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Figure 1. (a) In complex crowd scenarios, different people may interact with one another at varying levels (low and high interactions) and at
different positions (i.e., between near and far distances). (b) The illustration of our main idea on body part interactions. We divide the body
joints into 5 parts, and the Intra-Individual branch is used to explore part relationships for each individual and the Inter-Individual branch
aims to capture interaction dependencies of body parts between individuals. Our TBIFomer facilitates to model body part interactions for
intra- and inter-individuals simultaneously.

Abstract
Multi-person pose forecasting remains a challenging

problem, especially in modeling fine-grained human body
interaction in complex crowd scenarios. Existing methods
typically represent the whole pose sequence as a tempo-
ral series, yet overlook interactive influences among peo-
ple based on skeletal body parts. In this paper, we propose
a novel Trajectory-Aware Body Interaction Transformer
(TBIFormer) for multi-person pose forecasting via effec-
tively modeling body part interactions. Specifically, we
construct a Temporal Body Partition Module that trans-
forms all the pose sequences into a Multi-Person Body-
Part sequence to retain spatial and temporal informa-
tion based on body semantics. Then, we devise a Social
Body Interaction Self-Attention (SBI-MSA) module, utiliz-
ing the transformed sequence to learn body part dynam-
ics for inter- and intra-individual interactions. Further-
more, different from prior Euclidean distance-based spa-
tial encodings, we present a novel and efficient Trajectory-
Aware Relative Position Encoding for SBI-MSA to of-
fer discriminative spatial information and additional in-
teractive clues. On both short- and long-term horizons,
we empirically evaluate our framework on CMU-Mocap,
MuPoTS-3D as well as synthesized datasets (6 ∼ 10 per-
sons), and demonstrate that our method greatly outper-
forms the state-of-the-art methods. Codes will be released
at https://github.com/xiaogangpeng/TBIFormer.

†Corresponding author.

1. Introduction

Recent years have seen a proliferation of work on the
topic of human motion prediction [4,6,7,13,24,25,28,34],
which aims to forecast future poses based on past obser-
vations. Similarly, understanding and forecasting human
motion plays a critical role in the field of artificial intelli-
gence and computer vision, especially for robot planning,
autonomous driving, and video surveillance [8, 14, 21, 44].
Although encouraging progress has been achieved, the cur-
rent methods are mostly based on local pose dynamics fore-
casting without considering global position changes of body
joints (global body trajectory) and often tackle the prob-
lem of single humans in isolation while overlooking human-
human interaction. Actually, in real-world scenarios, each
person may interact with one or more people, ranging from
low to high levels of interactivity with instantaneous and
deferred mutual influences [2, 31]. As illustrated in Fig. 1
(a), two individuals are pushing and shoving with high in-
teraction, whilst a third individual is strolling with no or low
interaction. Thus, accurately forecasting pose dynamics and
trajectory and comprehensively considering complex social
interactive factors are imperative for understanding human
behavior in multi-person motion prediction. However, ex-
isting solutions do not efficiently address these challenging
factors. For example, Guo et al. [15] propose a collabo-
rative prediction task and perform future motion prediction
for only two interacted dancers, which inevitably ignores
low interaction influence on one’s future behavior. Wang
et al. [39] use local and global Transformers to learn indi-
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vidual motion and social interactions separately in a crowd
scene. The aforementioned methods ignore the interactive
influences of body parts and only learn temporal and social
relationships without modeling fine-grained body interac-
tion, which makes it difficult to capture complex interaction
dependencies.

To solve this issue, we propose a novel Transformer-
based framework, termed TBIFormer, which consists of
multiple stacked TBIFormer blocks and a Transformer de-
coder. In particular, each TBIFormer block contains a
Social Body Interaction Multi-Head Self-Attention (SBI-
MSA) module, which aims at learning body part dynam-
ics across inter- and intra-individuals and capturing fine-
grained skeletal body interaction dependencies in complex
crowd scenarios as shown in Fig. 1 (b). More specifically,
SBI-MSA learns body parts dynamics across temporal and
social dimensions by measuring motion similarity of body
parts rather than pose similarity of the entire body. In addi-
tion, a Trajectory-Aware Relative Position Encoding is in-
troduced for SBI-MSA as a contextual bias to provide addi-
tional interactive clues and discriminative spatial informa-
tion, which is more robust and accurate than the Euclidean
distance-based spatial encodings.

In order to feed the TBIFormer a pose sequence contain-
ing both temporal and spatial information, an intuitive way
is to retain body joints in time series. However, this strat-
egy will suffer from noisy joints caused by noisy sensor in-
puts or inaccurate estimations. In this work, we propose a
Temporal Body Partition Module (TBPM) that, based on
human body semantics, transforms the original pose se-
quence into a new one, enhancing the network’s capacity
for modeling interactive body parts. Then, we concatenate
the transformed sequences for all people one by one to gen-
erate a Multi-Person Body Part (MPBP) sequence for input
of TBIFormer blocks, which enables the model to capture
dependencies of interacting body parts between individu-
als. TBIFormer makes MPBP sequence suitable for motion
prediction by utilizing positional and learnable encodings to
indicate to whom each body part and timestamp belongs.

Finally, a Transformer decoder is used to further con-
sider the relations between the current and historical context
across individuals’ body parts toward predicting smooth and
accurate multi-person poses and trajectories. For multi-
person motion prediction (with 2 ∼ 3 persons), we evaluate
our method on multiple datasets, including CMU-Mocap
[9] with UMPM [35] augmented and MuPoTS-3D [30].
Besides, we extend our experiment by mixing the above
datasets with the 3DPW [38] dataset to perform prediction
in a more complex scene (with 6 ∼ 10 persons). Our method
outperforms the state-of-the-art approaches for both short-
and long-term predictions by a large margin, with 14.4%
∼ 16.5% accuracy improvement for the short-term (≤ 1.0s)
and 6.5%∼ 18.2% accuracy improvement for the long-term

(1.0s ∼ 3.0s).
To summarize, our key contributions are as follows: 1)

We propose a novel Transformer-based framework for ef-
fective multi-person pose forecasting and devise a Tempo-
ral Body Partition Module that transforms the original pose
sequence into a Multi-Person Body-Part sequence to retain
both temporal and spatial information. 2) We present a
novel Social Body Interaction Multi-Head Self-Attention
(SBI-MSA) that learns body part dynamics across inter-
and intra-individuals and captures complex interaction de-
pendencies. 3) A novel Trajectory-Aware Relative Posi-
tion Encoding is introduced for SBI-MSA to provide dis-
criminative spatial information and additional interactive
clues. 4) On multiple multi-person motion datasets, the
proposed TBIFormer significantly outperforms the state-of-
the-art methods.

2. Related Work
2.1. Single-Person Pose Forecasting

Predicting human motion offers enormous promise for
surveillance, autonomous driving, and human-robot inter-
action. Although recurrent neural networks (RNNs) have
shown advantages in processing this typical sequence-to-
sequence problem [13, 18, 29], discontinuity and error ac-
cumulation often happen due to the frame-by-frame predic-
tion manner. To address these issues, some feed-forward
networks such as graph convolution networks (GCNs) and
temporal convolution networks (TCNs) are used to explore
spatial and temporal dependencies [7, 10, 12, 23, 25]. Be-
sides, Mao et al. [26] introduce an attention-based feed-
forward network to capture the similarity between the cur-
rent motion context and the historical motion sub-sequences
and process the result via GCNs for long-term prediction.
All the above methods only model local pose dynamics,
ignoring global body translation and inter-individual body
interaction. However, learning both local and global pose
dynamics and modeling fine-grained human-human inter-
action are essential for comprehending human behavior in a
complex 3D environment [2, 39].

2.2. Multi-Person Pose Forecasting

In order to address fine-grained human-human interac-
tion, some recent approaches are proposed for multi-person
pose and trajectory forecasting. For example, Adeli et al.
[1] propose to combine scene context and use graph at-
tention networks to model interaction between humans and
objects. Guo et al. [15] present a collaborative prediction
task and use a two-branch attention network for the predic-
tion of two interacted persons. Wang et al. [39] present a
Transformer-based framework to forecast multi-person mo-
tion in a scenario with more people. Furthermore, this
method produces unrealistic poses since they solely concen-



Figure 2. Overview of the proposed TBIFormer framework. Given the observed pose sequences of 3 persons, TBIFormer transforms
them into displacement sequences as input and then forecasts future poses for each person. At the head and tail of TBIFormer, we adopt a
Discrete Cosine Transformation (DCT) [3] that discards the high-frequency information for a more compact representation in displacement
trajectory space [27].

trate on individual and social modeling in the time dimen-
sion. Despite the novelty of these works, skeletal body in-
teraction between individuals is not captured effectively. In
this work, we propose TBIFormer that learns skeletal body
part dynamics for intra- and inter-individuals to effectively
capture complex interaction dependencies.

2.3. Multi-Person Social Interaction

Pedestrian trajectory prediction is a representative issue
for multi-person social interaction. Existing methods for the
task can be categorized based on how they model time and
social dimensions. RNNs [16] and Transformers [37] are
the preferred models [5, 17, 43] to process the trajectory se-
quence for temporal modeling, and graph neural networks
(GNNs) [20] are often adopted as social models for interac-
tion modeling [19,22,41,42]. While performing well, these
studies only focus on individuals’ global movement without
modeling detailed human joint dynamics. In this work, we
investigate our TBIFormer to consider fine-grained human-
human interaction via modeling skeletal body part dynam-
ics among individuals and predict future motion for 3 ∼ 10
persons in 3D scenes.

3. Method

In this section, we introduce our Trajectory-Aware Body
Interaction Transformer (TBIFormer), which contains mul-
tiple stacked TBIFormer blocks and a Transformer decoder
followed by fully connected layers, as shown in Fig. 2.
Each TBIFormer block has a Social Body Interaction Multi-
Head Self-Attention (SBI-MSA) module for modeling body
part interactions across temporal and social dimensions.
The proposed TBIFormer is also equipped with a Tempo-

ral Body Partition Module (TBPM), which aims to better
learn body parts’ spatial and temporal information within
the skeletal sequences. In addition, temporal positional en-
coding, person identity encoding, and trajectory-aware rela-
tive position encoding are introduced to preserve time, iden-
tity, and discriminative spatial information. In the follow-
ing, the problem definition and our key modules are de-
scribed in detail.

3.1. Problem Definition

Supposing the observed skeletal poses from person p are
Xp

1:T+1 = {xp1, x
p
2, ..., x

p
T+1} with T + 1 frames, where

p = 1, 2, ...P . For simplicity, we omit subscript p when
p only represents an arbitrary person, e.g., taking xp1:t as
x1:t. Instead of absolute joint positions in the world co-
ordinate, we use yi = xi+1 − xi to obtain instantaneous
pose displacement at time i, which will provides more valu-
able dynamics information [34, 39]. The whole displace-
ment sequence is defined as Y1:T = {y1, y2, ..., yT }. Given
the displacement sequence Y1:T of each person, our goal
is to predict the N frames of future displacement trajec-
tory YT+1:T+N and transform it back to the pose space
XT+2:T+N+1.

3.2. Temporal Body Partition Module

To better retain both spatial and temporal information of
the skeleton sequences, we propose TBPM that first trans-
forms the pose sequence of each person into a sequence
that contains body parts during a short time period. Then,
TBPM concatenates all the transformed individuals’ se-
quences into a Multi-Person Body-Part (MPBP) sequence
for the following Transformers. There are three primary
processes in TBPM, i.e., partition, projection and concate-



Figure 3. The illustration of the proposed Temporal Body Partition
Module (TPBM). TPBM performs three main operations (i.e., par-
tition, projection, and concatenation) on the input pose sequence
to generate a Multi-Person Body-Part (MPBP) sequence.

nation, which are described below.
Partition. Given the displacement sequence of the p-th per-
son Y p ∈ RT×J×C , where T and J represent the numbers
of frames and joints, respectively, and C = 3 represents
the dimension of the 3D coordinates, we first divide the se-
quence into B = 5 body parts (e.g. left and right arms, left
and right legs, core torso) based on natural human skeletal
structure, and then down-sample each body part by average-
pooling. After the above operations, the sequence is repre-
sented as Ỹ p ∈ RT×B×C .
Projection. The goal of the projection operation is to ini-
tially extract spatial and temporal information. Specifi-
cally, we use 2D convolution with a kernel size of l × 1
on Ỹ p to obtain 2D feature map Y

p ∈ RL×B×D, where
L = ⌊(T − l + 1)/stride⌋ and D denote the number of
output channels. We denote “padding” and “stride” as the
padding size and stride size of the convolutional filter.
Concatenation. Following projection, the encoding of all
the B body parts are concatenated for all the L timesteps
to form a new sequence with the length of U = L × B.
Next, we concatenate the sequences of all the P persons
one by one for a merged Multi-Person Body-Part (MPBP ∈
RM×D) sequence, where M denotes P × U . MPBP se-
quence allows our TBIFormer to learn individuals’ body
part dynamics across temporal and social dimensions.

3.3. Temporal Positional and Person Identity En-
coding

Similar to the original Transformer [37], we apply si-
nusoidal positional encoding to convey to TBIFormer the
timestep associated with each element in the MPBP se-
quence. Instead of encoding the position of each element

based on index in the whole MPBP sequence, we first com-
pute timestamp features based on the timesteps of each per-
son and obtain temporal positional encoding τp ∈ RT×dτ ,
where dτ is the feature dimension of the timestamp. Then
we utilize the interleaved repeating function to repeat the
encoding elements for B body parts and concatenate the en-
coding of all individuals. The final temporal positional en-
coding (TPE) is formulated as τ̂ ∈ RM×dτ .

To provide identity information of each individual in the
MPBP sequence, we also inject a learnable person identity
encoding ν ∈ RM×dν , indicating which individual each el-
ement belongs to, where dν denotes the feature dimension.
Notably, the identity encoding (IE) is randomly initialized
and repeated for the time and body parts using the same re-
peating method for TPE.

Figure 4. The overview of the proposed Trajectory-Aware Relative
Position Encoding (TRPE).

3.4. Trajectory-Aware Relative Position Encoding

An instinctive assumption is that the closer a few people
are, the higher the interaction they may have. Yet, in the
complex crowd situation, one person may have their back
turned to a nearby individual with no interaction, or, as de-
picted in Fig. 1, a person may just pass by two interacting
individuals, exhibiting low interaction yet close proximity.
Therefore, Euclidean distance-based spatial position encod-
ings struggle to provide discriminative spatial information
and distinguish individuals who are actually interacting.

In this paper, our observation is that people interacting
in 3D space tend to move in the same or face-to-face di-
rection, as opposed to the deviated direction. The main
challenge is that directly calculating body orientation of the
human skeleton data and the angle between the individuals
is tedious and costly. To solve it, we find that movement
trajectories can also provide vital information and circum-
vent the aforementioned limitations. Therefore, we pro-
pose a novel Trajectory-Aware Relative Position Encoding
(TRPE) by measuring the similarity of movement trajec-
tories, which can aggregate both corresponding movement
pattern and spatial information. Dynamic Time Warping
(DTW) [32, 33] is a more robust method to measure tra-
jectory (series) similarity than Euclidean distance. In this



work, we employ an efficient and differentiable algorithm
variant called Soft-DTW [11], which can be defined as,

D(i, j) = min{D(i, j − 1), D(i− 1, j), D(i− 1, j − 1)}
+ δ(i, j),

(1)

where D(i, j) denotes the shortest distance between sub-
sequence S1 = (s1, s2, ..., si) and S2 = (s1, s2, ..., sj)
and δ(·, ·) is differentiable cost function. In order to dy-
namically obtain trajectory similarity according to a certain
timestep as opposed to complete timestamps, we propose a
Shifted Local DTW (SL-DTW) mechanism based on Soft-
DTW. Similar to the convolution operation, SL-DTW cal-
culates the similarity between individuals at a specific win-
dow size and shifts step-by-step, which will provide more
precise relative information. See Algorithm 1 for a detailed
description of the SL-DTW process.

Algorithm 1 Shifted Local DTW mechanism (SL-DTW)

Input: The root trajectory sequence of person m and
person n, Xm

r = (xmr,1, x
m
r,2, ..., x

m
r,T ) and Xn

r =
(xnr,1, x

n
r,2, ..., x

n
r,T ); The size of local window and shift

stride, l and stride; The length of input sequence, T ;
Output: The trajectory similarityD<m,n> between person

m and n;
1: D<m,n> = [ ]
2: for i = 0; i < ⌊(T − l + 1)/stride⌋; i+ = stride do
3: D<m,n> = stack(D<m,n>, D(xm(r,i+l), x

n
(r,i+l)))

4: end for

Given the trajectory similarity distance D̃ ∈ RP×L

among P persons, we need to map the distance to an
integer set for relative position encoding. The common
way to address this issue is the clip function: h(D̃) =
max(−β,min(β, D̃)), which inevitably eliminates the
context of long-distance relative position. Hence, we al-
ternatively use the piecewise function [40] g(·) that main-
tains long-range information for indexing relative distances
to corresponding encodings, and then define the indexed
matrix through the SL-DTW distance as follows:

ψ(i, j) =


g(η), ι ̸= κ,m ̸= n,

g(0), m = n,

g(D̃<m,n>
(ι,κ) ), ι = κ,m ̸= n,

(2)

where ι and κ denote different timesteps from different per-
son. In Eq. (2), to reduce additional computation, we ignore
relations between personm and n on the condition of ι ̸= κ
and input a larger value η in g(·) instead. The piecewise
index function is presented as

g(e) =


, |e| ≤ α,

sign(e)× |e| > α,

min(β, [α+
ln (|e|/α)
ln (γ/α)

(β − α)]),

(3)

where [·] is a round operation, sign() determines the sign of
a number, i.e., returning 1 for positive input, -1 for negative,
and 0 for otherwise. α controls the piecewise point, β limits
the output in the range of [−β, β], and γ tunes the curvature
of the logarithmic part.

Finally, as shown in Fig. 4, we embed the indexed ma-
trix ψ(i, j) of trajectory similarity as our TRPE Pψ(i,j) ∈
RM×dz and denote M = P × L × B, which are shared
throughout all attention layers of SBI-MSA.

3.5. SBI-MSA Module

In each TBIFormer block, we aim to construct a Social
Body Interaction Multi-Head Self-Attention (SBI-MSA)
module to effectively model body part dynamics for inter-
and intra-individual. Given the motion features extracted
by TBPM, SBI-MSA, based on motion-wise attention com-
putation, can further optimize pose dynamics and capture
complex body interaction dependencies among individuals.
Let H = [h1, ..., hn] ∈ Rn×d denotes the input representa-
tion for attention module, where d is the hidden dimension.
SBI-MSA takes as input keys K, queries Q and values V ,
each of which is projected by the corresponding parameter
matrix WQ ∈ Rd×dz , WK ∈ Rd×dz and WV ∈ Rd×dz .
The output of SBI-MSA is computed as

Q = HWQ, K = HWK , V = HWV , (4)

SBI-MSA(Q,K, V ) = softmax(A)V. (5)

We integrate the TRPE Pψ(i,j) on the attention map to
consider the interaction between individual dynamics fea-
tures and spatial clues across temporal and social dimen-
sions. Denoting Aij as the (i, j)-element of the Query-Key
product matrix A, we have

Aij =
Qi ·Kj + bTRPE

i,j√
dz

, (6)

bTRPE
i,j = Qi · Pψ(i,j)

, (7)

where bTRPE
i,j is a contextual bias for the attention map.

3.6. Transformer Decoder

As illustrated in Fig. 2, we concatenate joint coordi-
nates of the last observed sub-sequence (length = l) from
each person for all the body joints and down-sample them
on time dimension by 1D Convolution (kernel size = l) as
global body query tokens. Key and value tokens are the out-
put of the TBIFormer block. We utilize a standard Trans-
former decoder [37] to encode the relations between the
current (queries) and historical context (keys) across indi-
viduals. At the end of the decoder, we adopt two fully con-
nected (FC) layers followed by an Inverse Discrete Cosine
Transformation (IDCT) [3] to generate the future motion
trajectory XT+2:T+N+1 for each individual.



CMU-Mocap (UMPM)
(3 persons)

MuPoTS-3D
(2 ∼3 persons)

Mix1
(6 persons)

Mix2
(10 persons)

Method 0.2s 0.6s 1.0s Overall 0.2s 0.6s 1.0s Overall 0.2s 0.6s 1.0s Overall 0.2s 0.6s 1.0s Overall

JP
E

HRI [26] 49 130 207 129 81 211 323 205 51 141 233 142 52 140 224 139
MSR [12] 53 146 231 143 79 222 374 225 49 132 220 134 60 153 243 152
MRT* [39] 36 115 192 114 78 225 349 217 37 122 212 124 38 126 214 126
Ours* 30 109 182 107 66 200 319 195 34 121 209 121 34 118 198 117

A
PE

HRI [26] 41 97 130 89 70 136 174 127 38 92 122 84 41 100 133 91
MSR [12] 46 106 137 96 71 148 190 136 41 92 120 84 48 110 148 102
MRT* [39] 36 108 159 101 71 166 217 151 36 109 166 104 38 115 178 110
Ours* 27 84 118 76 60 132 170 121 28 81 113 74 30 89 124 81

FD
E

HRI [26] 31 90 158 93 63 173 279 172 37 107 192 112 35 101 177 104
MSR [12] 29 94 175 99 58 184 335 192 29 91 169 96 38 113 185 112
MRT* [39] 27 88 157 91 59 187 309 185 29 100 189 106 29 98 185 104
Ours* 18 72 133 74 49 163 277 163 23 89 168 93 21 81 151 84

Table 1. Results of JPE, APE and FDE (in mm) on different datasets. We compare our method with the previous SOTA methods for
short-term and long-term predictions. Best results are shown in boldface. (* means multi-person motion prediction method.)

JPE APE FDE
Method 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s

HRI [26] 134 229 349 99 133 161 93 177 295
MSR [12] 134 256 371 97 142 165 92 204 316
MRT* [39] 148 256 352 130 187 218 109 216 315

Ours* 118 225 329 89 132 152 78 172 273

Table 2. Results of JPE, APE and FDE (in mm) on CMU-Mocap
(UMPM) dataset. We compare our method with the previous
SOTA methods for long-term prediction (1.0s ∼ 3.0s). Best results
are shown in boldface. (* means multi-person motion prediction
method.)

3.7. Loss Function

We use a reconstruction loss based on the Mean Per Joint
Position Error (MPJPE) for optimization. In particular, for
one training sample, the loss is represented as

Lrec =
1

J ∗N

T+N∑
i=N+1

J∑
j=1

||ŷi,j − yi,j ||2, (8)

where ŷj,t and yj,t are ground-truth and estimated pose dis-
placement at time i. J represents the number of body joints.

4. Experiments

4.1. Implementation Details

We implement our framework in PyTorch, and the exper-
iments are performed on Nvidia GeForce RTX 3090 GPU.
We train our model for 50 epochs using the ADAM opti-
mizer with a batch size of 32, a learning rate of 0.0003, and
a dropout of 0.2. For the TBPM, the kernel size and stride
of 2D convolutional filter are 10 × 1 and stride = 1, and
padding = 0. The parameters in TRPE are: α = 1, β =
9, γ = η = 2000. The dimensions dz of keys, queries, and
values in TBIFormer block and Transformer decoder are all
set to 64, and the hidden dimension d of feed-forward layers

is 1024. There are 3 stacked TBIFormer blocks and atten-
tion layers with 8 heads in the TBIFormer and Transformer
decoder.

4.2. Datasets

To verify the effectiveness of TBIFormer, we run ex-
periments on the CMU-Mocap (UMPM) dataset, which
merges UMPM [35] into CMU-Mocap [9] for dataset ex-
pansion. Mix1 and Mix2 are blended by CMU-Mocap,
UMPM, 3DPW [38], and MuPoTs-3D [30] datasets. We
evaluate all the methods for generalization ability by test-
ing on the MuPoTS-3D (2 ∼ 3 persons), Mix1 (6 persons),
and Mix2 (10 persons) datasets with the model only trained
on the CMU-Mocap (UMPM) dataset. Please refer to the
appendix for a thorough explanation of why we do dataset
expansion and the processing detail of mixing datasets.

4.3. Metrics of Evaluation

JPE Metric. We use Joint Position Error (JPE) based on
Mean Per Joint Position Error (MPJPE) to measure the
poses of all the individuals, including body trajectory:

JPE(X, X̂) =
1

P × J

P∑
i=1

J∑
j=1

||Xi
j − X̂i

j ||2, (9)

where P and J are the numbers of people and joints. Xi
j

and X̂i
j are the estimated and ground-truth positions of the

joint j for person i.
APE Metric. We remove global movement and use
Aligned mean per joint Position Error (APE) to measure
pure pose position error:

AME(X, X̂) = JPE(X −Xr, X̂ − X̂r), (10)

where Xr and X̂r are the estimated and ground-truth root
positions of human body.



JPE APE FDE
Method 0.2s 0.6s 1.0s 0.2s 0.6s 1.0s 0.2s 0.6s 1.0s

w/o TBPM 32 117 195 28 87 123 21 76 142
w/o IE, TRPE 31 113 188 27 85 120 19 74 138
w/o TRPE 31 112 186 27 85 119 19 73 136
TRPE → EuPE 40 118 191 34 89 121 20 80 139
w/o SBI-MSA 40 128 208 29 92 129 27 85 151

Full 30 109 182 27 84 118 18 72 133

Table 3. Ablation studies on different components of TBIFormer.
Our full method and its variants are evaluated on the CMU-Mocap
(UMPM) in JPE metric.

FDE Metric. We also adopt the root position to evaluate
the global movement of each person using a typical tra-
jectory prediction metric: Final Displacement Error (FDE).
The formula is described as follows:

FDE(Xr, X̂r) = ||Xr,N − X̂r,N ||2, (11)

where Xr,N and X̂r,N are the estimated and ground-truth
root position of final pose at N -th predicted timestamp.

4.4. Baselines

We choose 3 code-released state-of-the-art (SOTA) ap-
proaches as baselines, including two single-person based
methods: HRI [26] and MSR [12], and a recently released
multi-person based method called MRT [39]. HRI [26] is
an attention-based network, and MSR [12] is a GCN-based
method, which both allow absolute coordinates as input.
For short-term prediction, we train all these models with
50 frames (2.0s) of input and 25 frames (1.0s) of forecast-
ing and evaluate on the 4 datasets. For long-term prediction,
using the protocols in MRT [39], we set 15 frames (1.0s) of
history as input to predict the future 45 frames (3.0s).

4.5. Results

To validate the prediction performance of TBIFormer,
we follow the setting of the most single-person methods
[12, 26] to show the quantitative and qualitative results of
short- and long-term predictions, and compare our method
with the baselines.
Quantitative Results. Table 1 reports the results of JPE,
APE and FDE on the 4 different datasets. Our TBIFormer
significantly outperforms the baselines in prediction accu-
racy. We achieve up to 13% ∼ 27% improvement when
compared to the previous single-person-based methods and
achieve up to 13% ∼ 16% improvement compared to the
multi-person-based method. It can be noticed that MRT [39]
performs poorly in the APE metric due to the lack of spa-
tial modeling of the human skeleton. Besides, we report
the results of long-term prediction (1.0s ∼ 3.0s) in Tab. 2.
Our method consistently outperforms the baselines in the 3
metrics.
Qualitative Results. Figure 5 shows some examples of
our visualization results compared to the baselines and the

JPE APE
Method 0.2s 0.6s 1.0s 0.2s 0.6s 1.0s

HRI [26] 51 ↑ 2 134 ↑ 4 212 ↑ 5 41 ↑ 0 98 ↑ 1 132 ↑ 2
MSR [12] 55 ↑ 2 149 ↑ 3 238 ↑ 7 46 ↑ 0 106 ↑ 0 136 ↓ 1
MRT* [39] 38 ↑ 2 124 ↑ 9 203 ↑ 9 49 ↑ 13 142 ↑ 34 223 ↑ 64

Ours* 31 ↑ 1 111 ↑ 2 184 ↑ 2 28 ↑ 1 85 ↑ 1 120 ↑ 2

Table 4. Results on effects of random person permutation in input.
All the methods are evaluated on the CMU-Mocap (UMPM) in
JPE and APE metrics. The values in red indicate changes in error.

ground truth. The results of HRI [26] and MSR [12] show
that they tend to converge to a static pose in the long-term
predictions. Due to the deficiency in spatial modeling of the
human body, MRT [39] generates some distort poses. By
contrast, our method generates more plausible 3D human
motion in practice, which is much closer to the ground truth
than others. More visualization results are supplemented in
the appendix.

4.6. Ablation Studies

We further conduct extensive ablation studies on CMU-
Mocap (UMPM) to investigate the contribution of key tech-
nical components in TBIFormer, with results in Tab. 3. For
more ablation results about the model, please refer to the
appendix.
Effectiveness of TBPM. The TBPM constructs a sequence
containing both temporal and spatial information for human
poses. When it is removed and joint coordinates are directly
concatenated for body joints in a pose sequence, TBIFormer
cannot learn body part dynamics, and we can observe a sig-
nificant performance decrease.
Effectiveness of IE and TRPE. Person identity encoding
(IE) allows our method to distinguish element types in the
MPBP sequence (i.e., inform each token about identity in-
formation). After eliminating IE, the model’s overall per-
formance has decreased marginally. Trajectory-aware rela-
tive position encoding (TRPE) provides ample spatial and
interactive clues for the model. When we remove TRPE,
the performance drops substantially. In addition, as shown
from (TRPE → EuPE) in Tab. 3, even after replacing TRPE
with Euclidean distance-based position encoding, the per-
formance is still sub-optimal. We also provide t-SNE vi-
sualization [36] to demonstrate discriminative power be-
tween TRPE and SE (Euclidean-based encoding) in MRT
[39]. Apparently, our model equipped with TRPE can ob-
tain more accurate and compact representations.
Effectiveness of SBI-MSA. The goal of the SBI-MSA is
to learn body part dynamics across temporal and social di-
mensions. As illustrated in the final row of Tab. 3, if the
SBI-MSA is substituted with a standard self-attention mod-
ule, our model only learns motion features for each person
separately, resulting in poorer long-term performance.
Effects of Random Person Permutation. To ensure that



Figure 5. Qualitative comparison with the baselines and the ground truth on a sample of the CMU-Mocap (UMPM) dataset. The left two
columns are inputs, and the right three columns are predictions.

the people order of input data in the model should not af-
fect its performance, we randomly permute this order dur-
ing training and testing to investigate model robustness with
the results in Tab. 4. Obviously, our method is just as robust
as the single person-based methods, i.e., do not rely on per-
mutation of person in the input.

4.7. Attention Visualization

We show the visualization of attention score between in-
dividuals’ query motion and the historical context of differ-
ent people in Fig. 6. The left figure shows the observed mo-
tion of three people, where we can see that person 3 (P3) is
following person 2 (P2) around, while person 1 (P1) is not
interacting with them nearly. The right figure draws the cor-
responding attention score for each individual. High atten-
tion scores for the two individuals interacting are indicated
by two red-dotted regions. In terms of the high interaction
group, in practice, P3 should pay more attention to histor-
ical information about P2 in order to adjust his behavior,
which is clearly demonstrated through the visualization.

5. Conclusion
In this paper, we presented a novel Transformer archi-

tecture for effective multi-person pose forecasting. We first
constructed a TBPM to extract spatial and temporal features
based on body semantics. We also presented an SBI-MSA
module to learn body part dynamics for inter- and intra-
individual interactions. In addition, we proposed a novel
Trajectory-Aware Relative Position Encoding for SBI-MSA
to offer discriminative spatial information and additional in-
teractive clues. Experiments demonstrated that our method
outperformed state-of-the-art methods on multiple motion
datasets.
Limitations and Social Impacts. Our work does not

Figure 6. (a) Comparative visualization of feature distributions
in t-SNE representations. The left figure shows the results ob-
tained from our model equipped with TRPE, while the middle fig-
ure shows the results obtained from the MRT model with Spa-
tial Encoding (SE). (b) Attention visualization of the first layer in
Transform decoder. The x-axis denotes the input sequence from
timestamp 1 to L, and the y-axis represents different individuals.

come without limitations. MPBP sequence involves all
the individuals’ body parts and time information. When
inputting a long series containing many people, it will
lead to heavy attentional computation during training and
inference. We plan to address this issue in future. For social
impacts, we are still uncertain as to whether a person can be
identified based purely on his or her poses and movements.
However, compared to input images of people, it is harder
to invade individuals’ private information.
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