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OmniCity: Omnipotent City Understanding with
Multi-level and Multi-view Images

Weijia Li, Yawen Lai, Linning Xu, Yuanbo Xiangli, Jinhua Yu, Conghui He, Gui-Song Xia and Dahua Lin

Abstract—This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images.
More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting
over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the
substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label
maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new
OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building
plane/instance/fine-grained segmentation. Compared with the existing multi-level and multi-view benchmarks, OmniCity contains a larger
number of images with richer annotation types and more views, provides more benchmark results of state-of-the-art models, and
introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides
new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates
the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the
benchmarks will be available at https://city-super.github.io/omnicity.

Index Terms—Datasets, Multi-view images, Street-level images, Remote sensing, Instance segmentation, Height estimation
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1 INTRODUCTION

Owning over a half global population and contributing the
most economic growth, the city areas have been recorded
and characterized by various data sources including satellite
and aerial imagery, street-level imagery, LiDAR data, public
maps, crowd-sourced data, etc. Over the past few years, a
great number of benchmarks have been proposed towards
facilitating different vision tasks in city scenes. Among these
various data sources, the street-level imagery captured by
fixed cameras has been broadly used in multiple bench-
marks for driving scenes, e.g. Cityscapes [1], Mapillary [2],
ApolloScape [3], nuScenes [4], KITTI [5], Waymo [6], etc.
The rich visual information provided by street-level imagery
also enables complicated visual recognition tasks on specific
categories, such as person detection (EuroCity dataset [7]),
vehicle tracking and re-identification (CityFlow dataset [8]),
fine-grained land use classification [9], and identifying their
business entity information of buildings [10].

Nevertheless, producing pixel-wise annotations for
street-level imagery is a challenging task requiring substan-
tial human efforts, which results in the small image quantity
and limited view types of existing street-view datasets.
Especially for the street-view panorama datasets, such as
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TorontoCity [11], PASS [12] and WildPASS [13], the pixel-
wise annotated panorama images have a very limited quan-
tity that ranges from 400 to 520. Regarding the annotation
categories and levels, existing street-level datasets mostly
provide instance-level annotations for dynamic object cat-
egories in driving scenes (i.e. person, vehicles, bicycles,
etc.). As a vital component for city understanding, the static
objects such as buildings take up a larger proportion of cities
and remain a higher consistency across the satellite and
ground-level images compared with the dynamic objects.
However, existing street-level datasets either provide pixel-
wise building annotations without fine-grained semantic
labels (such as HoliCity [14], driving-scene datasets [1], [4],
[5], etc.) or provide fine-grained building annotations at
only bbox or image level (such as [9], [10]).

The remote sensing data, such as the satellite and aerial
imagery, has been extensively explored in large-scale city
understanding studies for land cover and land use mapping
[15], building footprint extraction [16], [17], [18], build-
ing height estimation [19], [20], road extraction [21], etc.
Compared with the street-level images, the remote sensing
imagery from the satellite or aerial view usually contains
less visual information. Thus it is extremely difficult to con-
duct fine-grained land use segmentation, building function
recognition, urban zoning segmentation and other compli-
cated tasks merely based on the remote sensing imagery.
On the other hand, unlike the sparsely-distributed street-
level images, the remote sensing images have a dense spatial
distribution and a worldwide coverage, which are well
aligned with the open GIS maps and government datasets
at pixel level. These existing maps and datasets contain a
variety of satellite-level annotations for buildings (such as
the footprint, land use, height, year built), roads (category
and line coordinates), and other geographical objects, pro-
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Fig. 1. An overview of our proposed OmniCity dataset. The satellite and street-level images of our dataset are collected in the six selected regions.
Taking a zoomed region as an example, the viewpoint geo-locations represented by black dots are distributed with a step distance of 65 meters
along the streets, and different land lot colors indicate different land use categories. The satellite-level annotations include building footprint and
heights on images of multiple views. The street-level annotations include plane/instance/fine-grained segmentation on the panorama image and its
corresponding mono-view images of different FoVs. Note that all the images in the right part correspond to the same geo-location, and the intrinsic
transformation relation between the satellite view and the street-level panorama view is demonstrated in the middle part.

viding new opportunities and perspectives for promoting
novel city understanding datasets and tasks.

In this work, as illustrated in Figure 1, we construct an
omnipotent city dataset unifying data sources from both
satellite and street views, linked by geo-locations and ur-
ban planning data. Unlike existing city datasets that only
support a limited number of tasks, OmniCity dataset in-
corporate rich geometric annotations and semantic meta
data for each image, where multiple tasks can be conducted
on. To leverage the existing satellite-level annotations and
the rich visual context from the street-level imagery, we
propose a novel annotation pipeline for producing diverse
street-level annotations with fewer human labeling efforts.
Specifically, the annotators consider both auxiliary informa-
tion (transformed from the satellite-level annotations) and
building appearances (e.g. texture discrepancy, doors, etc.)
to efficiently annotate each building on panorama images,
which are further converted to multiple mono-view images
and annotations automatically via a view transformation
method. Based on our proposed annotation pipeline, we
built OmniCity, a dataset that contains over 100K annotated
images collected from 25K geo-locations in New York City.
Compared with existing datasets, OmniCity provides richer
annotation types for well-aligned satellite and street-level
images captured from multiple views of each geo-location,
enabling more omnipotent city understanding via a diver-
sity of tasks.

We conduct experiments on our OmniCity dataset for a
variety of tasks, including building footprint extraction and
height estimation tasks on satellite images, as well as the
fine-grained/instance/plane segmentation of buildings on

street-level panorama and mono-view images. To the best
of our knowledge, this is the first work that involves fine-
grained building instance segmentation task on street-level
panorama images. Compared with current multi-level and
multi-view benchmarks, OmniCity provides baseline exper-
imental results obtained from more state-of-the-art models
and additional semantic-related tasks. Moreover, we con-
duct results analysis from various perspectives, including
the impact of view angles and types on model performance,
the performance of different methods for satellite and street-
level tasks, and the limitations of current methods for differ-
ent tasks on panorama images. We also analyze the potential
of OmniCity for promoting novel problem settings, tasks
and algorithms with multi-level or cross-view imagery.

Our main contributions are summarized as follows:

• We propose a novel pipeline for efficiently produc-
ing diverse pixel-wise annotations on street-level
panorama and mono-view images.

• We build the OmniCity dataset, which contains well-
aligned satellite and street-level images with a larger
quantity, richer annotations and more views com-
pared with existing datasets.

• We provide a series of baseline experiments for 2D
and 3D tasks on multiple data sources, and a com-
prehensive analysis of many aspects including the
impact of views, limitations of current methods, etc.

• We discuss the potential of our proposed OmniCity
for facilitating new problem settings, methods and
tasks for large-scale city understanding, reconstruc-
tion, and simulation.
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TABLE 1
A comparison of our proposed dataset and existing city-related datasets. The # Images column represents the number of annotated images. The
street view column shows whether the dataset contains no / mono-view (mono) / panorama (pano) street-level images. The satellite view column

shows whether the dataset contains no / single / multiple satellite images. The annotation level column indicates which level of tasks the dataset is
designed for, i.e., semantic segmentation, object detection (bbox), instance segmentation, plane segmentation, and image classification. The last

two columns indicate whether the dataset contains fine-grained land use or height labels.

Type Dataset # Images Street view Satellite view Annotation level Land use Height

Street-level

KITTI [5] 15,000 mono no semantic no no
Cityscapes [1] 25,000 mono no semantic no no
EuroCity [7] 47,300 mono no bbox no no

WildPASS [13] 500 pano & mono no semantic no no
PASS [12] 400 pano & mono no semantic no no

HoliCity [14] 6,300 pano & mono no instance/plane no no

Satellite-level

SkyScapes [22] 8,820 no single semantic no no
SpaceNet MVOI [23] 60,000 no multiple instance no no

Christie et al. [19] 11,000 no single semantic no yes
Li et al. [20] 3,300 no single instance no yes

Cross-level
TorontoCity [11] unknown pano & mono single instance no yes
Wojna et al. [24] 49,426 mono single image yes no

Ours 108,600 pano & mono multiple instance/plane yes yes

2 RELATED WORK

2.1 Datasets and methods for street-level tasks

As shown in Table 1, many street-level datasets have been
proposed over the past few years, of which a large pro-
portion is aiming at the visual tasks in driving scene (e.g.
object detection, object tracking, re-identification, semantic
segmentation, etc.). As a pioneer in this field, the KITTI
dataset [5] provides dense point clouds and stereo images
to support multiple tasks such as 2D and 3D object detec-
tion, object tracking, etc. For 2D semantic segmentation or
detection tasks, the Cityscapes [1] and Mapillary [2] datasets
contain thousands of pixel-wise annotated images for se-
mantic understanding of street Scenes, while the BDD100K
dataset [25] is comprised of both 100 thousand images with
bbox-level annotations and 10 thousand images with pixel-
wise annotations. Similar to KITTI [5], two recent released
datasets named ApolloScape [3] and nuScenes [4] provide
both 2D and 3D annotations for multiple visual tasks such
as detection, segmentation, stereo, localization, tracking, etc.
The Waymo dataset [6], by contrast, provides 2D and 3D
bounding boxes for detection and tracking tasks instead of
semantic labeling tasks. Several other studies propose street-
level datasets for vision tasks of a specific object category,
such as the EuroCity Persons dataset [7] for object detection
and the CityFlow dataset [8] for vehicle tracking and re-
Identification in multi-target and multi-camera conditions.

The above datasets are manually annotated by human
annotators. To reduce the expensive human efforts for cre-
ating pixel-wise annotations, Richter et al. [26] proposed a
novel approach to rapidly creating pixel-accurate semantic
label maps for images extracted from modern computer
games, producing the GTA5 dataset with around 25,000
pixel-wise labeled images of a single street view. In addition
to the above street-level datasets containing only mono-
view images, some studies propose new datasets or meth-
ods for semantic segmentation from panorama images, such
as TorontoCity [11], PASS [12], and WildPASS [13]. However,

each of the above dataset requires expensive human efforts
for creating the panorama annotations, which contains only
400 to 520 annotated panorama images in total.

Besides the street-level datasets collected for driving
scenes, several recent studies target at the recognition tasks
for static object categories such as buildings and land use.
For instance, Zhu et al. [9] proposed a framework for
fine-grained land use classification at the city scale using
ground-level images. Although producing a pixel-wise land
use map from the satellite view, the proposed dataset and
framework is designed for the image-wise classification
task on street-level images. In Zhang et al. [10], an end-to-
end building recognition system is proposed for detecting
buildings and identifying their business entity information
from street-side images, in which the building annotations
are provided at bounding box level. HoliCity [14] is a recent
released dataset with various annotations of holistic 3D
structures (such as line, wireframe, surface normal, depth,
etc.) that are generated from CAD models. Although HoliC-
ity provides both mono-view and panorama images with
various view angles, the study only conduct experiments
on mono-view images. Moreover, no semantic categories of
buildings are provided in HoliCity dataset.

In summary, existing street-level datasets still have the
following limitations. Regarding the image quantity and
view types, most existing datasets require substantial an-
notation efforts and contain only a limited number of anno-
tated images collected from a mono view. The image quan-
tity of panorama datasets is even several orders of magni-
tude smaller than the datasets containing only mono-view
images. Regarding the annotation categories and levels,
existing datasets mainly focus on dynamic object categories
(person, vehicles, bicycles, etc.) or driving-related categories
(traffic signs, lanes, etc) and lack in the fine-grained types
of each object category. Moreover, the datasets for static
objects such as buildings are either lacking in pixel-level
annotations or fine-grained building types. Our OmniCity,
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on the contrary, contains over 100K satellite and street-level
images of multiple views, as well as the pixel-wise and fine-
grained annotations, which facilitates new problem settings
and tasks for large-scale city understanding, reconstruction
and simulation compared with existing datasets.

2.2 Datasets and methods for satellite-level tasks
As a data source with a long time series and a large
coverage, the satellite imagery has been broadly explored
for large-scale city understanding. Unlike the street-level
datasets that usually require manual annotations, there
are already many existing pixel-wise label maps that are
well aligned with the satellite imagery. The OpenStreetMap
(OSM)1 is one of the most popular map data among var-
ious global maps (e.g. Google, Bing, Yahoo maps, etc.),
which contains publicly available and collaboratively ed-
itable annotations of many types (building footprints, build-
ing heights, roads, land use, etc.) of world wide. In ad-
dition to the global maps, many public datasets provide
rich information at a local scale. For example, the PLUTO
2 dataset provided by New York government contains the
block and lot information of the whole New York City, and
each lot is associated with the land use, year built, number
of floors, and other useful information. The Microsoft US
building footprint dataset3 contains over a hundred million
computer-generated building footprints in all 50 US states,
with better or similar metrics compared to OSM building
metrics against the labels. Some challenge datasets provide
manually labeled building footprints as well as the corre-
sponding single-view, multi-view, or multi-temperal satel-
lite images, such as the DeepGlobe 2018 [27], the SpaceNet
Multi-View Overhead Imagery Dataset (MVOI) [23], and
the Multi-Temporal Urban Development SpaceNet Dataset
[28]. Moreover, some datasets provide fine-grained semantic
labels with tens of categories in addition to the building
footprints (e.g. SkyScapes [22]), or provide the building
height annotations for height estimation and 3D reconstruc-
tion tasks [19], [20], [29].

In summary, the existing maps and datasets have pro-
vided a large amount of semantic and geometric informa-
tion that is well aligned with the satellite imagery. In this
work, we leverage these rich annotations from satellite view
and the transformation relations between different views
(i.e., satellite to panorama views, and panorama to mono
views) to produce auxiliary information for street-level
image annotation. Compared with the existing datasets,
our OmniCity significantly reduces the human labeling
efforts required for the large-scale street-level datasets, and
provides more annotation types to enable omnipotent city
understanding via multiple tasks and views.

2.3 Datasets and methods for multi-level tasks
The ground-level imagery usually contains rich visual con-
text that is not visible from the satellite or aerial imagery
(e.g. the building facade, the side of vegetations, etc.), while

1. http://wiki.openstreetmap.org.
2. https://data.cityofnewyork.us/City-Government/

Primary-Land-Use-Tax-Lot-Output-PLUTO-/64uk-42ks.
3. https://github.com/microsoft/USBuildingFootprints.

the spatial distribution of ground-level images is often
sparse and unbalanced in different areas. The satellite and
aerial imagery, on the contrary, has a much denser spatial
distribution at a global scale, but the visual context is too
limited to accurately accomplish complicated tasks such as
building function recognition, urban zoning segmentation,
etc. Considering the complementary characteristics of the
two data sources, many datasets and methods have been
proposed towards visual recognition, image matching, im-
age synthesis, or multiple tasks based on cross-view images.

For the cross-view visual recognition task, many stud-
ies tried to integrate the two data types and leverage
their characteristics to produce a dense map for building
functions, building ages, land use, tree species, or other
visual recognition tasks [30], [31], [32], [33], [34], [35], [36].
These studies require both satellite and ground-level images
as the input. By contrast, the cross-view image matching
(ground-to-aerial image geo-localization) and image syn-
thesis tasks take only one data type as the input, which
have been extensively studied over the past few years. As
a pioneer work for cross-view image matching, Lin et al.
[37] proposed a cross-view feature translation approach to
enable localizing a query image even without corresponding
ground-level images in the database. Later studies further
improved the image geo-localization performance [38], [39],
[40], proposed novel cross-view localization datasets [41], or
introducing novel tasks such as estimating the orientation
information between cross-view images [42], [43], [44]. For
cross-view image synthesis, a consistent ground-view image
is generated from an input satellite image [45], [46], [47],
[48], [49]. Early studies aimed at predicting the ground-
level image using only satellite imagery as the supervision
[50], while recent methods leveraged both satellite imagery
and its corresponding semantic segmentation map as the
supervision [51], or introduced extra geometric information
(e.g. the height map) and a geo-transformation method to
produce more realistic ground-level imagery [52], [53].

Different from the above studies that are designed for
one specific task, several studies provide a variety of tasks
for satellite or street-level images. The TorontoCity [11]
contains a wide range of annotations including building
height estimation, building instance segmentation, building
footprint segmentation, road segmentation, etc., which are
conducted on either satellite or street-level images. How-
ever, the study only adopt FCN-based architectures and
some CNN classification networks as the baseline models
for all experiments, and the dataset is still not available
for public use. In a recent study [24], a holistic multi-view
building analysis dataset is designed for multiple recog-
nition tasks regarding facade material, number of floors,
occupancy type, roof geometry, roof pitch, and construc-
tion type. However, the dataset contains only image-level
annotations for street-level classification tasks. The semantic
categories (i.e. facade material, occupancy type, construction
type, etc.) of each street-level image are decided by human
annotators, resulting in more challenges and subjectivity to
the annotation process compared with our work.

In summary, for the existing cross-view studies designed
for one specific task (i.e., visual recognition, image matching
and image synthesis), the street-level images used in these
studies are not annotated and only supplement extra feature

http://wiki.openstreetmap.org
https://data.cityofnewyork.us/City-Government/Primary-Land-Use-Tax-Lot-Output-PLUTO-/64uk-42ks
https://data.cityofnewyork.us/City-Government/Primary-Land-Use-Tax-Lot-Output-PLUTO-/64uk-42ks
https://github.com/microsoft/USBuildingFootprints
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Fig. 2. Annotation GUI of our proposed OmniCity dataset. The left image shows an example of the panorama image collected in one road scene,
with the label map (in the bottom-left window) displayed in land use mode. The right image shows an example of the panorama image collected in
crossroads scene, with the label map displayed in block-lot mode.

to the satellite-level feature maps.Our OmniCity dataset, on
the contrary, provides rich annotation types that are not
contained in existing datasets, e.g. the pixel-wise building
instances and fine-grained categories on street-level images,
which might promote new methods to explore and leverage
these new annotations to further improve the performance
of these tasks. In addition, different from the existing studies
designed for multiple tasks, OmniCity provides the baseline
experimental results of each task using more state-of-the-art
models. With our proposed efficient annotation pipeline, it
also provides additional fine-grained pixel-wise annotations
and benchmark results compared with [11] and [24].

3 DATASETS

In this work, we aim at building a dataset for omnipo-
tent city understanding from multi-level and multi-view
images. Our proposed OmniCity dataset contains 108,600
images of multiple views, which are collected from 25,000
geo-locations in New York City. Compared with existing
datasets, OmniCity requires much fewer human efforts for
street-level image annotation, contains more diverse annota-
tion types for both 2D and 3D tasks, provides richer building
semantics at instance segmentation level, and possesses
higher scalability for new annotation type supplement and
expansion to other cities. The details of data collection,
annotation, and statistics will be introduced as follows.

3.1 Data collection
As shown in Figure 1, our OmniCity dataset is collected
from six selected regions of New York. For the street-level
tasks, we download the panorama images in the six selected
regions using google street view download 360, with a step
distance of 65 meters. The five regions for collecting training
and validation samples are denoted by red color, which
are randomly divided using a ratio of 3:1. The region for
collecting test samples is denoted by blue color, which is dis-
tributed separately with the training and validation regions.
The panorama image collection time is between 2019 and
2020. We save the geographic coordinates (longitude and
latitude), collection time (year and month), panorama id,
north rotation, and zoom level for each panorama image.
The mono-view images are automatically generated from
the panorama images, which will be introduced in Section

3.2. For each panorama site, we download its corresponding
google earth images of three acquisition dates according
to the geographic coordinates, constituting three groups of
datasets for our satellite-level tasks. As shown in Figure 1(c),
the satellite images in the three groups of datasets have three
types of off-nadir view angles, which are denoted by small,
medium and high in the following sections. All satellite
images patch is in 512 × 512 pixels, with a spatial resolution
of around 0.3 meters (Level 19).

For the annotation data sources, we collect the meta
information from PLUTO (provided by New York govern-
ment) and OpenStreetMap (OSM). The New York City is
hierarchically formed by blocks, lots, and buildings. Each
building can be identified by a specific block-lot id. In
PLUTO, each lot (building) is associated with rich informa-
tion, e.g. land use, year built, number of floors, etc. The
OpenStreetMap data contains complete building footprint
and height information in New York area, while lacking in
land use information for many building instances. Consid-
ering the characteristics of the two data sources, we align the
land use attribute (from PLUTO) with the building footprint
and height (from OSM) using the geographical coordinates.
Overall, each building is assigned with a block-lot id, a
land use category, a height value, and the geographical
coordinates of a footprint polygon, which will be used as
the reference label maps for panorama image annotation.

3.2 Data annotation
In this section, we introduce the annotation pipelines for
producing the various types of labels for satellite-level and
street-level tasks. For satellite-level tasks, the labels are al-
ready well-aligned with the meta information from the New
York government and the OpenStreetMap. Each building
footprint on a satellite image is assigned with a block-
lot id, a land use category, a height value, and the pixel
coordinates of the footprint polygon, which are converted
into the COCO dataset format [54] for instance segmentation
tasks. We further convert the building height annotations
into pixel-wise labels for height estimation tasks, i.e., the
pixels in footprint regions are set as the instance-wise height
values and the pixels in other regions are set as zero. For
the street-level tasks, we ask human annotators to label the
panorama images using our proposed annotation tool, of
which the GUI can be found in Figure 2. The labels of



6

1/2 Family Buildings
Walk-Up Buildings
Elevator Buildings
Mixed Residential / Commercial
Office Buildings
Industrial / Transportation / Utility 
Others

1/2 Family Buildings
Walk-Up Buildings
Elevator Buildings
Mixed Residential / Commercial
Office Buildings
Industrial / Transportation / Utility 
Others

Fig. 3. Statistics of the proposed dataset, in terms of the instance quantity in each satellite/mono-view/panorama image, the distribution of building
height, and the distribution of land use type at satellite/street level.

the mono-view images are automatically converted from
those of panorama images via a transformation method.
The procedures for producing the two types of street-level
annotations will be introduced as follows.

The annotation pipeline of panorama images includes
four stages, i.e. image selection, segmentation annota-
tion, attribute assignment, and quality assessment. The
panorama image annotation tool proposed in our study is
developed based on an existing tool for labeling panorama
images of indoor scene4. We supplement many new func-
tions to enable the labeling of OmniCity dataset. As shown
in Figure 2, the GUI contains six sub-windows, of which
each window (from left to right and top to bottom) shows:
(1) the panorama image with the current annotation; (2) the
current annotation result in 3D space; (3) the corresponding
satellite image; (4) the mono-view image with the current
annotation; (5) the attributes of the labeled building in-
stances; (6) the visualized label map of the corresponding
satellite image.
Image selection: The annotator is required to decide
whether a panorama image is essential to be labeled. The
panorama image that meets any of the following conditions
will be regarded as an invalid image and skipped, i.e.,
building areas take up only a small percentage of the whole
image, buildings only locate in the side of the panorama im-
age, and buildings are seriously sheltered by trees, vehicles
or mosaics; Otherwise, the panorama image will be selected
as a valid image and labeled in the following stages.
Segmentation annotation: The annotator is first required
to drag the floor line to fit the bottom boundary of all
buildings. Next, the annotator needs to add the split line and
adjust the top line to fit the roof boundary for each building
plane. In the bottom-right sub-window, we provide auxil-
iary information indicating the approximate locations of the
split lines, which is generated by transforming the building
footprint split lines in the satellite view to panorama view
using a geo-transformation method [52]. The annotators
should consider both auxiliary information and building
appearance (e.g. texture discrepancy, doors, etc.) to decide

4. https://github.com/SunDaDenny/PanoAnnotator.

the accurate location of each split line. Note that, as the
urban planning data and footprint data are likely to be out-
of-date and may not match with the timestamps the street-
view panoramas are collected, it is necessary for human an-
notators to balance multiple considerations to make proper
adjustments to the building boundaries.
Attribute assignment: The annotator needs to add the at-
tributes (instance ID, block-lot id and landx use type) for
each building plane labeled in the segmentation annota-
tion stage, which are demonstrated in the bottom-middle
sub-window. The building planes that belong to the same
building instance will be set as the same instance ID (in
the crossroads scene); Otherwise, the plane will be set as a
specific instance ID successively. When a building instance
is selected by the annotator (the yellow one in the panorama
image), the surrounding auxiliary lines of its corresponding
footprint in the bottom-right sub-window will turn red.
Then the annotators assign the lot-block id and the land use
type according to the numbers shown in the bottom-right
sub-window, which can be switched between the land use
mode and the block-lot mode.
Quality assessment: We ask another group of experienced
annotators to check the quality of all annotated panorama
images. These annotators remove the invalid panorama
images that are not deleted in the image selection stage, and
those with wrong annotations resulting from omitting at-
tribute assignment operations, adding inaccurate split lines,
labeling only a portion of planes, etc. The remaining valid
images and labels constitute the final panorama dataset that
will used in our experiment.

The mono-view images and the corresponding an-
notations can be automatically generated from those of
panorama images via a transformation method5. For each
panorama image, we select three views using three x-axis
angles (-170, 10 and 170, in the range of [-180, 180]) and a
fixed y-axis angle of 0. The size of each mono-view image
is set as 512 × 512 pixels. Then we design a mono-view
image selection procedure to filter out the unexpected views
using the following three rules: (1) buildings are distributed

5. https://github.com/sunset1995/py360convert.

https://github.com/SunDaDenny/PanoAnnotator
https://github.com/sunset1995/py360convert
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Small view-angle Medium view-angle Large view-angle

Fig. 4. Baseline results of building instance segmentation on satellite
images. The yellow, cyan, and red polygons denote the TP, FP, and FN.

in only one side of the image; (2) the percentage of building
area is smaller than 10%; (3) the number of building planes is
smaller than 2. The remaining valid images and annotations
that do not meet any of the three conditions constitute the
final mono-view dataset that will used in our experiment.

3.3 Statistics of the proposed dataset
The whole dataset contains three sub-datasets (in small,
medium and large view angles) for satellite-level tasks
and two sub-datasets (in panorama and mono views) for
street-level tasks. For satellite-level datasets, each image
in the three sub-datasets is collected from the 25,000 geo-
locations of the six selected regions, constituting 75,000
satellite image patches in 512 × 512 pixels in total. For the
street-level datasets, the panorama dataset contains 18,000
images in 512 × 1024 pixels, which are selected from the
initial 25,000 panorama images during the image selection
and quality assessment phases. Similarly, the mono-view
dataset is obtained from the panorama dataset via a view
transformation and a mono-view image selection procedure,
constituting around 156,00 mono-view images in 512 × 512
pixels. In summary, the whole OmniCity dataset contains
108,600 annotated images in total. For all five sub-datasets,
the ratio of train/val/test splits is set as 3:1:1.

Figure 3 shows the statistics of our OmniCity dataset,
in terms of the instance quantity per satellite/mono-
view/panorama image, the distribution of building height,
and the distribution of land use type at satellite/street level.
The instance quantity per satellite image ranges from 1 to
86, which is much higher than those in mono-view and
panorama images (1 to 10). This is because the satellite
image has a larger geographical coverage compared with
the corresponding street-level images with only roadside
instances. In OmniCity dataset, the initial land use cate-
gories with similar characteristics and low instance quan-
tity are merged into one category, resulting in 7 land
use categories in total. Over 70% instances belong to 1/2
family building, walk-up building and the mixed residen-
tial/commercial building categories, while the other four
categories (i.e., elevator buildings, office buildings, indus-
trial/transportation/utility buildings and others) take up a

relatively small proportion. For the distribution of building
height, most buildings are 1 to 25 meters high, and a small
percentage of buildings reaches a height of over 50 meters.

4 BENCHMARK RESULTS

In this section, we provide a variety of benchmarks for mul-
tiple satellite and street-level tasks. The satellite-level tasks
in our experiments include building footprint segmentation
and height estimation. For both tasks, we conduct experi-
ments on the satellite images with three view angles. For
the street-level tasks, we conduct two instance segmentation
tasks (i.e., land use and building instance segmentation) on
the panorama images, and three instance segmentation tasks
(i.e., land use / building instance / plane segmentation)
on mono-view images. Please note that these are only pre-
liminary experimental results on OmniCity dataset. More
benchmarks of latest models and additional tasks will be
continuously updated on OmniCity homepage.

4.1 Experimental setting
We use Mask R-CNN [55] as the baseline method for all
segmentation tasks in this section, and provide a results
comparison of different instance segmentation methods in
section 5.2. All methods are implemented base on mmdetec-
tion [56] with the recommended hyper-parameter settings.
Specifically, we use ResNet-50 [57] with FPN [58] that is pre-
trained on the ImageNet [59] as the backbone for all instance
segmentation models. All models are trained on 8 NVIDIA
Tesla V100 GPUs for 12 epochs, with a batch size of 16, a
learning rate starting from 0.02 and decreasing by a factor
of 0.1 from the 8th to 11th epoch, and the stochastic gradient
descent (SGD) optimizer with a weight decay of 0.0001 and
a momentum of 0.9.

For the satellite-level height estimation task, we evaluate
and analyze the performance of two widely-used monoc-
ular depth estimation methods on the satellite images of
three view angles, i.e. Structure-Aware Residual Pyramid
Network (SARPN) [60] and Deep Ordinal Regression Net-
work (DORN) [61]. Both SARPN [60] and DORN [61] are
implemented using PyTorch [62]. For SARPN, the SENet
encoder is initialized by a model pretrained on ImageNet
[59] and the other layers are randomly initialized. The model
is trained on 4 NVIDIA Tesla V100 GPUs for 20 epochs, with
a batch size of 8, a learning rate starting from 10−4 and
reduced to 10% every 5 epochs, and the Adam optimizer
with β1 = 0.9, β2 = 0.999, and a weight decay of 10−4. The
DORN model is trained on 1 NVIDIA Tesla V100 GPUs for
20 epochs, with a batch size of 4, a base learning rate of 10−4

and the power of 0.9, using SGD optimizer with a weight
decay of 0.0005 and a momentum of 0.9.

4.2 Baselines for satellite-level tasks

4.2.1 Building instance segmentation
We evaluate and analyze the building footprint segmen-
tation performance using both COCO [54] and SpaceNet
[27] evaluation metrics. Specifically, we report AP, AP50,
AP75, APS , APM , and APL for COCO metrics, and the
precision, recall and F1-score under a fixed IoU threshold
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Fig. 5. Height estimation results obtained from DORN [61] and SARPN [60] for satellite images with different view angles. Different colors represent
the height estimation results of different values.

TABLE 2
Baseline results of instance segmentation for satellite images with
different view angles, in terms of COCO and SpaceNet evaluation

metrics.

View
Metrics of various thresholds threshold = 0.5

AP AP50 AP75 APS APM APL P R F1
Small 29.7 66.0 23.5 15.9 33.9 36.7 76.9 66.3 71.2

Medium 23.7 56.6 16.1 11.5 27.2 30.3 73.9 55.0 63.1
Large 18.9 51.4 9.6 9.1 21.5 25.3 70.7 51.7 59.7

of 0.5 (denoted by P, R, and F1) for SpaceNet metrics. Table
2 shows the baseline results of the satellite-level instance
segmentation task. The footprint segmentation performance
is the best for satellite images with a small view angle,
and deteriorates seriously when the view angle gets larger.
Moreover, for all three cases, the AP is the highest for build-
ings with large areas and the lowest for small buildings.
Figure 4 provides a qualitative comparison of the footprint
segmentation results on satellite images of three types of
view angle, in which the yellow, cyan and red polygons
denote the true positive (TP), false positive (FP) and false
negative (FN) buildings. The large view angle results in
great difficulties for extracting accurate footprint bound-
aries, due to the partial invisibility of building footprint, the
serious shadow effects, etc.

4.2.2 Building height estimation
The height estimation performance is evaluated in terms of
the mean absolute error (denoted by MAE), mean square er-
ror (denoted by MSE), and root mean square error (denoted
by RMSE), which are commonly used metrics for depth
estimation. All metrics are measured in meters at pixel
level. Table 3 lists the height estimation results obtained

TABLE 3
Baseline results of height estimation for satellite images with different

view angles, in terms of MAE, MSE and RMSE evaluation metrics.

View
SARPN [60] DORN [61]

MAE MSE RMSE MAE MSE RMSE
Small 16.18 870.34 29.50 12.71 670.52 25.89

Medium 13.75 694.17 26.35 12.24 628.06 25.06
Large 15.32 823.01 28.69 13.40 730.67 27.03

from SARPN [60] and DORN [61] for satellite images with
different view angles. Figure 5 shows the visualized height
estimation results and ground truth. Results demonstrate
that DORN obtains better quantitative results and more
accurate height values compared with SARPN for all three
cases, reducing the MSE by 3.47, 1.51, and 1.92, respectively.
However, the visualized height estimation results of SARPN
have more accurate footprint boundaries compared with
DORN that produces more noises. Both methods achieve the
best height estimation performance for satellite images with
a medium view angle compared with the other two cases.
For satellite images with a small view angle, the footprint
and roof have more overlaps and provide less information
for height estimation. On the other hand, the the shadow
and parallax effect become more serious with the increase of
off-nadir view angle. The above aspects result in challenges
for the accurate estimation of building height for satellite
images with small and large view angles.

4.3 Baselines for street-level tasks
We analyze the performance of multiple segmentation tasks
on street-level panorama and mono-view images. All street-
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1/2 Family Buildings Walk-Up Buildings Elevator Buildings Mixed Residential / Commercial Office Buildings Industrial / Transportation / Utility Others

Fig. 6. Baseline results of street-level tasks (i.e., instance segmentation and land use segmentation) on panorama images. Different colors represent
different land use categories.

Land Use - Ground truth Land Use Segmentation Instance Segmentation Plane Segmentation

1/2 Family Buildings Walk-Up Buildings Elevator Buildings Mixed Residential / Commercial Office Buildings Industrial / Transportation / Utility Others

Fig. 7. Baseline results of street-level tasks (i.e., land use segmentation,
instance segmentation and plane segmentation) on mono-view images.

level tasks are evaluated by COCO evaluation metrics, i.e.,
AP, AP50, AP75, APS , APM , and APL. As shown in Table
4 and Figure 6, the panorama-view images include a fine-
grained land use segmentation task (denoted by Landuse
Seg.) and a building instance segmentation task (denoted
by Instance Seg.). Results show that the performance on in-
stance segmentation task is significantly superior to the land
use segmentation task under all metrics. Table 5 and Figure
7 show the experimental results of mono-view images on
three different tasks, i.e., landuse segmentation, instance
segmentation, and plane segmentation. The buildings in the
mono-view images contain either a single plane (e.g. the
second and fouth rows of Figure 7) or multiple planes (the

TABLE 4
Baseline results of street-level images from panorama view, in terms of

COCO evaluation metrics.

Task AP AP50 AP75 APS APM APL

Landuse Seg. 26.0 34.7 28.5 0.3 12.0 30.4
Instance Seg. 66.7 86.5 72.5 1.7 40.2 74.1

TABLE 5
Baseline results of street-level images from mono-view, in terms of

COCO evaluation metrics.

Task AP AP50 AP75 APS APM APL

Landuse Seg. 23.9 32.1 26.7 0.3 10.6 27.5
Instance Seg. 68.3 88.8 73.8 3.2 33.3 76.1

Plane Seg. 65.1 87.4 71.0 5.0 40.7 73.8

TABLE 6
Land use and instance segmentation results of street-level images from

panorama and mono-view, in terms of COCO evaluation metrics.

Task AP AP50 AP75 APS APM APL

landuse-panorama 20.6 31.0 23.0 0.1 11.6 24.8
landuse-monoview 23.9 32.1 26.7 0.3 10.6 27.5
instance-panorama 61.6 84.0 67.5 0.5 38.9 70.4
instance-monoview 68.3 88.8 73.8 3.2 33.3 76.1

first and the third rows of Figure 7). Similar to the results of
panorama-view images, the baseline method achieves much
higher AP for the two binary segmentation tasks (plane and
instance segmentation) compared with the fine-grained land
use segmentation task. From the qualitative results shown in
Figure 6 and Figure 7, we can find that the baseline method
is capable of precisely extracting the instance and plane
boundaries in most cases, but has difficulties in identifying
the accurate land use type of some building instances. A
detailed analysis of the performance on different land use
types will be introduced in Section 5.2.
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Fig. 8. Qualitative results of different methods for instance segmentation on satellite-level images. The yellow, cyan, and red polygons denote the
TP, FP, and FN, respectively.

TABLE 7
Quantitative results of different methods for instance segmentation on satellite-level images.

Method
Metrics of various thresholds threshold = 0.5

AP AP50 AP75 APS APM APL P R F1
Mask R-CNN [55] 29.7 66.0 23.5 15.9 33.9 36.7 76.9 66.3 71.2
MS R-CNN [63] 29.7 64.9 23.8 16.1 33.5 36.1 81.3 62.3 70.5

Cascade [64] 31.1 66.5 26.3 16.3 35.5 38.2 79.2 66.4 72.2
CARAFE [65] 31.1 67.4 25.7 16.5 35.7 36.2 76.9 67.7 72.0

HTC [66] 32.3 68.7 27.2 16.3 36.6 38.8 78.9 67.2 72.6

5 RESULTS ANALYSIS AND DISCUSSIONS

5.1 The impact of view on street-level tasks

In Section 4.3, we have analyzed the impact of view on
satellite-level instance segmentation and height estimation
tasks. In Table 6, we further provide the land use and
instance segmentation results of street-level images from
panorama-view and mono-view. The experimental setting
and performance of mono-view images are the same as
those in Table 4 and Table 5. To guarantee a fair comparison,
we remove the images from the panorama-view dataset
of which the geographical coordinates are not included in
the mono-view dataset so that the two types of images
are based on the same experimental setting and collection
sites. Results show that the performance of mono-view im-
ages is superior to panorama images regarding AP , AP50,
AP75, APS , and APL, with a slight drop on APM . The
performance gap for the instance segmentation task is more
obvious compared with the land use segmentation task,
with an AP gap of 6.7% and 3.3%, respectively. The per-
formance discrepancy between panorama-view and mono-
view images might because the current baseline methods are
widely evaluated on the common datasets (such as COCO
and CityScapes) that are collected at a single view, without
leveraging the special geometry properties of panorama

images in network design. More analysis on the limitations
of the existing methods will be provided in Section 5.3.

5.2 Experimental results of different models
Besides the baseline results obtained from Mask R-CNN
[55], we further provide the experimental results of other
four commonly-used instance segmentation methods, in-
cluding Mask Scoring R-CNN (denoted by MS R-CNN) [63],
Cascade Mask R-CNN (denoted by Cascade) [64], Content-
Aware ReAssembly of FEatures (denoted by CARAFE) [65],
and Hybrid Task Cascade (denoted by HTC) [66]. All meth-
ods are implemented base on mmdetection [56] with the
same experimental setting described in Section 4.1. Table 7
and Figure 8 show the building footprint segmentation re-
sults obtained from the above five methods on the satellite-
level image dataset with a small view angle. Results demon-
strate that the performance discrepancy between different
methods is not as obvious as the one resulting from different
view angles. Among the five methods, HTC achieves the
best overall performance followed by Cascade and CARAFE
for both COCO and SpaceNet evaluation metrics, indicating
the effectiveness of the cascade structure and the feature
reassembly scheme for building footprint segmentation.

Table 8 and Figure 9 show the land use segmenta-
tion results obtained from the five methods on street-level
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Fig. 9. Qualitative Results of different methods for fine-grained land use segmentation on street-level panorama images. Different colors represent
different land use categories.

TABLE 8
Quantitative results of different methods for fine-grained land use segmentation on street-level panorama images.

Method
Overall Metrics Metrics of each category

AP AP50 AP75 APS APM APL C1 C2 C3 C4 C5 C6 C7
Mask R-CNN [55] 26.0 34.7 28.5 0.3 12.0 30.4 19.6 37.5 25.8 39.2 36.9 22.2 0.8
MS R-CNN [63] 27.1 35.8 29.8 0.1 12.4 31.5 22.5 39.1 26.2 40.8 38.0 21.7 1.2

Cascade [64] 25.9 33.8 28.3 0.2 11.4 30.5 20 38.3 25 38.5 36.7 22.1 0.3
CARAFE [65] 25.9 34.5 28.5 0.1 11.9 30.2 19.6 37.3 24.9 39.9 37.2 21.5 0.8

HTC [66] 27.2 35.7 29.9 0.3 12.4 32.0 20.8 38.7 27.2 39.9 38.4 24.5 1.2

panorama images. Similar to the satellite-level building
footprint segmentation task, HTC outperforms the other
four methods in terms of both overall metrics and those
of each category. Besides HTC, the MS R-CNN method
also demonstrates promising performance for land use seg-
mentation, which indicates that the mask scoring strategy
can effectively improves the fine-grained segmentation per-
formance of building instances. From the metrics of each
category, we can find that C2, C4 and C5 (i.e., Walk-
up Buildings, Mixed Residential/Commercial, and Office
Buildings) have better performance compared with C1, C3
and C6 (i.e., 1/2 Family Buildings, Elevator Buildings and
Industrial/Transportation/Utility) for all methods, with the
AP ranging from 20% to 40%. The ’others’ category has
an extremely low AP score, which might resulting from
the very small quantity of samples in this category. Com-
pared with the residential buildings, the mixed Residen-
tial/Commercial and Office buildings have more special
characteristics (i.e. the boundary between first and above
floors, facade design, and building structure), contributing
to the superior AP scores of these two categories. The
performance of the above six categories is also concordant
with the ratio of the sample quantity.

5.3 Limitations of the current baselines on OmniCity
In this section we summarize the limitations of existing
methods for satellite and street-level tasks on our OmniCity

dataset. For the building footprint segmentation task on the
satellite imagery, the performance of existing methods get
worse with the increasing of off-nadir view angle, which
might due to the serious parallax and shadow effect on the
satellite images with a large off-nadir view angle. For the
height estimation task, most existing methods directly apply
the monocular depth estimation methods to remote sensing
scene and suffer from the following two shortcomings.
These methods usually produce poor results on the invisible
side of the footprint boundary, which can become much
worse for high-rise buildings on very off-nadir images. On
the other hand, existing methods use deep neural networks
to regress continuous values following the depth estimation
methods, while the ground truth and the desirable predic-
tion of building heights are discrete values, resulting in
difficulties for network training and extra efforts for con-
verting the continuous prediction values into discrete height
values via post-processing. Several recent studies [19], [20]
propose novel methods to improve the height estimation
and footprint segmentation performance for images with
large off-nadir view angles. However, these methods require
additional annotation efforts for labeling the offset for each
building instance, i.e., the deviation between the roof and
footprint. The required offset annotations are currently not
available in our OmniCity dataset of which the satellite-level
annotations are acquired from existing label maps and the
manual annotations are only conducted on the street-level
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images. The offset annotations as well as the experimental
results of these recent methods will be updated on OmniC-
ity homepage in our future work.

For the street-level tasks based on panorama images, ex-
isting methods target at general instance segmentation tasks
for commonly-used datasets, e.g. COCO [54], CityScapes [1],
BDD100K [25], etc. For these datasets, the images often have
a single capture view and a narrow Field of View (FoV).
However, for panorama images, the special properties such
as the wide FoV covering full 360-degree in the horizontal
direction, are not taken into consideration in the design of
existing methods, which results in the worse land use and
instance segmentation performance of panorama images
compared with the mono-view images to some extent. In
addition, for both mono-view and panorama images, exist-
ing methods have difficulties in accurately recognizing the
building instance with a small area (e.g. buildings located
in the side of the main parts), the land use categories with
a small number of building instances (e.g. the category
of the others), and the land use categories that are easily
confused (e.g. 1/2 Family Buildings and Walk-Up Buildings,
Mixed Residential/Commercial and Office Buildings). New
instance segmentation methods should be designed for solv-
ing the above limitations considering the characteristics of
panorama images, building instances, fine-grained land use
categories, etc.

6 POTENTIAL OF THE OMNICITY DATASET

Our proposed OmniCity dataset demonstrates great poten-
tial for facilitating city understanding, machine perception,
and generative modeling researches in many aspects.

First, it can serve as a new dataset for the existing
tasks such as ground-to-aerial image geo-localization, aerial-
to-ground image synthesis, and segmentation/detection of
buildings/trees/land use from cross-view images. For the
existing datasets of the above tasks, the street-level images
are not annotated for almost all datasets. Our OmniCity
dataset, on the contrary, provides additional annotation
types that are not contained in existing datasets, e.g. the
building instances and land use categories on street-level
images, which might promote novel methods to explore
and leverage the new annotation types to improve the
performance of these tasks. The annotations are organized
in a unified version, which means multiple tasks can be
performed on a single image, and thus can well support the
multi-task learning setting. Additionally, since the building
instances in our datasets are directly linked with the urban
planning data using block-lot id, it is easy to further enrich
our datasets with more types of annotations from other
urban datasets, especially those for social and urban studies.

Second, our OmniCity dataset provides a new applica-
tion scenario or problem setting to existing tasks. For line
segment detection and wireframe parsing tasks, existing
datasets contains densely distributed line segment and wire-
frame labels of indoor and outdoor scenes. For our OmniC-
ity dataset, instead of labeling all line segments and wire-
frames on the building facades (e.g. windows and doors),
we only annotate the main line segments and wireframes on
the outlines of each building plane, which are much sparser
compared with the existing datasets. The serious shelters

from the trees and vehicles also bring challenges to these
tasks. New line segment detection and wireframe parsing
methods should be designed for the OmniCity scenario.

Moreover, our OmniCity dataset facilitates new tasks for
city reconstruction and simulation. Treating each panorama
as a unique city scene, a complete 3D model representing
such a local scene is available in our dataset, as also shown
in the second window panel in our GUI (Figure 2). In addi-
tion, these 3D models are stored in abstract vector formats,
with clean and clear vertices indicating the building facades,
streets, etc, which are suitable for many shape generation
tasks represented with graphs.

Finally, with the well-aligned satellite and street-level
images as well as the various annotation types, a novel city
reconstruction task, i.e., 3D building reconstruction from
cross-view images, can be derived for producing holistic
3D buildings with both fine-grained land use category and
precise geometry information (vector 3D model). Existing
datasets and methods only target at height estimation or
3D reconstruction from monocular or multi-view remote
sensing imagery. For our OmniCity scenario, new methods
should be designed to leverage the additional information
from street-level images and annotations for improving the
3D reconstruction and semantic prediction performance.

7 CONCLUSION

In this paper, we have proposed OmniCity, a new dataset
for omnipotent city understanding from satellite and street-
level images of multiple views. The dataset contains over
100K images collected from 25K geo-locations in New York
City, of which the annotations are generated from both exist-
ing label maps of satellite view and our proposed pipeline
for efficient annotation of street-level images. We provide
baseline experimental results for multiple tasks based on
state-of-the-art models, including building footprint extrac-
tion / height estimation on multi-view satellite images, and
building plane / instance / land use segmentation on street-
level panorama and mono-view images. We also conduct
comprehensive analysis regarding the impact of view on
street-level tasks, the performance of different instance seg-
mentation methods, limitations of the existing methods, etc.
We believe that OmniCity will not only promote new algo-
rithms and provide new application scenarios for existing
tasks, but facilitate novel tasks for 3D city reconstruction
and simulation.

In our future work, we will keep updating the OmniC-
ity dataset and the benchmarks in the following aspects.
Owing to the proposed annotation pipeline and the unified
annotations with a vector format and rich meta information
(geo-locations, block-lot id, etc.), OmniCity can be efficiently
supplemented with more properties of buildings and other
static geographical objects (roads, sidewalk, trees, open
space, green space, etc.), and extended to other cities of
different countries. The benchmark results of more state-of-
the-art models and new tasks will also be provided accord-
ingly. Finally, based on the rich annotation and view types of
OmniCity, We plan to develop new methods for existing and
novel tasks, such as object detection, instance segmentation,
and 3D reconstruction from cross-view images.
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