditioned 3D tasks: (a) human pose generation, (b) human
motion generation, (c) dexterous grasp generation, (d) path planning for 3D navigation with goals, and (e) motion planning for robot arms.

Abstract

We introduce SceneDiffuser, a conditional generative
model for 3D scene understanding. SceneDiffuser pro-
vides a unified model for solving scene-conditioned genera-
tion, optimization, and planning. In contrast to prior work,
SceneDiffuser is intrinsically scene-aware, physics-based,
and goal-oriented. With an iterative sampling strategy,
SceneDiffuser jointly formulates the scene-aware genera-
tion, physics-based optimization, and goal-oriented plan-
ning via a diffusion-based denoising process in a fully dif-
ferentiable fashion. Such a design alleviates the discrep-
ancies among different modules and the posterior collapse
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of previous scene-conditioned generative models. We evalu-
ate SceneDiffuser on various 3D scene understanding tasks,
including human pose and motion generation, dexterous
grasp generation, path planning for 3D navigation, and mo-
tion planning for robot arms. The results show significant
improvements compared with previous models, demonstrat-
ing the tremendous potential of SceneDiffuser for the broad
community of 3D scene understanding.

1. Introduction
The ability to generate, optimize, and plan in 3D scenes

is a long-standing goal for multiple research domains across
computer vision, graphics, and robotics. Various tasks have
been devised to achieve these goals, fostering downstream
applications in motion generation [32, 67, 70, 83], motion
planning [40, 41, 58, 72], grasp generation [25, 31, 33], nav-
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igation [1, 88], embodied perception and manipulation [30,
37, 59], and autonomous driving [3, 50].

Despite rich applications and great successes, existing
models designed for these tasks exhibit two fundamental
limitations for real-world 3D scene understanding.

First, most prior work [8, 14, 32, 47, 58, 66–68, 70] lever-
ages the conditional Variational Autoencoder (cVAE) for
the conditional generation in 3D scenes. cVAE model uti-
lizes an encoder-decoder structure to learn the posterior dis-
tribution and relies on the learned latent variables to sample.
Although cVAE is easy to train and sample due to its sim-
ple architecture and one-step sampling procedure, it suffers
from the posterior collapse problem [12, 17, 26, 62, 67,
77, 86]; the learned latent variable is ignored by a strong
decoder, leading to limited generation diversity from these
collapsed modes. Such collapse is further magnified in 3D
tasks with stronger 3D decoders and more complex and
noisy input conditions, e.g., the natural 3D scans [9].

Second, despite the close relations among generation,
optimization, and planning in 3D scenes, there lacks a
unified framework that could address existing discrepan-
cies among these models. Previous work [15, 33, 67] ap-
plies off-the-shelf physics-based post-optimization meth-
ods over outputs of generative models and often produces
inconsistent and implausible generations, especially when
transferring to novel scenes. Similarly, planners are usu-
ally standalone modules over results of generative model [8,
14] for trajectory planning or learned separately with the
reinforcement learning (RL) [88], leading to gaps between
planning and other modules (e.g., generation) during infer-
ence, especially in novel scenes where explorations are lim-
ited.

To tackle these limitations, we introduce SceneDiffuser,
a conditional generative model based on the diffusion pro-
cess. SceneDiffuser eliminates the discrepancies and pro-
vides a single home for scene-conditioned generation, op-
timization, and planning. Specifically, with a denoising
process, it learns a diffusion model for scene-conditioned
generation while training. During inference, SceneDiffuser
jointly solves the scene-aware generation, physics-based
optimization, and goal-oriented planning through a unified
iterative guided-sampling framework. Such a design equips
SceneDiffuser with the following superiority:

Generation Building upon the diffusion model,
SceneDiffuser significantly alleviates the posterior collapse
problem of scene-conditioned generative models. Since
the forward diffusion process can be treated as data
augmentation in 3D scenes, it helps traverse sufficient
scene-conditioned distribution modes.

Optimization SceneDiffuser integrates the physics-
based objective into each step of the sampling process as
conditional guidance, enabling the differentiable physics-
based optimization during both the learning and sampling

process. This design facilitates the physically-plausible gen-
eration, which is critical for tasks in 3D scenes.

Planning Based on the scene-conditioned trajectory-
level generator, SceneDiffuser possesses a global trajec-
tory planner with physics and goal awareness, making the
learned planner generalize better to long-horizon trajecto-
ries and novel 3D scenes.

As illustrated in Fig. 1, we evaluate SceneDiffuser on di-
verse 3D scene understanding tasks. The results on human
pose, motion, and dexterous grasp generation significantly
improve, demonstrating plausible and diverse generations
with 3D scene and object conditions. The results on path
planning for 3D navigation and motion planning for robot
arms reveal the generalizable and long-horizon planning ca-
pability of SceneDiffuser.

2. Related Work
Conditional Generation in 3D Scenes Generating di-

verse contents and rich interactions in 3D scenes is essen-
tial for understanding the 3D scene affordances. Recently,
we have witnessed several applications on conditional scene
generation [24,45,69,81], human pose [16,32,80,83,85] and
motion generation [14,32,47,58,66–68,70] in furnished 3D
indoor scenes, and object-conditioned grasp pose genera-
tion [25,31,33,60,74]. However, most previous methods [6,
14, 16, 25, 31, 60, 66, 70, 72] rely on cVAE and suffer from
the posterior collapse problem [12,17,26,62,67,77,86], es-
pecially when the 3D scene is natural and complex. In this
work, SceneDiffuser addresses the posterior collapse with
the diffusion-based denoising process.

Physics-based Optimization in 3D Scenes Producing
physically plausible generations compatible with 3D scenes
is one of the challenges in the scene-conditioned generation.
Previous work uses physics-based post-optimization [15,
33, 67] or differentiable objective [25, 70, 83] to integrate
collision and contact constraints into the generation frame-
work. However, post-optimization approaches [15, 33, 67]
are oftentimes inefficient and cannot be learned jointly with
the generative models, yielding inconsistent generation re-
sults. Similarly, differentiable approaches [25, 70, 83] post
constraints on the final objective, thus cannot optimize the
physical interactions during the sampling, producing im-
plausible generations, especially when adapting to novel
scenes. In this work, SceneDiffuser eliminates such incon-
sistency with the differentiable physics-based optimization
integrated into each step of the sampling process.

Planning in 3D Scenes The ability to act and plan
in 3D scenes is critical for an intelligent agent and has
led to the recent culmination of embodied AI research
[28, 30, 52, 53]. Among all tasks, visual navigation has
been most studied in the vision and robotics commu-
nity [4, 13, 21, 38, 73, 87, 88]. However, existing works rely
heavily on model-based planning with the single-step dy-



namic model [5,11,46,65,71,75], lacking a trajectory-level
optimization for long-horizon planning. Further, the phys-
ical interactions are not explicitly modeled into the plan-
ning. This deficiency makes it challenging to generalize to
natural scenes, where exploration is limited, and fast learn-
ing and adaptation are required. In comparison, with the
global trajectory planner based on a trajectory-level gen-
erator, SceneDiffuser demonstrates better generalization in
long-horizon plans and novel 3D scenes.

Diffusion-based Models Diffusion model [19, 22, 55,
57] has come forth into a promising class of generative
model for learning and sampling data distributions with an
iterative denoising process, facilitating the image [10, 56],
text [76], and shape generation [34]. With flexible condi-
tioning, it is further extended to the language-conditioned
image [39, 49, 51], video [18, 54], and 3D generation [42,
61, 78]. Notably, Janner et al. [23] integrate the generation
and planning into the same sampling framework for behav-
ior synthesis. To our best knowledge, SceneDiffuser is the
first framework that models the 3D scene-conditioned gen-
eration with a diffusion model and integrates the generation,
optimization, and planning into a unified framework.

3. Background
3.1. Problem Definition

Given a 3D scene S, we aim to generate the optimal so-
lution for completing the tasks (e.g., navigation, manipula-
tion) given the goal G in the scene. We denote the state and
action of an agent as ps,aq. The dynamic model defines the
state transition as ppsi`1|si,aiq, which is often determin-
istic in scene understanding (i.e., fpsi,aiq). The trajectory
is defined as τ “ps0,a0, ¨ ¨ ¨ , si,ai, ¨ ¨ ¨ , sN q, where N de-
notes the horizon of task solving in discrete time.

3.2. Planning with Trajectory Optimization

The scene-conditional trajectory optimization is defined
as maximizing the task objective:

τ˚“ arg max
τ

J pτ |S,Gq. (1)

The dynamic model is usually known for trajectory opti-
mization. Considering the future actions and states with
predictable dynamics, the entire trajectory τ can be opti-
mized jointly and non-progressively with traditional [29] or
data-driven [7] planning algorithms. Trajectory-based opti-
mization benefits from its global awareness of history and
future states, thus can better model the long-horizon tasks
compared with single-step models in RL, where a˚0:N “

arg maxa0:N

řN
i“0 rpsi,ai|S,Gq.

3.3. Diffusion Model

Diffusion models [19, 22, 55] are a class of genera-
tive models that represent the data generation with an it-

erative denoising process from Gaussian noise. It consists
of a forward and a reverse process. The forward process
qpτ t|τ t´1q gradually destroys data τ 0„ qpτ 0q into Gaus-
sian noise. The parametrized reverse process pθpτ t´1|τ tq
recovers the data from noise with the learned normal distri-
bution from a fixed timestep. The training objective for θ is
denoising score matching over multiple noise scale [22,64].
Please refer to the Appendix A for detailed descriptions of
the diffusion model and its variants.

4. SceneDiffuser
SceneDiffuser models planning as trajectory optimiza-

tion and solves the aforementioned problem with the spirit
of planning as sampling, where the trajectory optimiza-
tion is achieved by sampling trajectory-level distribution
learned by the model. Leveraging the diffusion model
with gradient-based sampling and flexible conditioning,
SceneDiffuser models the scene-conditioned goal-oriented
trajectory ppτ 0|S,Gq:

ppτ 0|S,Gq“ pθpτ
0|SqpφpG|τ 0,Sq
ppG|Sq

9 pθpτ
0|SqpφpG|τ 0,Sq.

(2)

Generation pθpτ
0|Sq characterizes the probability of

generating certain trajectories with the scene condition. It
can be modeled using a conditional diffusion model [19,55]
with an iterative denoising process:

pθpτ
0
|Sq“ ppτT q

T
ź

t“1

ppτ t´1
|τ t,Sq,

ppτ t´1
|τ t,Sq“N pτ t´1;µθpτ

t, t,Sq,Σθpτ
t, t,Sqq.

(3)

Optimization and Planning pφpG|τ 0,Sq represents
the probability of reaching the goal with the sampled trajec-
tory, where the goal can be flexibly defined by customized
objective functions in various tasks. As shown in Eq. (4), the
precise definition of this probability is pφpO“ 1|τ 0,S,Gq,
whereO is an optimality indicator that represents if the goal
were achieved. Intuitively, the trajectory objective in Eq. (1)
can be a good indicator for such optimality. We therefore
expand pφpG|τ t,Sq as its exponential in Eq. (5):

pφpG|τ t,Sq“ pφpO“ 1|τ t,S,Gq (4)

9 exppJ pτ t|S,Gqq (5)

“ exppϕppτ
t|S,Gq`ϕopτ t|Sq. (6)

Here, ϕopτ t|Sq denotes the objective for optimizing the tra-
jectory with scene condition and is independent of task goal
G. In scene understanding, ϕo usually denotes plausible
physical relationships (e.g., collision, contact, and intersec-
tion). ϕppτ t|S,Gq indicates the objective for planning (i.e.,
goal-reaching) with scene condition. Both ϕo and ϕp can be
explicitly defined or implicitly learned from observed tra-
jectories with proper parametrization.



4.1. Learning

pθpτ
0|Sq is the scene-conditioned generator, which can

be learned by the conditional diffusion model with the sim-
plified objective of estimating the noise ε [10,19,20], where

Lθpτ 0
|Sq“Et,ε,τ0

”

}ε´εθp
?
α̂tτ 0

`
?
1´ α̂tε, t,Sq}2

ı

“Et,ε,τ0

“

}ε´εθpτ
t, t,Sq}2

‰

,
(7)

where α̂t is the pre-determined function in the forward pro-
cess. With the learned pθpτ 0|Sq, we sample ppτ 0|S,Gq by
taking the advantage of the diffusion model’s flexible condi-
tioning [10, 23]. Specifically, we approximate pφpG|τ t,Sq
using the Taylor expansion around τ t“µ at timestep t as

log pφpG|τ t,Sq« pτ t´µqg`C,

where C is a constant, µ“µθpτ
t, t,Sq and Σ“

Σθpτ
t, t,Sq are the inferred parameters of original diffu-

sion process, and

g“∇τ t log pφpG|τ t,Sq|τ t“µ

“∇τ tpϕopτ
t|Sq`ϕppτ t|S,Gqq|τ t“µ.

(8)

Therefore, we have

ppτ t´1|τ t,S,Gq“N pτ t´1;µ`λΣg,Σq, (9)

where λ is the scaling factor for the guidance. With Eq. (9),
we can sample τ t with the guidance of optimizing and plan-
ning objectives.

Of note, ϕp and ϕo serve as the pre-defined guidance for
tilting the original trajectory with physical and goal con-
straints. However, they can also be learned from the ob-
served trajectories. During training, we first fix the learned
base model of pθpτ 0|Sq, then learn φo and φp for optimiza-
tion and planning with the following objective:

Lφpτ 0|S,Gq“Et,ε,τ0

“

}ε´εθpτ
t, t,Sq´Σg}2

‰

. (10)

Alg. 1 summarizes the training procedure.

4.2. Sampling

With different sampling strategies, SceneDiffuser can
generate, optimize, and plan the trajectory in 3D scenes, un-
der a unified framework of guided sampling. Alg. 2 summa-
rizes the detailed sampling algorithm.

Scene-aware Generation Sampling τ 0 from the dis-
tribution pθpτ 0|Sq in Eq. (3) directly solves the conditional
generation tasks. The sampled trajectories represent diverse
modes and possible interactions with the 3D scenes.

Physics-based Optimization The physical relations
between each state and the environment are defined by ϕo in
Eq. (4) in a differentiable manner. For general optimization
without the planning objective, the task goal G is to sample
a plausible trajectory in 3D scenes. Therefore, we can draw
physically plausible trajectories in 3D scenes by sampling
from ppτ 0|S,Gq with Eq. (9).

Algorithm 1: Training of the SceneDiffuser
1 // train base generation model

Input: Trajectory in 3D scene pτ0,Sq
2 repeat
3 τ0„ ppτ0|Sq
4 ε„N p0, Iq, t„Upt1, ¨ ¨ ¨ , T uq
5 τ t“

?
α̂tτ0`

?
1´ α̂tε

6 θ“ θ´η∇θ}ε´εθpτ
t, t,Sq}22

7 until converged;
8 // (optional) train optimization and

planning model
Input: Trajectory in 3D scene with goal pτ0,S,Gq, learned θ

for pθpτ0|Sq
9 repeat

10 τ0„ ppτ0|S,Gq
11 ε„N p0, Iq, t„Upt1, ¨ ¨ ¨ , T uq
12 µ“µθpτ

t, t,Sq, Σ“Σθpτ
t, t,Sq

13 g“∇τt log pφpG|τ t,Sq|τt“µ

14 τ t“
?
α̂tτ0`

?
1´ α̂tε

15 φ“φ´η∇φ}ε´εθpτ
t, t,Sq´λΣg}22

16 until converged;

Algorithm 2: Sampling of the SceneDiffuser for
generation, optimization, and planning

Modules: Model pθp¨|Sq, optimization objective ϕop¨|Sq,
and planner objective ϕpp¨|S,Gq

1 // one-step guided sampling
2 function sample pτ t,J q:
3 µ“µθpτ

t, t,Sq, Σ“Σθpτ
t, t,Sq

4 τ t´1“N pτ t´1;µ`λΣ∇τt pJ pτ t|S,Gqq|τt“µ,Σq

5 return τ t´1

6 // physics-based generation
Input: initial trajectory τT „N p0, Iq

7 for t“T, ¨ ¨ ¨ , 1 do
8 // sampling with optimization
9 τ t´1“ samplepτ t, ϕop¨|Sqq

10 return τ0

11 // goal-oriented planning
Input: planning steps N , starting state ŝ0, initial plan

τT0 „N p0, Iq
12 i“ 1
13 while not done and planning step iăN do
14 for t“T, ¨ ¨ ¨ , 1 do
15 τ t´1

i “ samplepτ ti, ϕop¨|Sq`ϕpp¨|S,Gqq
16 // planning as inpainting
17 τ t´1

i r0 : is“ ŝ0:i

18 Act âi´1 to reach ŝi“ τ0
i ris, ŝ0:i“ ŝ0:i´1Y ŝi

19 Increment planning step i“ i`1

Goal-oriented Planning The goal-oriented planning
can be formulated as motion inpainting under the sam-
pling framework. Given the start state ŝs and the goal
state ŝg , the planning module returns trajectory τ̂ “
pŝ0, â0, ¨ ¨ ¨ , ŝi, âi, ¨ ¨ ¨ , ŝgq that can reach the goal state.
We set the first state as ŝ0“ ŝs and define the goal state
and reward of goal-reaching in ϕp. For each step i, we first
keep the previous states and inpaint the remaining trajec-
tory by sampling the goal-oriented SceneDiffuser with an
iterative denoising process. Next, we take the action that
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Figure 2. Model architecture of the SceneDiffuser. We use
cross-attention to learn the relation between the input trajectory
and scene condition. The optimizer and planner serve as the guid-
ance for physically-plausible and goal-oriented trajectories.

can reach the next sampled state with pâi´1, ŝiq. As illus-
trated in Alg. 2, we repeat the planning steps until reaching
the goal or the maximal planning step. Our planner lever-
ages the trajectory-level generator, thus more generalizable
to long-horizon trajectories and novel scenes.

4.3. Model Architecture

The design of SceneDiffuser follows the practices of
conditional diffusion model [20, 49, 51]. Specifically, we
augment the time-conditional diffusion model with cross-
attention [63] for flexible conditioning. As shown in Fig. 2,
for each sampling step, the model computes the cross-
attention between the 3D scene condition and input trajec-
tory, wherein the key and value are learned from the condi-
tion, and the query is learned from the input trajectory. The
computed vector is fed into a feed-forward layer to estimate
the noise ε. The 3D scene is processed by a scene encoder
(i.e., Point Transformer [84] or PointNet [43]). Please refer
to the Appendix B for details.

4.4. Objective Design

For optimization and planning objectives discussed in
Sec. 4, we consider two types of trajectory objectives: (i)
trajectory-level objective, and (ii) the accumulation of step-
wise objective. For optimization, we consider step-wise
collision and contact objective, as well as trajectory level

smoothness objective, i.e., tϕcollision
o , ϕcontact

o , ϕsmoothness
o u.

For planning, we consider the accumulation of simple step-
wise distance i.e., ϕL2

p . Please refer to the Appendix C for
implementation details of our objective design. Empirically,
we observe that parameterizing the objectives with timestep
t and increasing the guidance during the last several diffu-
sion steps will enhance the effect of guidance.

5. Experiments
To demonstrate SceneDiffuser is general and applica-

ble to various scenarios, we evaluate SceneDiffuser on five
scene understanding tasks. For generation, we evaluate the
scene-conditioned human pose and motion generation and
object-conditioned dexterous grasp generation. For plan-
ning, we evaluate the path planning for 3D navigation and
motion planning for robot arms. We first introduce the com-
pared methods used in our experiments, followed by de-
tailed settings, results analyses, and ablative studies for each
task. Due to the page limit, we refer to the Appendix for
more details about the implementation, experimental set-
tings, and additional results and ablations.

5.1. Compared Methods

For conditional generation tasks, we primarily compare
SceneDiffuser with the widely-adopted cVAE model [25,
31,32,70,83] and its variants. We also compare with strate-
gies for optimizing the physics of the trajectory in the
cVAE, including integrating into training as loss and plug-
ging upon as the post-optimization. For planning, we com-
pare with a stochastic planner learned by imitation learning
using Behavior Cloning (BC) and a simple heuristic-based
deterministic planner guided by L2 distance.

5.2. Human Pose Generation in 3D Scenes

Setup Scene-conditioned human pose generation aims
to generate semantically plausible and physically feasible
single-frame human bodies within the given 3D scenes.
We evaluate the task on the 12 indoor scenes provided by
PROX [15] and the refined version of PROX’S per-frame
SMPL-X parameters from LEMO [79]. The input is the col-
ored point cloud extracted by randomly downsampling the
scene meshes provided in PROX. Training/testing splits are
created following the literature [67, 83], resulting in „ 53k
frames in 8 scenes for training and others for testing.

Metrics We evaluate the physical plausibility of gen-
erated poses with both direct human evaluations and indi-
rect collision and contact scores. For the direct measure, we
randomly selected 1000 frames in the four test scenes and
instructed seven participants to decide whether the gener-
ated human pose was plausible. We compute the mean per-
centage of plausible generation and term this metric as the
plausible rate. For indirect measures, we report (i) the non-
collision score of the generated human bodies by calculat-



Table 1. Quantitative results of human pose generation in 3D scenes. We report metrics for physical plausibility and diversity.

model plausible rateÒ non-collision scoreÒ contact scoreÒ APD (trans.)Ò std (trans.)Ò APD (param)Ò std (param)Ò APD (marker)Ò std (marker)Ò

cVAE (w/o. LHS) [83] 12.57 99.78 96.42 1.218 0.494 2.878 0.166 3.638 0.172
cVAE (w/ LHS) [83] 14.64 99.75 99.25 1.013 0.416 2.994 0.170 3.614 0.169

our (w/o opt.) 24.83 99.74 99.43 0.776 0.331 3.204 0.195 3.483 0.167
our (w/ opt.) 49.35 99.93 98.05 1.009 0.413 3.297 0.197 3.679 0.177

Table 2. Quantitative results of human motion generation in 3D scenes. We report model variants with and without the start pose.

model plausible rateÒ non-collision scoreÒ contact scoreÒ APD (trans.)Ò std (trans.)Ò APD (param)Ò std (param)Ò APD (marker)Ò std (marker)Ò

cVAE (w/o start) [70] 5.88 99.86 86.26 1.628 0.613 2.766 0.155 3.275 0.150
ours (w/o start) 24.70 99.71 97.92 0.568 0.237 2.339 0.126 3.299 0.151

ours (w/o start & w/ opt.) 23.53 99.70 97.84 0.542 0.226 2.338 0.125 3.301 0.151

cVAE (w/ start) [70] 16.24 99.88 95.44 0.478 0.188 1.747 0.091 2.308 0.105
Ours (w/ start) 41.76 99.85 99.63 0.193 0.081 1.372 0.065 1.568 0.072

Ours (w/ start & w/ opt.) 42.30 99.85 99.62 0.192 0.080 1.368 0.063 1.565 0.075

(a) cVAE (b) SceneDiffuser (c) Without Opt. (d) With Opt.

Figure 3. Qualitative results of human pose generation in 3D scenes. From left to right: (a) cVAE generation, (b) SceneDiffuser gener-
ation without optimization, and poses generated (c) with and (d) without applying our optimization-guided sampling.

ing the proportion of the scene vertices with positive SDF
to the human body and (ii) the contact score by checking if
the body contact with the scene in a distance [15] below
a pre-defined threshold. Following the literature [77, 83],
we evaluate the diversities of global translation, generated
SMPL-X parameters, and the marker-based body-mesh rep-
resentation [82]. Specifically, we calculate the diversity of
generated pose with the Average Pairwise Distance (APD)
and standard deviation (std).

Results Tab. 1 quantitatively demonstrates that
SceneDiffuser generates significantly better poses while
maintaining generation diversity. We further provide
qualitative comparisons between baseline models and
SceneDiffuser in Fig. 3. While achieving a comparable
performance of diversity, collision, and contact, our model
generates results that contain considerably more physically
plausible poses (e.g., floating, severe collision). This is
reflected by the significant superiority (i.e., over 30%) over

cVAE-based baselines on plausible rates. We observe this
large improvement both quantitatively from the plausible
rate and non-collision score and qualitatively in Fig. 3.
Notably, our optimization-guided sampling improves the
generator with 25% on the plausible rate, showing the
efficacy of the proposed optimization-guided sampling
strategy and its potential for a broader range of 3D tasks
with physic-based constraints or objectives.

5.3. Human Motion Generation in 3D Scenes

Setup We consider generating human motion se-
quences under two different settings: (1) condition solely
on the 3D scene, and (2) condition on both the starting pose
and the 3D scene. We use the same human and scene repre-
sentation as in Sec. 5.2 and clip the original LEMO motion
sequence into segments with a fixed duration (60 frames).
In total, we obtain 28k motion segments with the distance
between each start and end pose being longer than 0.2 me-



Figure 4. Human motions generated by SceneDiffuser. Each
row shows sampled human motions from the same start pose.

ters. We follow the same split in Sec. 5.2 for training/testing
and the same evaluation metrics for the pose generation. We
report the average values of pose metrics over motion se-
quence as our performance measure.

Results As quantitatively shown in Tab. 2,
SceneDiffuser consistently generates high-quality mo-
tion sequences compared to cVAE baselines. Specifically,
our generated motion outperforms baseline models on
both plausible rate and contact scores. This performance
gain indicates better coverage of motion that involves
rich interaction with the scene while remaining physically
plausible. It also causes lower diversity in metrics (e.g.,
translation variance) since the plausible space for the
motion is limited compared with cVAE. Empirically, we
observe that providing the start position of motion as a
condition constrains possible future motion sequences and
leads to a drop in generation diversity for all models. In
addition, providing the start condition benefits the physical
plausibility since the motion starts from a plausible pose.
We also note only a marginal performance improvement
after applying optimization-guided sampling. One potential
reason is that the generated motions are already plausible
and receive small guidance from the optimization. As
qualitatively shown in Fig. 4, SceneDiffuser generates
diverse motions (e.g., “sit,” “walk”) from the same start
position in unseen 3D scenes.

Table 3. Quantitative results of dexterous grasp generation on
MultiDex [31] dataset. We measure the success rates under dif-
ferent diversities and depth collisions. TTA. denotes test-time op-
timization with physics and contact.

model
succ. rate (%)Ò

depth coll. (mm)Ó
σ 2σ all

cVAE [25] 0.00 10.09 14.06 22.98
cVAE (w/ TTA.) [25] 0.00 21.91 17.97 15.19

ours (w/o opt.) 70.65 71.25 71.25 17.34
ours (w/ opt.) 71.27 69.84 69.84 14.61

5.4. Dexterous Grasp Generation for 3D Objects

Setup Dexterous grasp generation aims to generate di-
verse and stable grasping poses for the given object with a
human-like dexterous hand. We use the Shadowhand sub-
set of the MultiDex [31] dataset, which contains diverse
dexterous grasping poses for 58 daily objects. We represent
the pose of Shadowhand as q– pt, R, θq PR33, where t PR3

and R PR6 denote the global translation and orientation re-
spectively, and θ PR24 describes the rotation angles of the
revolute joints. An object is represented by its point cloud
O PR2048ˆ3. We split the dataset into 48 seen objects and
10 unseen objects for training and testing, respectively.

Metrics We evaluate models in terms of success rate,
diversity, and collision depth. We test if a grasp is successful
in IsaacGym [35] by applying external forces to the object
and measuring the movement of the object. To measure how
learned models capture the diversity of successful grasping
pose in the training data, we report the success rate of gen-
erated poses that lies at different variance levels from the
mean pose of training data. We measure the collision depth
as the maximum depth that the hand penetrates the object in
each successful grasp for testing models’ performance on
physically correct grasps. In all cases, we ignore the root
transformation of the hand as it does not contribute to the
diversity of grasping types.

Results Tab. 3 quantitatively demonstrates that
SceneDiffuser generates significantly better grasp poses in
terms of success rate while correctly balancing the diversity

Figure 5. Qualitative results of dexterous grasp generation. Compared to grasps generated by cVAE (first row), SceneDiffuser (second
row) generates fewer colliding or floating poses, which helps to achieve a higher success rate.
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Figure 6. Path planning for 3D scene navigation. SceneDiffuser
generates trajectories in long-horizon tasks.

of generation and grasp success. This result indicates that
the SceneDiffuser achieves a consistently high success
rate without much performance drop when the generated
pose diverges from the mean pose in the training data. We
also show that, by applying optimizer upon SceneDiffuser,
the guided sampling process can reduce the violation of
physically implausible grasping poses, outperforming the
state-of-the-art baseline [25] without additional training or
intermediate representation (i.e., contact maps). We provide
qualitative results in Fig. 5 for visualization.

5.5. Path Planning for 3D Scene Navigation

Setup We manually selected 61 indoor scenes from
ScanNet [9] to construct room-level scenarios for naviga-
tional path planning and annotated these scenes with nav-
igation graphs. As shown in Fig. 6b, these annotations are
more spatially dense and physically plausible compared to
previous methods [1]. We represent the physical robot with
a cylinder to simulate physically plausible trajectories; see
Fig. 6a. In total, we collected around 6k trajectories by
searching the shortest paths between the randomly selected
start and target nodes on the graph. We use trajectories in 46
scenes for training and trajectories in the rest 15 scenes for
evaluation. Models take the input as the scene point cloud
S PR32768ˆ3, a given start position ŝ0 PR2, and a target po-
sition G PR2 on the floor plane.

Metrics We evaluate the planned results by checking
if the “robot” can move from the start to the target without
collision along the planned trajectory. We report the average
success rate and planning steps over all test cases.

Results As shown in Tab. 4, SceneDiffuser outper-
forms both the BC and the deterministic planner baseline.
These results indicate the efficacy of guided sampling with
the planning objective, especially given that all test scenes
are unseen during training. Crucially, as simple heuristics
(like L2) oftentimes lead to dead-ends in path planning,
SceneDiffuser can correctly combine past knowledge on the
scene-conditioned trajectory distribution and planning ob-

Table 4. Quantitative results of path planning in 3D navigation
and motion planning for robot arms.

task model succ. rate(%)Ò planning stepsÓ

path plan
BC 0 150

deterministic(L2) 13.50 137.98
ours 73.75 90.38

arm motion
BC 0.31 299.08

deterministic(L2) 72.87 141.28
ours 78.59 147.60

jective under specific unseen scenes to redirect planning
direction, which helps to avoid obstacles and dead-ends
to reach the goal successfully. Compared with the base-
line models, our model also requires fewer planning steps
while maintaining a higher success rate. This suggests that
SceneDiffuser successfully navigates to the target without
diverging even in long-horizon tasks, where classic RL-
based stochastic planners suffer (i.e., the low performance
of BC).

5.6. Motion Planning for Robot Arms

Setup Aiming to generate valid robot arm motion tra-
jectories in cluttered scenes, we used the Franka Emika arm
with seven revolute joints and collected 19,800 trajecto-
ries over 200 randomly generated cluttered scenes using the
MoveIt 2.0 [48], as shown in Fig. 7. We represent the scene
with point clouds S PR4096ˆ3 and the robot arm trajectory
with a sequence of joint angles R P r´π, πs. We train our
model on 160 scenes and test on 40 unseen scenes.

Metrics Similar to Sec. 5.5, we evaluate the generated
trajectories by success rate on unseen scenes and the aver-
age number of planning steps. We consider a trajectory suc-
cessful if the robot arm reaches the goal pose by a certain
distance threshold within a limited number of steps.

Results We observe similar overall performance as in
Sec. 5.5. Tab. 4 shows that SceneDiffuser consistently out-
performs both the RL-based BC baseline and the determin-
istic planner baseline. SceneDiffuser’s planning steps for
successful trials are also comparable with the deterministic
planner, showing the efficacy of the planner in long-horizon
scenarios.

5.7. Ablation Analyses

We explore how the scaling coefficient λ influences the
human pose generation results. We report the diversity and
physics metrics of sampling results under different λs, rang-
ing from 0.1 to 100. As shown in Tab. 5, λ balances gener-
ation collision/contact and diversity in human pose genera-
tion. Specifically, λ“ 1.0 leads to the best physical plausi-
bility while larger λ values lead to diverse generation re-
sults. We attribute this effect to the optimization as with
bigger λs; the optimization will draw poses away from the



Table 5. Ablation of the scale coefficient for optimization.

metric λ“ 0.1 λ“ 1.0 λ“ 10.0 λ“ 100.0
plausible rate Ò 28.75 52.5 21.25 0
APD (trans.) Ò 0.764 0.886 1.564 23.96
APD (param) Ò 3.206 3.243 9.040 573.6

non-collison score Ò 99.76 99.87 99.85 74.9
contact score Ò 99.70 99.65 81.75 0.0

scene. Due to the page limit, we provide more ablative stud-
ies in Appendix E, including the sampling steps, choices
and hyperparameters of objectives, and model architectures.

5.8. Limitation

The primary limitation of the SceneDiffuser is its
slow training and test speed compared to previous
scene-conditioned generative models, a common issue of
diffusion-based methods. We also observe that the opti-
mization and planning are highly dependent on the objective
designs, which requires efforts on hyper-parameter tuning.

6. Conclusion
We propose the SceneDiffuser as a general conditional

generative model for generation, optimization, and plan-
ning in 3D scenes. SceneDiffuser is designed with appeal-
ing properties including scene-aware, physics-based, and
goal-oriented. We demonstrate that the SceneDiffuser out-
performs previous models by a large margin on various
tasks, establishing its efficacy and flexibility.

A promising future direction is extending SceneDiffuser
to richer 3D representations, including RGB-D images,
semantic images, bird-eye view (BEV) images, videos,
3D meshes, and neural radiance field (NeRF) [36]. Such
flexible conditions consume a tremendous amount of 3D
training data, which is also a significant challenge. We
also hope to extend the SceneDiffuser to outdoor scenes,
e.g., the autonomous driving scenarios [3]. Moreover, the
SceneDiffuser can be combined with recent large language

(a) motion planning (b) cluttered scenes

Figure 7. Motion planning for robot arms. SceneDiffuser gener-
ates arm motions in tabletop scenes with obstacles.

models (LLMs) [2] for automatic generation and planning
with natural language instructions in 3D scenes, which is
promising for the vision and robotics community. Finally,
SceneDiffuser can serve as the tool for analyzing the be-
haviors of humans and agents if we can properly learn the
planning objective, which naturally encodes the values and
preferences that underlie the trajectories.
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A. Background for Diffusion Model
A diffusion model [19, 55] is defined by a forward

process that gradually corrupts data τ 0„ qpτ 0q over T
timesteps

qpτ 1:T |τ 0q“

T
ź

t“1

qpτ t|τ t´1q

qpτ t|τ t´1q“N pτ t;
a

1´βtτ t´1, βIq

and a reverse process pθpτ 0q“
ş

pθpτ
0:T qdτ 1:T where

pθpτ
0:T q“ ppτT q

T
ÿ

t“1

pθpτ
t´1|τ tq

pθpτ
t´1|τ tq“N pτ t´1;µθpτ

t, tq,Σθpτ
t, tqq.

The forward process hyperparameters βt are set so that τT

is approximately distributed according to a standard normal
distribution, so τT is set to a standard normal prior as well.
The reverse process is trained to match the joint distribution
of the forward process by optimizing the evidence lower
bound (ELBO) [19, 55]. As suggested by the literature [19,
39], we can use the reverse process parametrizations as:

µθpτ
t, tq“

1
?
αt
pτ t´

βt
a

1´ α̂t
εθpτ

t, tqq

Σii
θ pτ

t, tq“ expplog β̂t`plog βt´ log β̂tqviθpτ
t, tqq

where αt“ 1´βt, α̂t“
řt
s“1 α

s, and β̂t“ 1´α̂t´1

1´α̂t βt.
We can optimize modified loss instead of the ELBO to

improve the sample quality, depending on whether we learn
Σ or treat it as a fixed hyper-parameter. For the non-learned
case, we use the simplified loss:

Lsimplepθq“Et,ε,τ0

”

}ε´εθp
?
α̂tτ 0`

?
1´ α̂tε, tq}2

ı

“Et,ε,τ0

“

}ε´εθpτ
t, tq}2

‰

It is a weighted form of the ELBO that resembles denoising
score matching over multiple noise scale [19, 57].

Conditional Diffusion Model The goal of the condi-
tional diffusion model is to learn a conditional distribution
pθpτ

0|cq. We modify the diffusion model to include the
condition c as input to the inverse process:

pθpτ
0:T |cq“ ppτT q

T
ź

t“1

pθpτ
t´1|τ t, cq

pθpτ
t´1|τ t, cq“N pτ t´1;µθpτ

t, t, cq,Σθpτ
t, t, cqq

B. Model Architectures
For the tasks of human pose/motion generation in 3D

scenes and path planning for 3D scene navigation, we use

the same scene encoder, i.e., the PointTransformer [84]
adopted from the original architecture. We pre-train the
scene encoder with indoor scene semantic segmentation
task on ScanNet dataset and freeze it while training
SceneDiffuser. The outputs of the scene encoder are used
as the key and value of the cross-attention module.

For processing the trajectory, we employ an FC layer and
positional embedding to obtain the high-dimensional fea-
ture of the trajectory. We then fuse the trajectory feature
with denoising timestep embedding with a ResBlock. After
that, we feed the fused feature vectors to a self-attention
module and use them as the query of the cross-attention
module. Finally, the computed vector is fed into a feedfor-
ward layer to estimate the noise ε.

For the task of dexterous grasp generation for 3D ob-
jects, we use PointNet [43] as the 3D object encoder. Before
the cross-attention module, the outputs of PointNet are re-
shaped to pNtoken, Nfeatq, where Ntoken refers to the number
of tokens and Nfeat refers to the dimensions of the feature.

For the task of motion planning for robot arms, we adopt
PointTransformer [84] as the scene encoder, which is jointly
trained from scratch with SceneDiffuser.

C. Objective Design
For human pose and motion generation in 3D scenes, we

encourage contact and non-collision between the generated
human body meshes and the scene meshes. Following [83],
we design optimization objective ϕopτ t|Sq“α1ϕ

collision
o `

α2ϕ
contact
o for pose generation and ϕopτ t|Sq“α1ϕ

collision
o `

α2ϕ
contact
o `α3ϕ

smoothness
o for motion generation. α is the

balancing weight. ϕcollision
o minimizes the negative signed-

distance values of the body mesh vertices given the negative
signed distance field (SDF) of the 3D scene Φ´s p¨q, which is
formulated as

ϕcollision
o “´E

“

|Φ´s pMtq|
‰

, (A1)

where Mt is the SMPL-X body mesh at denoising step t.
ϕcontact
o minimize the distance between contact body parts

of the generated body mesh and the scene mesh, which is
formulated as

ϕcontact
o “´

ÿ

vcPCpMtq

min
vsPS

|vc´vs|, (A2)

whereCp¨q is the operation of selecting contact part vertices
from the SMPL-X body mesh according to the annotation
in [15]. We design the smoothness objective to smooth the
motion over time by minimizing the velocity difference of
consecutive frames, which is formulated as

ϕsmoothness
o “´

ÿ

vPMt

L´2
ÿ

i“1

}vi`2´2vi`1`vi}2, (A3)



where L is the length of the motion sequence. We empiri-
cally set α1“ 1.0, α2“ 0.02, and α3“ 0.001.

For dexterous grasp generation, we punish the collision
between the robotic hand mesh and the object mesh. We
design optimization ϕopτ t|Sq“ϕcollision

o . ϕcollision
o is similar

to Eq. (A1), where 3D scene is represented as an object and
Mt as the robotic hand mesh at denoising step t.

For path planning for the 3D scene navigation task, we
design an optimization objective ϕo and ϕp for generating
collision-free paths toward the goals. The collision-free ob-
jective maximizes the distance between the robot and the
scene vertices in the robot cylinder, formulated as

ϕo“´
L
ÿ

i“1

ÿ

vsPS
ReLUpr´distpvs, τ ti qq, (A4)

where ReLUpxq“maxp0, xq, r is the radius of the robot
cylinder, and distp¨q compute the Euler distance between
scene vertices and robot position on the 2D plane. The plan-
ning objective ϕp encourages the generated paths toward
the target position. In our work, we formulate it as

ϕp“
L
ÿ

i“1

exp

ˆ

1

}G´τ ti }1

˙

. (A5)

For robot arm motion planning, we design the planning
objective ϕp similar to Eq. (A5). The objective is defined as

ϕp“
L
ÿ

i“1

exp

˜

1
řN
j“1 }Gj´τ tij}1

¸

. (A6)

where N denotes to the number of revolute joints and j
refers to j-th revolute joint.

D. Implementation Details
D.1. Human Pose Generation in 3D Scenes

Following prior work [83], we represent the human body
with the SMPL-X model. We denote the parameters of
SMPL-X in our setting as xh – pt, R, β, θbq

T PR79, where
t is the global translation in meters, R is the global orien-
tation represented in axis-angle, β PR10 is the body shape
feature, and θb PR63 is the axis-angle representation of 21
body joints. SMPL-X can map these low-dimensional pa-
rameters into a watertight mesh with a fixed topology, en-
abling physical collision and contact modeling. Unlike [83]
using scene depth and semantics, we directly represent the
scene with a point cloud S PR32768ˆ3, which provides raw
information about the 3D scene.

For quantitative evaluation, we randomly sample 1000
examples in each test scene to compute the diversity and
physics metrics. Specifically, we separately calculate the
Average Pairwise Distance (APD) and standard deviation

(std) for global translation t PR3, the rest of local SMPL-X
parameters pR, β, θbqT PR76, and the marker-based repre-
sentation [82] of generated bodies without global transla-
tion. We also report the non-collision score of the generated
human bodies by calculating the proportion of the scene
vertices with positive SDF to the human body and the con-
tact score by checking whether the body contacts with the
scene within a pre-defined distance threshold, i.e., 0.02m.

To train SceneDiffuser, we use Adam [27] optimizer
with 0.0001 as the learning rate. We use 4 NVIDIA A100
GPUs to train 100 epochs with a batch size of 128. The
number of diffusion steps T in this task is set as 100. For
optimization guidance sampling, we empirically set scale
coefficient λ“ 2.5.

D.2. Human Motion Generation in 3D Scenes

For the two different settings (with and without start po-
sition) of human motion generation in 3D scenes, we repre-
sent the single-frame human body of the motion sequence
as the same as the pose generation. To collect training data,
we clip the motion sequences in the PROX dataset into mo-
tion segments with a fixed duration, i.e., 60 frames. We use
the same evaluation metrics as pose generation and report
the average values over motion sequence as the motion gen-
eration performance measure. In this task, the optimizer is
Adam, and the learning rate is 0.0001. We use 4 NVIDIA
A100 GPUs to train 300 epochs with 200 diffusion steps
and 128 batch size. For optimization guidance sampling, we
empirically set scale coefficient λ“ 2.5.

D.3. Dexterous Grasp Generation for 3D Objetcs

We use Shadowhand as our dexterous robotic hand and
denote qpos as q– pt, R, θq PR33, where t PR3 and R PR6

represent the global translation and orientation respectively,
θ PR24 describes the rotation angles of the revolute joints.
We split the MultiDex [31] into 48 seen objects and 10 un-
seen objects for training and testing.

For each grasp, we apply 0.5ms´2 acceleration to the ob-
ject along ˘xyz directions, and the grasping is successful
if the movements of the object are all within 2cm. For the
diversity, we first capture the mean µi and the standard devi-
ation σi of i revolute joint in the training data grasping pose.
We define the mean pose as µq – pµ1, µ2, ..., µ24q PR24

and the standard deviation pose as σq – pσ1, σ2, ..., σ24q P
R24. We report the success rate of generated poses that lie
at the k standard deviation level, which means these poses
q satisfy the constraint as µq´kσď qďµq`kσ. For the
depth collision computation, we sample the surface points
H PR3200ˆ3 on the ShadowHand related to the pose q and
the surface points with normal O PR4096ˆ6 on the object.
We compute the collision for ShadowHand surface to the
object and report the depth collision among H to show the
quality of generated poses.



To train SceneDiffuser on this task, we use Adam opti-
mizer, set the learning rate as 0.0001, and use 1 NVIDIA
A100 GPU to train 2100 epochs with 64 batch size. For
optimization guidance sampling, we empirically set scale
coefficient λ“ 1.0.

D.4. Path Planning for 3D Scene Navigation

In this task, we consider 3D navigation in realistic
scenes, where the goal is to plan plausible trajectories for
a physical robot from the given start position ŝ0 to the given
target position G in a furnished 3D indoor scene S. We rep-
resent the hallucinated physical robot as a cylinder to sim-
ulate physically plausible trajectories which are collision-
free in the 3D scene. The robot can move in all directions
within a distance in each step without height change. We
set the maximum moving distance as 0.08m, the robot ra-
dius as 0.08m, and the robot height as infinite, which means
the robot can only move on the floor that is not occupied.

To construct room-level realistic scenarios for path plan-
ning, we manually select 61 indoor scenes from Scan-
Net [9], as shown in Fig. A1. We annotate these scenes with
spatially dense and physically plausible navigation graphs
and collect about 6.3k trajectories by searching the shortest
paths between the randomly selected start and target graph
nodes. As the distance between nodes may be too long for
a robot to move in one step, we refined the trajectories ac-
cording to the maximum moving distance. These trajecto-
ries have an average step of 60.0, a minimal step of 32, and a
maximum step of 120. We use 4.7k trajectories in 46 scenes
as the training data and the rest 1.6k trajectories in 15 un-
seen scenes for evaluation. We set the maximum number of
planning steps as 150.

During training, we set the fixed trajectory horizon as
32. We use 4 NVIDIA A100 GPUs to train 50 epochs with
100 diffusion steps and a batch size of 128. The optimizer is
Adam, and the learning rate is 0.0001. During inference, we
empirically set the scale coefficient of optimization guid-
ance as 1.0 and the scale coefficient of planning guidance
as 0.2.

D.5. Motion Planning for Robot Arm

We use the Franka Emika with seven revolute joints
as the robot arm and randomly generate cluttered table-
top scenes with primitives following specific heuristics. For
each scene, we position the robot arm at the center of the
table and use moveit2 motion planner [48] to synthesize tra-
jectories constrained by a pair of start and goal poses of the
end effector. We collected 19,800 collision-free trajectories
over 200 clustered scenes.

During inference, we execute the planned motions of
SceneDiffuser in IsaacGym [35]. We consider the planning
is successful if our robot arm reaches the goal pose by a
certain L2 norm distance (e.g., 0.2) in the space of revo-
lute joints. Note that the simulation can not run infinitely;

therefore, we set a limited number of simulation steps (e.g.,
300). For the efficiency evaluation, we capture the average
number of simulation steps.

To train SceneDiffuser on this task, we use Adam opti-
mizer, set the learning rate as 0.0001, and use 4 NVIDIA
A100 GPUs to train 200 epochs with 128 batch size. We
empirically set the scale coefficient of planning guidance as
0.2 during inference.

D.6. Scaling Factor for the Guidance

Similar to Ho et al. [19], we notice that the parameter
Σ in Eq. (9) decreases as the denoising step t decreases,
which gradually weakens the guidance during the denoising
process. Instead of using a constant as the scaling factor, we
empirically schedule the scaling factor by dividing it by Σ.
It reformulates Eq. (9) as

ppτ t´1|τ t,S,Gq«N pτ t´1;µ`λg,Σq

E. Additional Ablative Experiments
We ablate different model architectures, including

the scene encoder and noise prediction module in
SceneDiffuser, diffusion steps and scale coefficient in the
optimizer of dexterous grasp generation task, and fixed
frames and planning objectives of path planning for 3D
scene navigation task.

E.1. Model Architecture

As shown in Tab. A1, we study how different scene
model influences the dexterous grasp generation results. We
use PointNet [43] and PointNet++ [44] as different scene
models to extract the object feature. For more diversity eval-
uation, we capture the mean standard deviation among all
revolute joints of the robotic hand qpos. We find that the
global feature extracting from PointNet makes it easier for
the model to learn a mean pose to obtain a higher grasping
success rate. In contrast, the local feature extracting from
PointNet++ makes the generated grasp pose more diverse.

Table A1. Ablation on different scene encoder.

Scene Encoder
Succ. Rate (%)Ò

Div. (rad.)Ò Coll. (mm)Ó
σ 2σ all

PointNet (w/o opt.) 70.65 71.25 71.25 0.0718 17.34
PointNet (w/ opt.) 71.27 70.32 69.84 0.0838 14.61

PointNet++ (w/o opt.) 56.47 66.29 66.25 0.1568 18.53
PointNet++ (w/ opt.) 64.33 60.51 59.53 0.1670 14.37

As shown in Tab. A2, we ablate the module for noise
prediction. We compare the design of cross-attention and
self-attention for processing the condition and input. Cross-
attention indicates learning query from the input τ t and
learning key and value from the scene condition S. Self-
attention indicates concatenating τ t and scene features S



Figure A1. Scenes and corresponding navigation graphs for path planning. The selected scenes have various regions, diverse room
types, and sufficient layout complexity.

and learning with self-attention. Through our experiments,
we find that with self-attention, the model learns better to
capture the joint distribution of input and condition. This
leads to a slightly lower diversity but better generation qual-
ity and success rate.

Table A2. Ablation on different model architecture.

Epsilon Model
Succ. Rate (%)Ò

Div. (rad.)Ò Coll. (mm)Ó
σ 2σ all

CrossAttn. (w/o opt.) 70.65 71.25 71.25 0.0718 17.34
CrossAttn. (w/ opt.) 71.27 70.32 69.84 0.0838 14.61

SelfAttn. (w/o opt.) 74.27 75.94 75.94 0.0535 16.49
SelfAttn. (w/ opt.) 72.01 71.56 71.09 0.0605 13.94

E.2. Diffusion Steps

We study different diffusion steps T in Tab. A3, where
we use PointNet++ as the scene encoder with cross-
attention design. We report the success rate, diversity, and
depth collision of sampling results in the test set under dif-
ferent diffusion steps, ranging from 30 to 1000. T balance
the diversity and success rate in dexterous grasp generation,
where T “ 30 leads to the best diversity of generated grasp
pose and T “ 1000 leads to the best all success rate.

E.3. Scale Coefficient

Among different time steps T , we ablate scale coefficient
λ of the optimization guidance in dexterous grasp genera-

tion in Tab. A3, ranging from 0.0 (denoted as w/o in the
table) to 1.0. Through extensive experiments, we observe
that, in general, the α trade off the depth collision and grasp
success rate. A larger α value leads to fewer collisions and
draws the grasp pose away from the object simultaneously,
which losses the grasp stability and lowers the success rate.

We also ablate the scale coefficient of the planner in path
planning for 3D scene navigation, as shown in Tab. A4. Too
small or too large scale coefficients both lead to a perfor-
mance drop. It is due to that a small value cannot provide
sufficient guidance. In contrast, a large value diminishes tra-
jectory diversity with strong guidance, preventing it from
escaping obstacles and dead-ends.

E.4. Fixed Frames for Planning

Since we formulate the planning algorithm as inpaint-
ing, we also ablate the number of the fixed frame in it.
In path planning for 3D scene navigation, we train the
SceneDiffuser with a trajectory length of 32. Therefore, we
compare the settings of fixing the first 1, 7, 15, 23, and 31
frames for inpainting during the denoising process. The re-
sults in Tab. A4 show that the model achieves the best per-
formance while fixing the first 15 frames.

E.5. Planning Objectives

To explore the influence of different planning objectives,
we design the following four planning objectives and com-
pare them with Eq. (A5).



Table A3. Ablation on diffusion steps and scale coefficient.

Time Steps Optimizer Scale
Succ. Rate (%)Ò

Diversity (rad.)Ò Depth Collision (mm)Ó
σ 2σ 3σ all

30 w/o 0.00 60.01 50.94 48.13 0.3418 21.19
30 0.1 0.00 58.72 54.90 51.09 0.3415 19.96
30 0.5 0.00 64.24 51.63 47.81 0.3397 17.41
30 1.0 0.00 60.41 48.76 43.59 0.3393 16.05

100 w/o 0.00 66.62 60.12 58.91 0.2865 19.07
100 0.1 0.00 66.54 60.60 59.53 0.2836 17.55
100 0.5 0.00 61.23 56.71 53.75 0.2898 14.63
100 1.0 0.00 56.79 53.13 48.91 0.2920 14.53

500 w/o 75.00 67.50 67.34 67.34 0.1753 19.29
500 0.1 68.56 65.19 65.00 65.00 0.1733 17.68
500 0.5 62.83 60.25 58.94 58.75 0.1814 15.12
500 1.0 62.21 57.76 55.17 54.37 0.1872 14.36

1000 w/o 56.47 66.29 66.26 66.25 0.1568 18.53
1000 0.1 73.24 71.43 71.04 71.09 0.1572 16.88
1000 0.5 70.18 65.99 65.55 65.62 0.1611 14.37
1000 1.0 64.33 60.51 59.61 59.53 0.1670 14.37

Table A4. Ablation on different inpainting horizons and scale
coefficients of the planning guidance.

Fixed Frames Planner Scale Succ. Rate(%)Ò Planning StepsÓ

1 0.2 31.25 135.14

7 0.2 65.50 104.30

15 0.2 73.75 90.38

23 0.2 73.25 87.49

31

0.1 53.50 106.23
0.2 62.37 97.02
0.3 56.81 101.54
0.4 50.94 105.11

• We compute the L1 distance between the last frame of
the denoised trajectory and the target position, i.e.,

ϕp“´}G´τ tL}1. (A7)

• We summarize the L1 distance between all frames of
the denoised trajectory and the target position, i.e.,

ϕp“´
L
ÿ

i“1

}G´τ ti }1. (A8)

• Similar to Eq. (A5), we only consider the last frame of
the denoised trajectory, i.e.,

ϕp“ exp

ˆ

1

}G´τ tL}1

˙

. (A9)

• We compute the L1 distance between the target posi-
tion and the frame closest to the target, i.e.,

ϕp“´min
i
}G´τ ti }1. (A10)

The planning results in Tab. A5 indicate that encourag-
ing all frames of the denoised trajectory to reach the tar-
get position surpasses considering only one frame. Besides,
directly using L1 distance tends to achieve a better perfor-
mance than additionally applying the exponential function.

Table A5. Ablation on different planning objectives.

Objective Succ. Rate(%)Ò Planning StepsÓ

ϕp“´}G´τ tL}1 57.06 116.22
ϕp“´

řL
i“1 }G´τ ti }1 75.69 88.02

ϕp“ exp
´

1
}G´τt

L}1

¯

34.31 131.74

ϕp“
řL
i“1 exp

´

1
}G´τt

i }1

¯

73.75 90.38
ϕp“´min

i
}G´τ ti }1 56.00 109.02

F. Trainable Optimization and Planning
As shown in Alg. 1, we can optionally train the optimiza-

tion and planning process with observed trajectories. To ver-
ify its efficacy, we optimize the trainable scaling factor λ of
the optimization guidance in pose generation and path plan-
ning tasks. Specifically, we use a small MLP model to map
the timestep embedding of each step into a scalar, i.e., the
scaling factor. During training, we only optimize the MLP
while fixing the pre-trained diffusion model. We plot the
learned scaling factor varying with the denoising step from
100 to 1, as shown in Fig. A2. We observe that the scal-
ing factor of the denoising process at the beginning is much
smaller than at the end. We speculate that the target signal at
the beginning of the denoising process is mostly noise so a
large scaling factor cannot optimize it properly. The scaling
factor decrease in the last several steps may be because this
can alleviate excessive guidance and balance the guidance
from other modules, such as the planner.
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Figure A2. Trainable scaling factor varying with the denoising
step.

G. More Qualitative Results
Pose Generation in 3D Scenes We show more quali-

tative results in Fig. A3.

Motion Generation in 3D Scenes We provide more
sampled human motions from the same start pose in other
scenes, as shown in Fig. A4. Please refer to the supplemen-
tal demo video for better visualization with rendered anima-
tions.

Path Planning for 3D Scene Navigation Fig. A5
shows some qualitative results of path planning for 3D
scene navigation.

Dexterous Grasp Generation for 3D Objects We
show more qualitative results in Fig. A6. Note that the ob-
jects are unseen during training time.

Motion Planning for Robot Arm We render the plan-
ning results into animations for visualization. Please refer
to the supplemental demo video for the qualitative results.



(a) cVAE (b) SceneDiffuser (c) Without Opt. (d) With Opt.

Figure A3. More qualitative results of pose generation in 3D scenes.

Figure A4. More qualitative results of motion generation in 3D scenes.

Figure A5. Qualitative results of path planning for 3D scene navigation. The red balls represent the planning result, starting with the
lightest red ball and ending with the darkest red ball. The green ball indicates the target position.



Figure A6. More qualitative results of dexterous grasp pose generation for 3D object.
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