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Abstract

We present a novel method for recovering the absolute
pose and shape of a human in a pre-scanned scene given a
single image. Unlike previous methods that perform scene-
aware mesh optimization, we propose to first estimate ab-
solute position and dense scene contacts with a sparse 3D
CNN, and later enhance a pretrained human mesh recovery
network by cross-attention with the derived 3D scene cues.
Joint learning on images and scene geometry enables our
method to reduce the ambiguity caused by depth and oc-
clusion, resulting in more reasonable global postures and
contacts. Encoding scene-aware cues in the network also
allows the proposed method to be optimization-free, and
opens up the opportunity for real-time applications. The ex-
periments show that the proposed network is capable of re-
covering accurate and physically-plausible meshes by a sin-
gle forward pass and outperforms state-of-the-art methods
in terms of both accuracy and speed. Code is available on
our project page: https://zju3dv.github.io/sahmr/.

1. Introduction

Monocular human mesh recovery (HMR), i.e., estimat-
ing pose and shape parameters of a parametric human
model from a single image, has gained significant atten-
tion in recent years. To better capture and understand hu-
man behaviors, many recent works [I-5] propose to ad-
dress the problem of scene-aware HMR which involves
human-scene interaction constraints when recovering hu-
man meshes, given the 3D geometry of the scene scanned
by range sensors [5—7], as well as the camera pose of the
input image relative to the scene, which may enable more
applications in video surveillance, household robots, and
motion analysis in gyms and clinics.

Most existing methods propose using scene-aware opti-
mization to fit the human mesh into a pre-scanned scene.
They optimize a parametric human model iteratively, e.g.,
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Figure 1. Comparison between the optimization-based method
and the proposed method. Optimization-based methods typi-
cally fit a parametric human model iteratively by minimizing 2D
reprojection error and scene conflicts. In contrast, the proposed
method utilizes a single forward pass of the network to estimate
the global position (blue ball), contact scene points (colored scene
points), and a scene-aware human mesh. This design leads to im-
provements in both efficiency and accuracy.

SMPL [£], to minimize scene penetration, chamfer distance
of contact regions, and the 3D-2D re-projection error. How-
ever, optimization tends to be slow at inference time and is
sensitive to initialization and hyperparameters, failing to re-
spond in low-latency applications. As illustrated in Fig. I,
an optimization-based method PROX [5] takes 18.4s to fit
a human model into the scene, while the incorrect position
and pose still occur.

Recent works [9—13] propose to recover human mesh
with neural networks trained on large-scale datasets [14—
17]. Specifically, the networks learn a mapping from an
input image to a human mesh in the canonical coordi-
nates. Applying these methods in the scene-aware HMR


https://zju3dv.github.io/sahmr/

task still requires post-processing optimization, where the
global translation and the human poses are refined in accor-
dance with the given scene. However, the monocular pre-
diction is conditioned on the input image solely, omitting
the joint distribution of human pose and scene geometry,
and therefore tends to suffer from depth ambiguity and oc-
clusion. As a result, the optimization-based post-processing
could be easily deteriorated by the erroneous initial poses
and may even worsen the initial prediction.

In this work, we propose a Scene-Aware Human Mesh
Recovery network (SA-HMR), the first learning-based ap-
proach that predicts the absolute position and mesh of a
human in the scene by a single forward pass. The overall
pipeline is illustrated in Fig. 2. Given the input image and
scene point cloud, we first use a sparse 3D CNN to estimate
dense scene contacts and absolute human position, where
the scene contact estimation is treated as a point cloud la-
beling task, and the human position prediction is presented
as a voting vector field refinement task. The predicted
dense contact points are centered by the human position and
passed to a scene network in the human mesh recovery step.
Specifically, we enhance a pretrained monocular HMR net-
work METRO [12] by cross-attention with the proposed
scene network in parallel. In this way, SA-HMR learns a
joint distribution of human pose and scene geometry, result-
ing in more reasonable postures, contacts, and global posi-
tions, as illustrated in Fig. 1. Learning scene-aware cues in
the network also avoids scene-aware optimization as post-
processing and achieves fast inference speed.

We evaluate the proposed method on the RICH [6] and
PROX [5] datasets of indoor and outdoor scenes. The ex-
perimental results show that SA-HMR is not only effective
in recovering absolute positions and meshes that are in ac-
cordance with the given scene, but also significantly faster
than the optimization-based baselines.

In summary, we make the following contributions:

* The first optimization-free framework for scene-aware
human mesh recovery from a single image and a pre-
scanned scene.

* The cross-attention design for enhancing a pretrained
HMR network with a parallel scene network, enabling
joint learning on the human pose and scene geometry.

¢ Superior performance compared to optimization-based
baselines in terms of both accuracy and speed.

2. Related Work

Monocular Human Mesh Recovery. Most existing ap-
proaches formulate the monocular HMR task as recovering
the mesh of statistical human body models, e.g. SMPL and
SMPL-X [8, 18, 19], where recent works can be divided into
optimization-based and learning-based approaches.

The optimization-based approach fits a parametric hu-
man model by minimizing the 3D-2D re-projection error
of body joints and energy terms of heuristic priors iter-
atively, which is represented by SMPLify [20] that fits
SMPL [8]. More recently, SMPLify-X [19] proposes a vari-
ational pose prior and fits a more expressive SMPL-X. Pose-
NDF [21] proposes to represent the manifold of plausible
human poses with a neural field. While optimization-based
methods are general in their mathematical formulation, they
are usually sensitive to hyperparameters and require much
time for inference.

The learning-based methods utilize deep neural net-
works to predict either the parameters [9, 10,22, 23] or the
mesh vertices [11-13] of the SMPL model. HMR [9] is
the pioneering work in predicting SMPL parameters, and
SPIN [10] improves upon it using an optimization loop. For
predicting SMPL mesh vertices, GraphCMR [1 1] deforms
a template human mesh using graph neural network, while
METRO [12] uses transformers, and [13] uses graph hier-
archy to further improve the performance. However, for
scene-aware HMR, the vertices of the human and scene
meshes in contact are close in Euclidean space, making
methods that regress parameters unsuitable due to errors
that accumulate along the kinematic chains. Therefore, the
proposed method is built on the works that predict mesh
vertices. More details can be found in Sec. 3.

Scene-aware Human Mesh Recovery. PROX [5] is a sem-
inal work that uses scene constraints to reduce the depth
and occlusion ambiguity in monocular HMR. It achieves
this by adding two energy terms of human-scene contact
and penetration in the optimization process [19]. In addi-
tion, scene-aware pose generative models [2, 24] can also
be used as prior terms in the scene-aware HMR task. Other
recent works in this area include MoCapDeform [4], which
considers deformable scene objects, LEMO [ 1], which uses
temporal information, and HULC [3], which uses consecu-
tive frames and dense contacts prediction on both the scene
and human body. In contrast to these works, the proposed
method is optimization-free and requires only a single for-
ward pass.

In a broader topic of capturing humans in a scene-aware
manner, [25-27] propose using a simulator and dynamic
model, where a pre-defined agent is controlled to interact
with the scene, and [28,29] consider human-object arrange-
ment by first predicting the human and object and then per-
forming global optimization.

Attention in Transformers. Attention is a key mechanism
in Transformers [30]. It allows a set of query features to fuse
the most relevant information from another set of key-value
features. When query and key-value features come from
the same source, it is called self-attention, otherwise cross-
attention. In HMR, METRO [12] uses self-attention to re-
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initial root and then refines the root with 3D scene cues using a sparse 3D CNN. The module also predicts contact labels [5] for each scene
point. Please refer to Sec. 3.2 for a detailed definition of the 3D feature construction module. 2. The scene-aware human mesh recovery
module (Sec. 3.3) that enhances the pretrained METRO [12] network with a parallel scene network. The scene network takes the predicted
contact scene points as input, and uses cross-attention to pass messages to the intermediate features of the METRO network.

duce occlusion ambiguity by establishing non-local feature
exchange between visible and invisible parts of a template
human mesh. In feature matching, SuperGlue [31] uses
cross-attention to make the corresponding image features
more similar. Predator [32] uses cross-attention in match-
ing two sets of point clouds.

Inspired by feature matching, the proposed method uses
cross-attention to potentially make the features of the hu-
man and scene that are in contact more similar, resulting in
better contact and more reasonable postures.

3. Methods

Given a calibrated image and a pre-scanned scene point
cloud (Sec. 3.1), SA-HMR first estimates the absolute hu-
man root position and scene contacts (Sec. 3.2), and then
recovers the human mesh with the contact points by enhanc-
ing a pretrained METRO network (Sec. 3.3). An overview
of the proposed method is presented in Fig. 2.

3.1. Preliminaries

Human Representation. We use SMPL [&] as the human
representation. The SMPL is a parametric model that uses
the body joint rotations, root translation, and body shape
coefficients to compute the body mesh. Following [11,12],
we directly predict the SMPL mesh vertices V' = R6890%3,
and use H36M [14] joint regression matrix M € R14x68%0
to compute 3D joints J € R'4*3 from the vertices for quan-
titative evaluation, J = MV

Scene and Image Representation. We assume that the
scene is pre-scanned with range sensors, as in RICH [6]
and PROX [5], and the image is calibrated and localized in
the scene, i.e. with known intrinsic and extrinsic parameters
{(f,cz,¢y), (Re,tc)}. Following METRO [12], we detect

a squared bounding box around the target human and re-
size the cropped region as the input image [ € R?24*224x3,
Based on the camera parameters and the bounding box, we
select scene points that fall within the visual frustum as the
input scene point cloud S € RVs 3,

Human-Scene Contact. Following PROX [5], we use 7
regions of the SMPL mesh that are most likely to be con-
tacted. The details are provided in the supplementary ma-
terial. Using these 7 categories and one for not being in
contact, we perform a segmentation task on the scene point
cloud.

3.2. Human Root and Scene Contacts

Given an image [ bounding the human, we propose using
a 2D convolutional neural network (CNN) to extract image
features F' and predict the initial human root r. Based on the
scene points S, we unproject the image features F' to 3D,
resulting in F. Additionally, we calculate point-wise offset
vectors O that point from a voxelized scene point cloud to
the initial root. By taking F and O as input, a sparse 3D
CNN predicts the segmentation of scene contacts and the
refined offsets, which are then converted to the refined hu-
man root r*. An overview of this process is presented in the
left column of Fig. 2.

Initial Root. We predict the initial root r=(X,Y, Z) in a
2.5D manner following SMAP [33]. Specifically, we use
a CNN to predict the 2D heatmap and a normalized depth
map of the root. Then, the 2D position (z,y) is obtained
by applying argmax to the heatmap, and the corresponding
normalized depth value Z is retrieved from the depth map.
Finally, using the intrinsic parameters f,c,,c, and image
size w, the 3D root position is computed:

f

Z=27% (1)
w
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Figure 3. 3D feature construction. We voxelize a scene point
cloud to a sparse volume. The initial feature of each voxel consists
of two parts, which are the offset vector pointing from the voxel
center to the human root and the unprojected image features.
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3D Feature Construction. Based on the initial root r and
image features F', we construct the 3D features on the vox-
elized scene point cloud, which is illustrated in Fig. 3.

First, we select regions of interest around the initial root
r in the point cloud. Specifically, we treat r as an anchor
and keep points within a radius ;. Since Z has more uncer-
tainty than (z,y), we sample two additional anchors along
the z-axis, whose distance to 7 is 5. Next, we construct a
sparse volume S by voxelizing these points with voxel size
Svoz» Where the center of each voxel is denoted as 5;.

For each voxel 7, the feature consists of the offset vector
o0; and the unprojected image feature fz Specifically, o; is a
vector pointing from the voxel center to the human root:

0; =T —8; 3)

f is computed by projecting voxel center 5; onto the image
using camera parameters and bilinearly sampling the image
feature map F'.

Estimating Refined Root and Scene Contacts. We use
sparse 3D CNN [34] to process the constructed 3D fea-
tures and learn to improve the root estimation and predict
the scene contacts. Specifically, the output of each voxel in-
cludes an updated offset vector o}, confidence c;, and seg-
mentation indicating the contact category. We compute the
refined root r*:

r* :Zci-(of—i—gi). “4)

There are 8 categories of contact points, including 7 most
probable regions on the body that would be contacted [5]
and 1 category of not being in contact. We take the cate-
gory of the highest score as the prediction for the voxel and
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Figure 4. Enhancing METRO with a parallel network. The or-
ange parts are the original METRO [12] network, where the resid-
ual connection and positional encoding are omitted for simplicity.
The blue parts are the proposed parallel network which takes pre-
dicted contact scene points as input. The yellow parts indicate
feature interaction between METRO and the parallel network.

set the dense point cloud belonging to the voxel with that

category. The contact points Sseggd € RVs*3 serve as the
input for the mesh recovery module.

3.3. Scene-aware Human Mesh Recovery

Since the training data of scene-aware human mesh re-
covery is limited, we build our model upon a network
named METRO [12] that is pre-trained on large-scale data
of monocular human mesh recovery. METRO processes
feature based on the self-attention mechanism, and our ap-
proach enhances METRO by adding a parallel scene net-
work, which provides a cross-attention-based mechanism
that enables METRO to notice important scene details and
achieve scene-aware human mesh recovery.

METRO consists of a CNN backbone and multiple Trans-
former encoders. It first extracts global CNN features, then
combines the feature to the vertices of a zero posed SMPL
mesh, and finally predicts a posed mesh with shape through
the transformers. The part of the transformer is illustrated
in the orange part of Fig. 4.

Enhancing METRO with Cross-Attention. We improve
METRO with a scene network, which makes the predicted
human vertices to be close to the corresponding contact
scene points Sseggd (Sec. 3.2).

As illustrated in Fig. 4, we add a parallel network, which
has a similar architecture as the transformer of METRO,
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Figure 5. Visualization of the cross-attention from a body ver-
tex (blue point) to the predicted dense scene contacts (white
points). (a) The image and the predicted dense scene contacts. (b)
The hand vertex is in contact with the scene according to the im-
age, and its feature is similar to the nearby scene point features,
enabling the final vertex prediction to be close to the correspond-
ing scene surface. (c) The arm vertex is not in contact with the
scene, where feature similarities tend to be evenly distributed. The
feature similarities are normalized to the same range of 0—1.

to extract features of scene contact points and output the
point positions like an autoencoder. Specifically, we first
use METRO’s CNN backbone to extract the image feature
and map it to a set of vertex tokens by a fully-connected
layer. In METRO, these tokens are directly concatenated
with the positions of initial human vertices. However, the
number of scene contact points is not the same as the to-
kens’, and there is no one-to-one correspondence between
them. To resolve this issue, we perform the average pooling
to vertex tokens based on the contact categories defined on
the SMPL mesh vertices [5], resulting in 7 tokens. Then,
we append each scene contact point with the correspond-
ing aggregated token based on the predicted category in
Sec. 3.2. Intuitively, this helps the cross-attention to focus
on the semantically corresponding parts. To be invariant
to the global translation, the scene contact points are zero-
centered by the predicted root r*.

Motivated by recent feature matching methods [31, 32],
we propose to use cross-attention to pass features from
scene contact points to human vertices. The cross-attention
and self-attention share the same underlying mechanism,
both of which first compute the similarity of query and key,
and then use the weighted sum to fuse features. When
the query and key are from the same source features, it is
self-attention, and otherwise is cross-attention. In practice,
we use linear attention operator [35] to improve efficiency.
A visualization of cross attention over human vertices and
scene points is in Fig. 5. The detailed network architecture
is provided in the supplementary material.

Note that, we use a weight-sharing regressor layer with
METRO, which regresses from point-wise features to point

position (z,y, z). Therefore, to get a similar (x,y, z), the
input features of this layer should also be similar. This
strategy implicitly aligns the features of human vertices and
scene points when their final predictions are near in 3D
space, thus facilitating the cross-attention to find correspon-
dences between human vertices and scene points.

3.4. Training Loss

Root and Contact. The loss function Lgc for the root and
contact estimation is defined as:

Lyrc = Lrop + wrz - Lrz + Lrov + Lrsp + Le (5)

where Lgop is the MSE loss on the root heatmap; Lgz,
Lrov, and Lg3p are the L1 losses on the relative depth, off-
set vectors, and the 3D root, respectively; Lc is the cross-
entropy loss for contact categories of voxel points, where
we additionally train an auxiliary task of 2D contact seg-
mentation similar to the voxel points.

Human Mesh Recovery. The loss function Lygyg for the
mesh recovery is defined as:

Lymr = Ly + Ly + Lep + Lgy (6)

where Ly, Lj, Lcp, and Lgy are the L1 losses on the
translation-aligned human vertices, human joints, recon-
structed contact points, and global human vertices, respec-
tively. More details are in the supplementary material.

3.5. Implementation Details

We train two modules separately. For the root and con-
tact module, the CNN is HRNet-stride-4 [36] with METRO
initialization, the sparse 3D CNN is SPVCNN [34,37] with
random initialization. We use linear layers to align interme-
diate feature dimensions. ; is 1.25m, 2 is 0.5m, Sy0z 1S
53¢m3, and wgy is 10. The contact threshold is 7em. We
flip images for augmentation. The module is trained with
an initial learning rate of 3.75e-5 and a batch size of 24. It
converges after 30 epochs of training on one V100 GPU.
For the mesh recovery module, the METRO network is ini-
tialized as pretrained and the scene network is randomly ini-
tialized. The initial learning rate is 7.5e-6 and the batch size
is 24. It converges after 30 epochs of training.

4. Experiments
4.1. Datasets

We train and evaluate the proposed method on RICH [6]
and PROX [5] datasets separately.

RICH [6] captures multi-view video sequences in 6 out-
door and 2 indoor environments. It provides images, re-
constructed bodies, scene scans, and human-scene contact



Method Learning-based Optimization Scene-aware G-MPJPE] G-MPVE] PenE| ConFE| MPIPE|l MPVE|
Dataset GT [6] v v / / 9.8 10.8 / /
SMPLify-X [19] v 482.0 483.7 35.7 434 166.9 177.6
PROX [5] v v 390.1 397.2 15.5 24.1 164.1 175.8
POSA [2] v v 427.8 434.0 21.1 27.0 177.2 188.4
PLACE [38] v v 395.9 403.0 16.1 24.8 163.8 175.4
METRO [12]" + SA-Opt [6,29] v v v 563.1 561.3 74 14.8 102.7 112.8
METRO [12] v 678.6 679.4 522 56.9 129.6 1345
METRO [12]* v 511.7 509.7 33.6 37.6 98.8 107.9
SA-HMR v v 264.6 272.7 14.9 19.0 93.9 103.0

Table 1. Evaluation on the RICH [6] dataset. METRO" indicates that the model is finetuned on the dataset. SA-Opt indicates scene-aware

optimization, with contact estimation from BSTRO [6] and loss formulation from PROX [5] and PHOSA [

]. The proposed SA-HMR

achieves the overall best results and is significantly faster than the methods that require optimization.

labels annotated on SMPL vertices. We skip frames includ-
ing multiple subjects, remove the first 45 frames of each
video to avoid static starting pose, and skip frames where
the subjects’ 2D bounding boxes are not inside the images.
Then we downsample the train / val / test splits to 2/ 1/ 1
fps, resulting in 15360 / 3823 / 3316 frames.

PROX [5] captures monocular RGBD videos in 12 indoor
environments. We use RGB images and scene scans. It is
a challenging dataset where severe occlusions exist in most
frames. We use the qualitative set for training and the quan-
titative set for testing. In order to get better training annota-
tions, we additionally combine HuMoR [26] which utilizes
motion prior and optimizes a sequence of frames. Then,
we manually remove the failed frames that are not consis-
tent with the images and scenes. Finally, the training split
contains 4852 frames.

4.2. Metrics

We evaluate quantitatively in terms of human mesh re-
covery and human-scene contact.

Human Mesh Recovery. We report the Global Mean-
Per-Joint-Position-Error (G-MPJPE) and Global Mean-
Per-Vertex-Error (G-MPVE) in scene coordinates, which
calculates the average L2 distances between predicted and
ground truth joints/vertices. Additionally, we report the
translation-aligned metrics MPJPE and MPVE.

Human-scene Contact. We report the Penetration Error
(PenE) and Contact Failure Error (ConFE). PenE measures
the total distance that SMPL vertices penetrate the scene
mesh:

14

PenE = Y L<o[sdf (v;,S)] - |sdf (v;, S)|,

i=1

)

where V' is the number of SMPL vertices, sdf (v;,S) is the
signed distance of vertex v to scene S, and 1,.¢[-] is an
indicator function that returns 1 when the condition is met,
and 0 otherwise. ConFE measures contact quality when the

Method G-MPJPE| G-MPVE| PenE| MPJPE| MPVE,]
Dataset GT [5] / / 9.6 / /

SMPLify-X [19] 216.0 222.6 493 100.7 112.8
PROX [5] 172.0 178.5 10.7 101.1 114.0
POSA [2] 172.3 180.9 16.6 108.5 1194
PLACE [38] 168.1 176.7 12.3 100.8 113.7
METRO [12] 283.2 2777 62.4 137.0 1472
METRO [12] 265.6 262.7 67.5 117.1 128.5
SA-HMR 150.4 160.0 269 1111 1225

Table 2. Evaluation on the PROX [6] dataset. The proposed
method achieves the best performance in global metrics.

ground-truth contact label is available:

14
ConFE = "(Cgi(vs) - |sdf (v;, S)|
=1
+(1 = Cge(vi)) - Lacolsdf (vi, S)] - [sdf (vi, S)|),

®)

where Cy:(v) equals 1 if v is labeled as in contact, and 0
otherwise. In order to obtain a good result of ConFE, the
body vertices in contact should be near the scene surface,
while vertices not in contact should avoid penetration.

4.3. Main Results

Baselines. Optimization: SMPLify-X [19] uses RGB only,
PROX [5] extends it with losses of human-scene contact and
penetration, POSA [2] and PLACE [38] extend PROX with
scene-aware pose priors, and METRO [ 12]T+SA-Opt stands
for post-processing a finetuned METRO with scene-aware
optimization, which will be explained later. Learning-
based: METRO predicts canonical human mesh vertices
and a weak-perspective camera. We solve the transforma-
tion from human to camera coordinate by minimizing joint
re-projection error with a PnP solver [39]. The METRO'
is finetuned with the same training protocol as SA-HMR.
Since METRO does not consider scenes, we additionally



Dataset Initial RtErr  Refined RtErr  Final RtErr

RICH 510.8 284.7 246.5
PROX 364.2 132.3 111.8

Table 3. Ablation study of root estimation. The human root
position errors (RtErr) in mm are reported.

optimize the global pose and scale by minimizing scene-
aware losses, including re-projection error, human-scene
penetration, contact distance [6], and ordinal depth er-
ror [29], following the key ideas of PROX and PHOSA [29].

Results. For the RICH dataset, Tab. 1 shows that SA-
HMR notably outperforms other baselines in terms of the
G-MPJPE and G-MPVE by a significant margin, demon-
strating the effectiveness of the proposed pipeline. The
joint learning on both image and scene geometry also im-
proves the metrics of local pose and human-scene contact.
We use open-sourced code for SMPLify-X and PROX, and
implement POSA and PLACE upon PROX. Optimization
methods approximately cost 18s for a single fitting, which
is much slower compared to 0.2s of SA-HMR. We provide
qualitative results comparing to baselines in Fig. 6.

For the PROX dataset, SA-HMR outperforms all base-
lines in terms of global accuracy as illustrated in Tab. 2.
Since the pseudo ground truth is still not of low quality
for the training set of PROX, as well as a domain gap
exists in the test set where the subject wears a MoCap
suit, our method falls a little behind in local accuracy and
scene penetration. And we do not report ConFE, since
the ground-truth contact label is not available. Neverthe-
less, the clear improvement compared to the most relevant
model METRO' has demonstrated the effectiveness of the
proposed method.

We also observe that while considering the scene geome-
try is critical for estimating the global position and improv-
ing physical plausibility, it may not fully resolve the am-
biguity of the local pose, where multiple physically plausi-
ble solutions may still exist. For example, the RGB-only
method SMPLify-X and the scene-aware method PROX
perform similarly in MPJPE and MPVE.

4.4. Ablation Study

Root and Contact Module. Tab. 3 shows that the pre-
dicted human root position is improved progressively by
the refinement and scene-aware HMR modules, where the
initial prediction [33] is improved 44%/52% in RICH, and
64%/69% in PROX. The offset representation helps to im-
prove erroneous initial root prediction that is not consis-
tent with the scene surface. For scene contact estimation,
the precision/recall is 0.57/0.53 on RICH, and 0.45/0.24 on
PROX. We observe that the contacts are difficult to pre-
dict, which aligns with the conclusion of a recent work

Method G-MPJPE G-MPVE MPJPE  MPVE  CErrl
w/o parallel 304.8 3129 98.5 108.9 10.2
Ours 264.6 272.7 93.9 103.0 8.9

Table 4. Ablation study of the parallel network on the RICH
dataset. The compared variant fuses features of contact points at
the early stage.

Root Contact MPJPE MPVE CErrl

/ / 98.8 107.9 10.5
Est. Est. 93.9 103.0 8.9
GT Est. 89.2 98.1 7.9

Est. GT 90.4 99.2 8.3
GT GT 76.7 84.6 5.2

Table 5. Ablation study of the scene-aware mesh recovery mod-
ule. We validate the upper bound of the proposed method on the
RICH dataset.

HULC [3]. More visualizations are presented in Fig. 7.

Mesh Recovery Module. As shown in Tab. 4, the paral-
lel network that uses cross-attention outperforms a variant
that fuses the pointnet features of the contact points to the
METRO network in the early stage. The CErr indicates the
error of contact mesh vertices in the translation-aligned co-
ordinates. In Tab. 5, we validate the upper bound of the
mesh recovery module. We replace the intermediate esti-
mation of root and contact, and find a steady improvement
in the pose and shape accuracy that outperform the baseline.

Running Time. SA-HMR runs at 170ms with a peak mem-
ory cost of 1852 MB for a 224 x 224 image and a scene point
cloud of 2¢m resolution on a V100 GPU. Specifically, the
root and contact module takes 92ms (CNN 50ms, SPVCNN
42ms), the mesh recovery module 75ms (CNN 49ms, Trans-
former 26ms), and 3ms for the intermediate processing.

5. Conclusion

This work addressed the challenge of estimating the hu-
man mesh from an RGB image with the consideration of
the scene geometry. Our key idea is to inject 3D scene cues
into a monocular human mesh recovery network to recover
the absolute human pose and shape in the scene. To this
end, our approach first predicts the 3D human location and
then uses a sparse 3D CNN to estimate dense human-scene
contacts. We developed a transformer to extract features
from contact scene points and fed them into the pose esti-
mation network using the cross-attention scheme. Experi-
ments demonstrated our approach achieves state-of-the-art
performance on the RICH and PROX datasets.
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Image PROX METRO! METRO' + SA-Opt Ours GroundTruth

Figure 6. Qualitative results on the RICH [6] dataset. We compare the proposed method to PROX [5], finetuned METRO [12], finetuned
METRO with scene-aware optimization, and ground truth. The leftmost column shows the input images. The proposed method recovers
the global positions and human-scene contact more accurately because of the 3D learning on human root refinement and dense scene
contact labeling tasks.

Root & Contact Ours GroundTruth Root & Contact Ours GroundTruth

Figure 7. Qualitative visualization of the estimated root locations and dense scene contacts. In both examples, the estimated contact
points provide accurate position and scene structure for the following step of mesh recovery. The reconstructed human mesh is in good
contact with the corresponding scene regions.
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