2301.02371v2 [cs.CV] 28 Mar 2023

arxXiv

Anchor3DLane: Learning to Regress 3D Anchors for Monocular 3D
Lane Detection

Shaofei Huang'*?

Jiao Dai'?  Jizhong Han

Zhenwei Shen*

1.2

Zi-han Ding*?
Si Liu*?

Zehao Huang?
Naiyan Wang®

! Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

3 TuSimple

4 Institute of Artificial Intelligence, Beihang University

> Hangzhou Innovation Institute, Beihang University

{nowherespyfly, zehaohuangl$,

shenzhenwei@outlook.com

Abstract

Monocular 3D lane detection is a challenging task due
to its lack of depth information. A popular solution is to first
transform the front-viewed (FV) images or features into the
bird-eye-view (BEV) space with inverse perspective map-
ping (IPM) and detect lanes from BEV features. However,
the reliance of IPM on flat ground assumption and loss of
context information make it inaccurate to restore 3D in-
formation from BEV representations. An attempt has been
made to get rid of BEV and predict 3D lanes from FV repre-
sentations directly, while it still underperforms other BEV-
based methods given its lack of structured representation
for 3D lanes. In this paper, we define 3D lane anchors in
the 3D space and propose a BEV-free method named An-
chor3DLane to predict 3D lanes directly from FV represen-
tations. 3D lane anchors are projected to the FV features
to extract their features which contain both good structural
and context information to make accurate predictions. In
addition, we also develop a global optimization method
that makes use of the equal-width property between lanes
to reduce the lateral error of predictions. Extensive experi-
ments on three popular 3D lane detection benchmarks show
that our Anchor3DLane outperforms previous BEV-based
methods and achieves state-of-the-art performances. The
code is available at: https://github.com/tusen—
ai/Anchor3DLane.

1. Introduction

Monocular 3D lane detection, which aims at estimating
the 3D coordinates of lane lines from a frontal-viewed im-
age, is one of the essential modules in autonomous driv-
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Figure 1. (a) BEV-based methods, which perform lane detection
in the warped BEV images or features. (b) Non-BEV method,
which projects 2D lane predictions back to 3D space with esti-
mated depth. (c) Our Anchor3DLane projects 3D anchors into FV
features to sample features for 3D prediction directly.

ing systems. Accurate and robust perception of 3D lanes
is not only critical for stable lane keeping, but also serves
as an important component for downstream tasks like high-
definition map construction [21, 25], and trajectory plan-
ning [1,43]. However, due to the lack of depth informa-
tion, estimating lanes in 3D space directly from 2D image
domain still remains very challenging.

A straightforward way to tackle the above challenges
is to detect lanes from the bird-eye-viewed (BEV) space.
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As illustrated in Figure 1(a), a common practice of BEV-
based methods [5, 7, 8, 20] is to warp images or features
from frontal-viewed (FV) space to BEV with inverse per-
spective mapping (IPM), thereby transforming the 3D lane
detection task into 2D lane detection task in BEV. To project
the detected BEV lanes back into 3D space, coordinates of
the lane points are then combined with their corresponding
height values which are estimated by a height estimation
head. Though proven effective, their limitations are still ob-
vious: (1) IPM relies on a strict assumption of flat ground,
which does not hold true for uphill or downhill cases. (2)
Since IPM warps the images on the basis of ground, some
useful height information as well as the context information
above the road surface are lost inevitably. For example, ob-
jects like vehicles on the road are severely distorted after
warping. Therefore, information lost brought by IPM hin-
ders the accurate restoration of 3D information from BEV
representations.

Given the above limitations of BEV, some works tried
to predict 3D lanes from FV directly. As illustrated in Fig-
ure 1(b), SALAD [39] decomposes 3D lane detection task
into 2D lane segmentation and dense depth estimation. The
segmented 2D lanes are projected into 3D space with cam-
era intrinsic parameters and the estimated depth informa-
tion. Even though getting rid of the flat ground assumption,
SALAD lacks structured representations of 3D lanes. As a
result, it is unnatural to extend it to more complex 3D lane
settings like multi-view or multi-frame. Moreover, their
performance is still far behind the state-of-the-art methods
due to the unstructured representation.

In this paper, we propose a novel BEV-free method
named Anchor3DLane to predict 3D lanes directly from
FV concisely and effectively. As shown in Figure 1(c),
our Anchor3DLane defines lane anchors as rays in the 3D
space with given pitches and yaws. Afterward, we first
project them to corresponding 2D points in FV space us-
ing camera parameters, and then obtain their features by
bilinear sampling. A simple classification head and a re-
gression head are adopted to generate classification proba-
bilities and 3D offsets from anchors respectively to make
final predictions. Unlike the information loss in IPM, sam-
pling from original FV features retains richer context infor-
mation around lanes, which helps estimate 3D information
more accurately. Moreover, our 3D lane anchors can be it-
eratively refined to sample more accurate features to better
capture complex variations of 3D lanes. Furthermore, An-
chor3DLane can be easily extended to the multi-frame set-
ting by projecting 3D anchors to adjacent frames with the
assistance of camera poses between frames, which further
improves performances over single-frame prediction.

In addition, we also utilize global constraints to refine the
challenging distant parts due to low resolution. The moti-
vation is based on an intuitive insight that lanes in the same

image appear to be parallel in most cases except for the fork
lanes, i.e., distances between different point pairs on each
lane pair are nearly consistent. By applying a global equal-
width optimization to non-fork lane pairs, we adjust 3D lane
predictions to make the width of lane pairs consistent from
close to far. The lateral error of distant parts of lane lines
can be further reduced through the above adjustment.

Our contributions are summarized as follows:

* We propose a novel Anchor3DLane framework that di-
rectly defines anchors in 3D space and regresses 3D
lanes directly from FV without introducing BEV. An
extension to the multi-frame setting of Anchor3DLane
is also proposed to leverage the well-aligned temporal
information for further performance improvement.

* We develop a global optimization method to utilize the
equal-width properties of lanes for refinement.

¢ Without bells and whistles, our Anchor3DLane out-
performs previous BEV-based methods and achieves
state-of-the-art performances on three popular 3D lane
detection benchmarks.

2. Related Works
2.1. 2D Lane Detection

2D lane detection [12,22, 24,32, 40] aims at obtaining
the accurate shape and locations of 2D lanes in the images.
Earlier works [2, 10, 13, 36, 42] mainly focus on extract-
ing low-level handcrafted features, such as edge and color
information. However, these approaches often have com-
plex feature extraction and post-processing designs and are
less robust under changing scenarios. With the development
of deep learning, CNN-based methods have been explored
recently and achieve notable performance. Segmentation-
based methods [11,23,24,26] formulate 2D lane detection
task as a per-pixel classification problem and typically focus
on how to explore more effective and semantically informa-
tive features. To make predictions more sparse and flexible,
keypoint-based methods [15,27,35,38] model lane lines as
sets of ordered keypoints and associate keypoints belonged
to the same lane together by postprocessing. Apart from the
above methods, anchor-based methods [17, 19,31,41] are
also popular in 2D lane detection task due to their concise-
ness and effectiveness. LineCNN [17] first defines straight
rays emitted from the image boundary to fit the shape of 2D
lane lines and applies Non-Maximum Suppression (NMS)
to keep only lanes with higher confidence. LaneATT [31]
develops anchor-based feature pooling to extract features
for the 2D anchors. CLRNet [41] learns to refine the ini-
tial anchors iteratively through the feature pyramid.



2.2. 3D Lane Detection

Since projecting 2D lanes back into 3D space suffers
from inaccuracy as well as less robustness, 3D lane detec-
tion task is proposed to predict lanes in 3D space end to
end. Some works utilize multiple sensors, such as stereo
cameras [4] and Lidar-camera [3] to restore 3D informa-
tion. However, the collection and annotation cost of multi-
sensor data is expensive, restricting the practical applica-
tion of these methods. Therefore, monocular camera image
based 3D lane detection [6—8,20,39] attracts more attention.

Due to the good geometric properties of lanes in the per-
spective of BEV, 3DLaneNet [7] utilizes IPM to transform
features from FV into BEV and then regresses the anchor
offsets of lanes in the BEV space. CLGo [20] transforms
raw images into BEV images with the estimated camera
pitches and heights and fits the lane lines by predicting poly-
nomial parameters. Since IPM relies heavily on the flat
ground assumption, lanes represented in BEV space may
be misaligned with 3D space in rough ground cases. To
this end, Gen-LaneNet [8] makes a distinction between the
virtual top view generated by IPM and the true top view in
3D space for better space alignment. Persformer [5] utilizes
deformable attention to generate BEV features more adap-
tively and robustly. SALAD [39] tries to get rid of BEV
by decomposing 3D lane detection into 2D lane segmenta-
tion and dense depth estimation tasks. Different from the
above methods, our Anchor3DLane defines anchors in the
3D space to explicitly model 3D lanes and bridge the gap
between FV space and 3D space. The projection and sam-
pling operations ensure the accuracy of anchor feature ex-
traction, enabling effectively predicting 3D lanes directly
from FV representations without introducing BEV.

3. Method

The overall architecture of our Anchor3DLane is il-
lustrated in Figure 3. Given a front-viewed image I €
RIXWX3 a5 input, where H and W denote the height and
width of the input image, a CNN backbone (e.g., ResNet-
18 [9]) is adopted to extract 2D visual features represented
in FV space. To enlarge the receptive field of the net-
work, we further insert a single Transformer layer [34] af-
ter the backbone to obtain the enhanced 2D feature map
F € RE>WsxC where Hy, Wy, and C represent the
height, width and channel number of feature map respec-
tively. 3D anchors are then projected to this feature map
F with the assistance of camera parameters, and the cor-
responding anchor features are sampled using bilinear in-
terpolation. Afterward, we apply a classification head and a
regression head to the sampled anchor features to make pre-
dictions, with each head composed of several lightweight
fully connected layers. Furthermore, the predictions can be
regarded as new 3D anchors for iterative regression.
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Figure 2. Illustration of 3D anchor and 3D lane in the ground
coordinate system.

3.1. 3D Lane Representation

We first revisit the representation of 3D lanes in this sec-
tion. As shown in Figure 2, two different coordinate sys-
tems are involved in our paper, including the camera coordi-
nate system and the ground coordinate system. The camera
coordinate directly corresponds with the FV image and is
a right-handed coordinate system defined by origin O, and
X., Y., Z. axes, with O, located at the center of the cam-
era and Z, pointing forward vertical to the camera plane.
3D lanes are commonly annotated in the ground coordinate
system, of which the origin Oy is set right below O, x-
axis X, points positive to the right, y-axis Y, points posi-
tive forwards and z-axis Z, points positive upwards. A 3D
lane is described by 3D points with N uniformly sampled
y-coordinates y = {y*}&_,. Thus, we denote the i-th 3D
lane as G; = {p¥}4_, and its k-th point is represented as
pF = (zF,y*, 2k, visk), where the first 3 elements denote
the location of p¥ in the ground coordinate system and the
last one denotes the visibility of p¥. It is worth noting that
we elaborate our method based on the ground coordinate
system following the common practices adopted in previ-
ous works [7, 8]. However, our Anchor3DLane is able to
work in an arbitrary 3D coordinate system as long as cam-
era calibration is available.

3.2. Anchor3DLane
3.2.1 Representation of 3D Lane Anchors

Our 3D lane anchors are defined in the same coordinate sys-
tem as 3D lanes, i.e., ground coordinate, for ease of posi-
tion regression. As illustrated in Figure 2, a 3D anchor is
a ray starting from (x4, 0,0) with pitch 6 and yaw ¢. Sim-
ilar to 3D lanes, we also sample N points for each anchor
by the same y-coordinates and represent the j-th 3D an-
chor by A; = {qf}f;[:l, and its k-th point is denoted by
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Figure 3. The overall architecture of Anchor3DLane. Given a front-viewed input image, a CNN backbone and a Transformer layer are
adopted to first extract visual feature F. 3D anchors are then projected to sample their features from F' given camera parameters. Afterward,
a classification head and a regression head are applied to make the final predictions. The lane predictions can also serve as new 3D anchors

B (K. Tyc]

Camera Parameters

Anchor Features

3D Proposals

for iterative regression.

q? = (xf, y®, zj’“) Different from previous works [5, 7]
that define anchors in the BEV plane, our 3D anchors have
pitches to the ground and could fit the lane shape better.

3.2.2 Anchor Projection and Feature Sampling

To obtain features of 3D anchors, we first project them
into the plane of FV feature F using camera parameters as
shown in Figure 2. Given an anchor A, we take its k-th
point q? as an example to explain the projection operation
and omit the subscript j for simplicity as follows:
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where K € R3*3 denotes camera intrinsic parameters,
T, € R3** denotes the transform matrix from ground
coordinate to camera coordinate, and d¥ denotes the depth
of g* to the camera plane. Through the above formula-
tions, q* is projected to position (u*,v¥) in FV feature F.
Finally, the feature of anchor A ; is obtained through bilin-
ear interpolation within the neighborhood of the projected
points and is represented as {F(uk’vk)}]ivzl.

3.2.3 3D Lane Prediction

We concatenate features of points belonging to the same
anchor as its feature representation. Then we apply a clas-

sification head and a regression head to the anchor fea-
tures for predicting classification probabilities c; € RZ,
anchor points offsets (Ax; € RN Az; € RYN) =
{(Azk, AzF)}L, and visibility of each point vis; € RY
respectively, with j € [1, M]. L and M denote the num-
bers of lane types and 3D anchors respectively. In this
way, 3D lane proposals are generated as {P; = (c;,x; +
Ax;,y,z; + Azj,vis;)} 3L, . Furthermore, these 3D lane
proposals can also serve as new anchors in the following it-
erative regression steps as illustrated in Figure 3. Through
iterative regression, proposals can be refined progressively
to better fit the lane shape.

During training, we associate n nearest anchors to each
ground-truth lane and the rest are defined as negative sam-
ples. Distance metric between ground-truth G; and anchor
A is calculated as follows:

ngvzl vist - \/(aciC — )2+ (2F — 25)?
Zszl visf .
4)

This metric is also used in Non-Maximum Suppression
(NMS) during inference to keep a reasonable number of
proposals except that distances are calculated between visi-
ble parts of two proposals.

D(Gi7Aj) =

We adopt focal loss [ 18] for training classification to bal-
ance the positive and negative proposals as follows:

M L
£cls = - Zzal(l - cé_)"{ 10g0§-, (5)

j=11=1

where o! and v are the hyperparamters for focal loss. The
regression loss is only calculated between the positive pro-
posals and their assigned ground-truth lanes following [8]:
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M, represents the total number of positive proposals. Here

PN sk .
we use xf, zf and vis; to denote the x, z coordinates and

visibility of the ground-truth lane points.

The total loss function of our Anchor3DLane is a com-
bination of the above two losses with corresponding coeffi-
cients:

L= /\clsﬁcls + /\T'eg‘creg- @)

3.3. Temporal Context Modeling

Thanks to the design of 3D anchors, our Anchor3DLane
can be easily extended to multi-frame 3D lane detection.
Given a 3D point (¢, y, 2¢) in the ¢-th frame’s ground co-
ordinate system, we transform it to the ¢'-th frame’s ground
coordinate system with the following formulation:

Tt
o Yt
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where T 1)1y € R*** denotes the transformation ma-
trix from ¢-th frame to ¢’-th frame. Together with Equa-
tion 1, anchors defined in the current frame can be projected
to previous frames for sampling their features. For each an-
chor, we take its points from the current frame as query and
points from previous frames as key and value to conduct
cross-frame attention for feature aggregation. By integrat-
ing the well-aligned anchor features from multiple frames,
temporal context is incorporated into our Anchor3DLane to
enlarge its perception range.

3.4. Optimization with Equal-Width Constraint

In most cases, lanes in 3D space are nearly parallel with
each other, which is helpful in generating robust 3D estima-
tions from monocular 2D images. In this work, we lever-
age this geometry property of 3D lanes and formulate it as
an equal-width constraint to adjust the x-coordinates of lane
predictions. Given two lane predictions P; = {p?},ivzl and
Py = {p?,},lvvzl, width between P; and P/ at point pair
p and pf, is calculated as:

wf’j, = | cos Gf(xf + Amf -z - Ax;‘,)|, )

where Az¥ and Az*, denote the adjustment to 2% and 2%,
to be optimized respectively and 9? denotes the normal di-

rection of the adjusted lane at pé? . The objective function of
equal-width constraint is as follows:

Q
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We use @ to denote the number of lane predictions after
NMS. L(w ;) restricts the width between P; and P/ to
be consistent and the second item serves as a regularization
to avoid the adjusted results being too far from the original
predictions. We run this optimization as a post-processing
step to refine the prediction results of the network.

4. Experiments
4.1. Experimental Setting
4.1.1 Datasets and Evaluation Metrics

We conduct experiments on three popular 3D lane detection
benchmarks, including ApolloSim [8], OpenLane [5], and
ONCE-3DLanes [39].

ApolloSim is a photo-realistic synthetic dataset created
with Unity 3D engine which contains 10.5K images from
various virtual scenes, including highway, urban, residen-
tial, downtown, etc. In addition, the data is also diverse in
daytime, weather conditions, traffic/obstacles, and road sur-
face qualities.

OpenLane is a large-scale real-world 3D lane detection
dataset constructed upon the Waymo Open dataset [30].
It contains 200K frames and over 880K lanes are anno-
tated. Camera intrinsics and extrinsics are provided for each
frame. All lanes are annotated including lanes in the oppo-
site direction if no curbside in the middle. Categories and
scene tags (e.g., weather and locations) are also provided.

ONCE-3DLanes is a real-world 3D lane detection
dataset with 1 million scenes. It consists of 211K images
with labeled 3D lane points. It covers different time peri-
ods (sunny, cloudy, rainy) and various regions (downtown,
suburbs, highway, bridges, and tunnels). Only camera in-
trinsics are provided in ONCE-3DLanes.

During the evaluation, the predictions and ground truth
lanes are matched via minimum-cost flow where the pair-
wise cost is defined as the square root of the sum of point-
wise Euclidean distance. A prediction is considered as true



Scene Method AP(%)T F1(%)T xerr/Cm)| xerr/F(m)| zerr/C(m)| zerr/F(m)|
3DLaneNet [7] 89.3 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet [8] 90.1 88.1 0.061 0.496 0.012 0.214
CLGo [20] 94.2 91.9 0.061 0.361 0.029 0.250
Balanced Scene PersFormer [5] - 92.9 0.054 0.356 0.010 0.234
GP [16] 93.8 91.9 0.049 0.387 0.008 0.213
Anchor3DLane (Ours) 97.2 95.6 0.052 0.306 0.015 0.223
Anchor3DLanef(Ours) 97.1 95.4 0.045 0.300 0.016 0.223
3DLaneNet [7] 74.6 72.0 0.166 0.855 0.039 0.521
Gen-LaneNet [8] 79.0 78.0 0.139 0.903 0.030 0.539
CLGo [20] 88.3 86.1 0.147 0.735 0.071 0.609
Rare Subset PersFormer [5] - 87.5 0.107 0.782 0.024 0.602
GP [16] 85.2 83.7 0.126 0.903 0.023 0.625
Anchor3DLane (Ours) 96.9 94.4 0.094 0.693 0.027 0.579
Anchor3DLanet (Ours) 95.9 94.4 0.082 0.699 0.030 0.580
3D-LaneNet [7] 74.9 72.5 0.115 0.601 0.032 0.230
Gen-LaneNet [8] 87.2 85.3 0.074 0.538 0.015 0.232
CLGo [20] 89.2 87.3 0.084 0.464 0.045 0.312
Visual Variations PersFormer [5] - 89.6 0.074 0.430 0.015 0.266
GP [16] 92.1 89.9 0.060 0.446 0.011 0.235
Anchor3DLane (Ours) 93.6 91.4 0.068 0.367 0.020 0.232
Anchor3DLanet (Ours) 92.5 91.8 0.047 0.327 0.019 0.219

Table 1. Comparison with state-of-the-art methods on ApolloSim dataset with three different split settings. “C”” and “F” are short for close

and far respectively. { denotes iterative regression.

positive if over 75% of its points’ distances to ground-truth
points are less than a threshold, i.e., 1.5m. With the defi-
nition above, Average Precision (AP) and the maximum F1
score are further calculated, and x/z errors are counted sepa-
rately at close (0-40m) and far (40-100m) ranges. We report
the results of F1 score, AP, and x/z-errors on ApolloSim
dataset. On OpenLane dataset, except for F1 score and x/z
errors, we further report category accuracy which calculates
the proportion of predictions whose categories are correctly
predicted to all true positive predictions. ONCE-3DLanes
adopts a different way to match predictions and ground truth
lanes. The matching degree is firstly decided by IoU on the
top-view plane and pairs above the threshold are further cal-
culated with their unilateral Chamfer Distance (C' D) as the
matching error. A true positive is counted when C'D is un-
der the threshold. We report F1 score, precision, recall, and
CD error for results on ONCE-3DLanes.

4.1.2 TImplementation Details

We choose ResNet-18 [9] as the backbone of our An-
chor3DLane. To maintain feature resolution, we set the
downsampling stride of its last two stages to 1 and replace
the 3 x 3 convolutions with dilated convolutions. The start-
ing positions x4 of 3D anchors are evenly placed along the
x-axis with an interval of 1.3m. For each x4, different yaws
¢ € {0° £1° £3°, £5°,£7°,+10°, +15°, £20°, +£30°}
and pitches § € {0°,£1°,4+2° 45°} are set respectively.
The number of points N for each anchor is set to 10 for ex-

periments on ApolloSim and ONCE and 20 for OpenLane.
We resize the image to 360 x 480 before feeding it to the
backbone and the shape of F' is 45 x 60 x 64. During train-
ing, Aos and A,4 are both set to 1 and the number of posi-
tive proposals is set as 3. The distance threshold for NMS is
2 during inference. For multi-frame Anchor3DLane, each
time we randomly select 1 frame from the previous 5 frames
to interact with current frame during training, and select
the first frame of the previous 5 frames during inference.
Since car poses are only available in OpenLane dataset, we
only conduct temporal experiments on this dataset. We use
Adam optimizer [14] with weight decay set as le~%, and
set the initial learning rate to 1le~*. Step learning rate de-
cay is used during training. o' is set to 0.5 and ~ is set to
2 for focal loss. More details about our Anchor3DLane are
included in supplementary materials.

4.2. Quantitative Results
4.2.1 Results on ApolloSim

Table 1 shows the experimental results under three differ-
ent split settings of the ApolloSim dataset, including bal-
anced scene, rare subset and visual variations. We re-
port the results of both our original Anchor3DLane and
Anchor3DLane with iterative regression optimized with
equal-width constraint. It is shown that our original An-
chor3DLane outperforms previous methods with large mar-
gins on AP and F1 score on all the three splits with sim-
ple design, i.e., +3.0% AP and +2.7% F1 score on bal-



Method F1(%)1 Cate Acc(%)T xerr/Cm)] xerr/F(m)| zerr/C(m)| zerr/F(m)]
3D-LaneNet [7] 44.1 - 0.479 0.572 0.367 0.443
GenLaneNet [8] 32.3 - 0.591 0.684 0411 0.521
PersFormer [5] 50.5 92.3 0.485 0.553 0.364 0.431

Anchor3DLane (Ours) 53.1 90.0 0.300 0.311 0.103 0.139
Anchor3DLaneft (Ours) 53.7 90.9 0.276 0.311 0.107 0.138
Anchor3DLane-T7 (Ours) 54.3 90.7 0.275 0.310 0.105 0.135

Table 2. Comparison with state-of-the-art methods on OpenLane validation set.  denotes iterative regression. Anchor3DLane-T denotes
incorporating multi-frame information. “Cate Acc” means category accuracy.

Method All  Up & Down Curve Extreme Weather Night Intersection Merge & Split
3D-LaneNet [7] 441 40.8 46.5 47.5 41.5 32.1 41.7
GenLaneNet [§] 323 254 335 28.1 18.7 21.4 31.0
PersFormer [5] 50.5 42.4 55.6 48.6 46.6 40.0 50.7

Anchor3DLane (Ours) 53.1 45.5 56.2 51.9 47.2 44.2 50.5
Anchor3DLanet (Ours) | 53.7 46.7 57.2 52.5 47.8 45.4 51.2
Anchor3DLane-T7 (Ours) | 54.3 47.2 58.0 52.7 48.7 45.8 51.7

Table 3. Comparison with state-of-the-art methods on OpenLane validation set. F1 score is presented for each scenario. 1 denotes iterative
regression. Anchor3DLane-T denotes incorporating multi-frame information.

anced scene, +8.6% AP and +6.9% F1 score on rare sub-
set, +2.4% F1 score and +1.5% AP on visual variations,
showing the superiority of our method. Our Anchor3DLane
also achieves comparable or lower x/z errors compared with
previous methods, especially for x error far, indicating re-
gressing over 3D anchors have greater advantages for dis-
tant predictions. Furthermore, by iteratively regressing over
the proposals predicted by Anchor3DLane, x/z errors can
be further reduced to better fit the shape of 3D lanes.

4.2.2 Results on OpenLane

We present the experimental results of our method opti-
mized with the equal-width constraint on OpenLane dataset
in Table 2. Our original Anchor3DLane outperforms Pers-
Former by 2.6% F1 score improvement. Moreover, our
method achieves much more precise predictions than Pers-
Former, i.e., —0.185m on x error close, —0.242m on X er-
ror far, —0.261m on z error close, and —0.292m on z error
far respectively, which are crucial for driving safety. The
gap in x/z errors indicates that under real scenarios with di-
verse conditions, directly sampling features from FV repre-
sentation could maintain more environment context infor-
mation, thus producing more precise predictions. By in-
corporating iterative regression and temporal information
in Anchor3DLane, the overall performances can be fur-
ther boosted. In Table 3, we compare with previous meth-
ods under different scenarios and report F1 score for each
scenario. Our method produces much better performance
in Up&Down scenarios, showing the advantage of 3D an-
chor regression in uneven ground. It is also worth noting

that we adopt a lightweight CNN, i.e., ResNet-18 as the
backbone of Anchor3DLane, which still outperforms Pers-
Former with a larger backbone, i.e., EfficientNet-B7 [33].

4.2.3 Results on ONCE-3DLanes

In Table 4, we present the experimental results on the
ONCE-3DLanes dataset. Since camera extrinsics are not
available in ONCE-3DLanes, we define the 3D anchors in
the camera coordinate system and make predictions in the
same space. Our method also achieves state-of-the-art per-
formances on this dataset. Compared with PersFormer, our
Anchor3DLane still produces a higher F1 score and reduces
CD error by 18.9% relatively, which indicates that 3D an-
chors are able to adapt different 3D coordinate systems.

Method ‘ F1(%)! P(%) R(%)! CD Error(m)]
3D-LaneNet [7] 44.73 61.46 35.16 0.127
Gen-LaneNet [8] 45.59 63.95 35.42 0.121

SALAD [39] 64.07 75.90 55.42 0.098
PersFormer [5] 74.33 80.30 69.18 0.074
Anchor3DLane (Ours) 74.44 80.50 69.23 0.064
Anchor3DLanet (Ours) 74.87 80.85 69.71 0.060

Table 4. Comparison with state-of-the-art methods on ONCE-
3DLanes validation set. Results under 7cp = 0.3 are displayed
here. t denotes iterative regression. “P” and “R” are short for
precision and recall respectively.

4.2.4 Ablation Study

In this section, we follow previous work [5] to conduct
most ablation studies on OpenLane-300, which is a sub-



set of OpenLane. As for feature sampling experiments, we
present the results on the original OpenLane to verify the ef-
fectiveness of our method. More ablation studies and qual-
itative results are included in the supplementary materials.

Input | Feat | F1(%) xerr/C(m) xerr/F(m) zerr/C(m) zerr/F(m)

BEV | BEV | 47.6 0.466 0.421 0.119 0.170
FV BEV | 47.6 0.443 0.446 0.118 0.160
FV FV 53.1 0.300 0.31 0.103 0.139

Table 5. Comparison between sampling anchor features from BEV
features and FV features.

Sampling anchor features from FV features. To illus-
trate the superiority of FV features, we compare the per-
formances of extracting anchor features from FV features
and BEV features. The results are shown in Table 5. We
explore different ways of obtaining BEV features, includ-
ing warping FV image to BEV image (line 1) and warping
FV feature to BEV feature (line 2), and keep the other set-
tings same as our original Anchor3DLane. Results show
that sampling anchor features from FV features produces
the best F1 score and x/z errors, especially for x errors,
where more than 10cm gap exists between FV anchor fea-
tures and BEV anchor features. The above performance gap
indicates that the context information contained in raw FV
features is beneficial for accurate lane predictions.

Iter \ F1(%) xerr/C(m) xerr/F(m) zerr/C(m) zerr/F(m)

1 54.8 0.318 0.349 0.101 0.147
2 56.3 0.287 0.335 0.103 0.152
3 57.0 0.287 0.327 0.104 0.148

Table 6. Ablation study on the steps of iterative regression.

Steps of iterative regression. Table 6 presents the
results of different steps of iterative regression for An-
chor3DLane. Compared with no iterative regression, 2 iter-
ations produces relatively large performance improvements.
More steps of iterative regression can further reduce lateral
errors as well as elevate F1 score by refining the shape of
proposals progressively.

Method F1(%) xerr/C(m) xerr/F(m) zerr/C(m) zerr/F(m)
w/o Temporal 54.8 0.318 0.349 0.101 0.147
Linear Fusion 54.9 0.322 0.343 0.102 0.148
Weighted Sum | 55.8 0.320 0.346 0.101 0.150

Attention 55.2 0.308 0.330 0.099 0.145

Table 7. Ablation study on temporal integration methods.

Temporal integration methods. In this section, we ex-
plore different methods to integrate anchor features of mul-
tiple frames. Besides the cross-frame attention that we men-
tioned in Section 3.3, we also try linear fusion which con-
catenates features of the same anchor along their channels
and fuses them with a linear layer, and weighted sum which
learns to predict a group of weights for each y-coordinate

to fuse features of the same anchor elementwisely, As
shown in Table 9, comparing with the baseline, incorporat-
ing temporal information into Anchor3DLane can improve
the overall performance significantly due to the richer con-
text information obtained from previous frames. Weighted
sum produces better results than linear fusion, indicating
that dynamic weights are necessary for different points at
different distances. Although weighted sum achieves a bet-
ter F1 score compared with single frame setting, x/z errors
increase at the same time. Among the 3 integration meth-
ods, cross-frame attention, which aggregates anchor fea-
tures with more anchor points from previous frames, im-
proves both F1 score and x errors and achieves the best per-
formance balance.

Method \ F1(%) xerr/C(m) x err/F(m)
w/o EWC 54.8 0.318 0.349
w/ EWC 55.0 0.318 0.337

Table 8. Ablation study on Equal-Width Constraint (EWC).

Effect of equal-width constraint. We also illustrate the
comparison between predictions without and with equal-
width constraint optimization. As shown in Table 8, by
applying the equal-width constraint to the lane predictions,
errors of the distant parts of the lane lines can be further
reduced by restricting them to have the same width as the
close parts. More visualization results of this constraint can
be found in the supplementary materials.

5. Conclusion

In this work, we propose a novel Anchor3DLane frame-
work for 3D lane detection which bypasses the transforma-
tion to BEV space and predicts 3D lanes from FV directly.
By defining anchors in the 3D space and projecting them to
the FV features, accurate anchor features are sampled for
lane prediction. We further extend our Anchor3DLane to
the multi-frame setting to incorporate temporal information,
which improves performances due to the enriched context.
In addition, a global equal-width optimization method is
proposed to utilize the parallel property of lanes for refine-
ment. Experimental results show that our Anchor3DLane
outperforms previous methods on three 3D lane detection
benchmarks with a simple architecture.
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Appendix A. Implementation Details

ApolloSim. We resample 10 points for the ApolloSim
dataset at y-coordinates of {5, 10, 15, 20, 30, 40, 50, 65,
80, 100}. The training batch size is set to 16. We train
Anchor3DLane on this dataset with one NVIDIA RTX 2080
Ti GPU for 50, 000 iterations and decay the learning rate at
the 45, 000-th iteration by 10 times.

OpenLane. We resample 20 points for the OpenLane
dataset at y-coordinates of {5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}. The train-
ing batch size is set to 64. We train Anchor3DLane on this
dataset with eight NVIDIA RTX 2080 Ti GPUs for 60, 000
iterations and decay the learning rate at the 50, 000-th iter-
ation by 10 times.

ONCE-3DLanes. We resample 10 points for the ONCE-
3DLanes dataset at y-coordinates of {2, 5, 8, 10, 15, 20, 25,
30, 40, 50}. Since experiments are conducted in the camera
coordinate system where the origin is above the ground, the
starting positions of 3D anchors are set at (z5,0, —1.5m).
Other training settings are the same as those on the Open-
Lane dataset as mentioned above.

Appendix B. Quantitative Results
B.1. The Range of Training Frames

Frame Range ‘ F1(%) xerr/C(m) xerr/F(m) zerr/C(m) zerr/F(m)

3 frames 55.0 0.306 0.326 0.099 0.148
5 frames 55.2 0.308 0.330 0.099 0.145
7 frames 56.1 0.312 0.335 0.101 0.150

Table 9. Ablation study on the range of training frames.

For temporal context modeling, we sample one frame
from different ranges of previous frames to aggregate its
feature to the current frame during training. The first frame
of the previous 5 frames is sampled during inference. As
shown in Table 9, the F1 score increases as the frame
range becomes larger, indicating that aggregating informa-
tion from farther frames yields a better estimation for the
current frame.

B.2. Computational Cost Analysis

Method | F1Score(%) FLOPs Param FPS
PersFormer [5] 50.5 5724G 549M  5.58
Anchor3DLane (ours) 53.1 38.1G 122M  87.29
Anchor3DLanet (ours) 53.7 424G 132M  73.73
Anchor3DLane-T7 (ours) 54.3 82.3G 13.3M  30.22
Table 10. Comparison of computational cost and F1 score

on OpenLane validation set. 1t denotes iterative regression.
Anchor3DLane-T denotes incorporating multi-frame information.

We report the computational cost comparison in Ta-
ble 10. Our Anchor3DLane achieves a higher F1 score on
the OpenLane dataset with much fewer FLOPs and param-
eters compared with PersFormer [5]. The inference speeds
(FPS) of these methods are measured using the code re-
leased by PersFormer on a single 2080 Ti GPU. Our orig-
inal Anchor3DLane achieves nearly 16 times faster infer-
ence speed than PersFormer. By adopting iterative regres-
sion and temporal context modeling, the F1 score is further
improved, while the inference speed decreases but is still
much faster than PersFormer. These results demonstrate our
Anchor3DLane is both effective and efficient.

B.3. Experimental Results with EfficientNet

To verify the adaptability and performance potential
of our method, we further conduct experiments with
EfficientNet-B3 [33] to compare with PersFormer which
adopts EfficientNet-B7 as the backbone. Results are shown
in Table 11, Table 12 and Table 13. On OpenLane dataset,
utilizing EfficientNet-B3 as the backbone could boost the
performance of our Anchor3DLane from 53.1% F1 score to
56.0% and reduce the x/z errors at the same time, indicating
that our method adapts well to stronger backbones.

Appendix C. Qualitative Results

ApolloSim. We compare our Anchor3DLane with
CLGo [20] on the ApolloSim dataset and the results are
included in Figure 4. Our method has better lateral predic-
tions in the distant parts when lanes turn in the distance (row
2 and row 3). In addition, when encountering uphill (row 6)
or downhill (row 4 and row 5), our method can better cap-
ture the height changes than CLGo, which demonstrates the
superiority of directly regressing 3D anchors for 3D lanes.

OpenLane. We also compare with PersFormer [5] on
the OpenLane dataset in Figure 5. Our Anchor3DLane
can better recover the whole lanes occluded by vehicles as
shown in column 2 of Figure 5 (a) and (b).

ONCE-3DLanes. In Figure 6, we show the qualita-
tive results of our Anchor3DLane on the ONCE-3DLanes
dataset. Our method performs well in different scenes, such
as bad weather like rainy days (column 1 of row 1 and row
2). Since the 2D annotations of ONCE-3DLanes are gener-
ated by the lane detection model, annotations of some cases
are inaccurate or incomplete but our method still produces
fine predictions as shown in column 3.

Equal-Width Constraint. We show the visualization
results of equal-width constraint (EWC) optimization in
Figure 7. After adjusting the x coordinates of lanes with
EWC, lane predictions are parallel to each other and errors
in the distant parts are reduced as well. It is also worth
noting that the ground-truth lanes do not satisfy the equal-
width hypothesis in the close parts of some cases, which is
possibly due to annotation defects (column 3). Therefore,



Method \ Backbone | F1(%)1 Cate Ace(%)? xerr/Cim) | xerr/F(m)| zerr/Cm)| zerr/F(m) |

3D-LaneNet [7] VGG-16 [29] 441 - 0.479 0.572 0.367 0.443
GenLaneNet [3] ERFNet [28] 32.3 - 0.591 0.684 0411 0.521
PersFormer [5] EfficientNet-B7 [33] 50.5 92.3 0.485 0.553 0.364 0.431
Anchor3DLane (Ours) ResNet-18 [9] 53.1 90.0 0.300 0.311 0.103 0.139
Anchor3DLane (Ours) EfficientNet-B3 56.0 89.9 0.293 0.317 0.103 0.130

Table 11. Comparison with state-of-the-art methods on OpenLane validation set with stronger backbone.

Method \ Backbone \ All  Up & Down Curve Extreme Weather Night Intersection Merge & Split
3D-LaneNet [7] VGG-16 44.1 40.8 46.5 475 41.5 32.1 41.7
GenLaneNet [8] ERFNet 323 25.4 33.5 28.1 18.7 21.4 31.0
PersFormer [5] EfficientNet-B7 | 50.5 42.4 55.6 48.6 46.6 40.0 50.7

Anchor3DLane (Ours) ResNet-18 53.1 45.5 56.2 51.9 47.2 442 50.5
Anchor3DLane (Ours) | EfficientNet-B3 | 56.0 50.3 59.1 53.6 52.8 47.4 53.3

Table 12. Comparison with state-of-the-art methods on OpenLane validation set with stronger backbone. F1 score is presented for each
scenario.

Method Backbone F1 Score(%)1 Precision(%)T Recall(%)T CD Error(m)]
3D-LaneNet [7] VGG-16 44.73 61.46 35.16 0.127
Gen-LaneNet [8] ERFNet 45.59 63.95 3542 0.121
SALAD [39] SegFormer [37] 64.07 75.90 55.42 0.098
PersFormer [5] EfficientNet-B7 74.33 80.30 69.18 0.074
Anchor3DLane (Ours) ResNet-18 74.44 80.50 69.23 0.004
Anchor3DLane (Ours) | EfficientNet-B3 75.02 83.22 68.29 0.064

Table 13. Comparison with state-of-the-art methods on ONCE-3DLanes validation set with stronger backbone.

adjusting with EWC may not be beneficial to reducing x
error.



(a) CLGo (b) Anchor3DLane

Figure 4. Comparison between CLGo [20] and our Anchor3DLane on the ApolloSim dataset. (a): Qualitative results of CLGo. (b):
Qualitative results of our Anchor3DLane. Blue:Ground-truth. Red: Prediction.
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Figure 5. Comparison between PersFormer [5] and our Anchor3DLane on the OpenLane dataset. (a)(c): Qualitative results of PersFormer.

(b)(d): Qualitative results of our Anchor3DLane.
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Figure 6. Qualitative results on the ONCE-3DLanes dataset.
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Figure 7. Visualization of equal-width constraint (EWC). (a) Results on 2D images after EWC adjustment. (b) Results on the x-y plane.
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