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SCoDA: Domain Adaptive Shape Completion for Real Scans
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Figure 1. The proposed task SCoDA aims to transfer the knowledge in the synthetic domain to the reconstruction of noisy and incomplete
real scans. A dataset, ScanSalon, with paired real scans and 3D models is contributed. Project page: yushuang-wu.github.io/SCoDA.

Abstract

3D shape completion from point clouds is a challeng-
ing task, especially from scans of real-world objects. Con-
sidering the paucity of 3D shape ground truths for real
scans, existing works mainly focus on benchmarking this
task on synthetic data, e.g. 3D computer-aided design mod-
els. However, the domain gap between synthetic and real
data limits the generalizability of these methods. Thus, we
propose a new task, SCoDA, for the domain adaptation of
real scan shape completion from synthetic data. A new
dataset, ScanSalon, is contributed with a bunch of elaborate
3D models created by skillful artists according to scans. To
address this new task, we propose a novel cross-domain
feature fusion method for knowledge transfer and a novel
volume-consistent self-training framework for robust learn-
ing from real data. Extensive experiments prove our method
is effective to bring an improvement of 6%~7% mloU.

1. Introduction

Shape completion and reconstruction from scans is a
practical 3D digitization task that is of great significance

in applications of virtual and augmented reality. It takes a
scanned point cloud as input and aims to recover the 3D
shape of the target object. The completion of real scans
is challenging for the poor quality of point clouds and the
deficiency of 3D shape ground truths. Existing methods ex-
ploit synthetic data, e.g. 3D computer-aided design (CAD)
models to alleviate the demand for real object shapes. For
example, authors of [18,26,35] simulate the scanning pro-
cess to obtain point clouds from CAD models with paired
ground truth shapes to train learning-based reconstruction
models. However, there still exist distinctions between the
simulated and real scan because the latter is scanned from
a real object with complex scanning noise and occlusion,
which limits the generalization quality.

Considering the underexploration in this field, we
propose a new task, SCoDA, Domain Adaptive Shape
Completion, that aims to transfer the knowledge from the
synthetic domain with rich clean shapes (source domain)
into the shape completion of real scans (target domain), as
illustrated in Fig. 1. To this end, we, for the first time, build
an object-centric dataset, ScanSalon, which consists of real
Scans with Shape manual annotations. Our ScanSalon con-
tains a bunch of 3D models that are paired with real scans of
objects in six categories: chair, desk/table, sofa, bed, lamp,
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and car. The 3D models are manually created of high qual-
ity by skillful artists for around 10% of real scans, which
can serve as the evaluation ground truths of shape comple-
tion or as the few labels for semi-supervised domain adapta-
tion. See Fig. | for some examples, and details of ScanSa-
lon are exposed in Sec. 4.

The main challenge of the proposed SCoDA task lies in
the domain gap between synthetic and real point clouds.
Due to the intrinsic complexity of the scanning process, e.g.,
the scanner parameters and object materials, it is difficult to
simulate the scans in terms of sparsity, noisy extent, efc.
More importantly, real scans are usually incomplete result-
ing from the scene layout and object occlusion during scan-
ning, which can hardly be simulated. Thus, we propose a
novel domain adaptive shape completion approach to trans-
fer the rich knowledge from the synthetic domain to the real
one. At first, the reconstruction module in our approach is
based on an implicit function for continuous shape com-
pletion [18, 54,58]. For an effective transfer, we observe
that although the local patterns of real scans (e.g., noise,
sparsity, and incompleteness) are distinct from the simu-
lated synthetic ones, the global topology or structure in a
same category is usually similar between the synthetic and
real data, for example, a chair from either the synthetic or
real domain usually consists of a seat, a backrest, legs, etc.
(see Fig. 1). In other words, the global topology is more
likely to be domain invariant, while the local patterns are
more likely to be domain specific. Accordingly, we propose
a cross-domain feature fusion (CDFF) module to combine
the global features and local features learned in the syn-
thetic and real domain, respectively, which helps recover
both fine details and global structures in the implicit recon-
struction stage. Moreover, a novel volume-consistent self-
training (VCST) framework is developed to encourage self-
supervised learning from the target data. Specifically, we
create two views of real scans by dropping different clus-
ters of points to produce incompleteness of different extent,
and the model is forced to make consistent implicit predic-
tions at each spatial volume, which encourages the model’s
robustness to the incompleteness of real scans.

To construct a benchmark on the proposed new task, we
implement some existing solutions to related tasks as base-
lines, and develop extensive experiments for the baselines
and our method on ScanSalon. These experiments also
demonstrate the effectiveness of the proposed method.

In summary, our key contributions are four-fold:

* We propose a new task, SCoDA, namely domain
adaptive shape completion for real scans; A dataset
ScanSalon that contains 800 elaborate 3D models
paired with real scans in 6 categories is contributed.

* A novel cross-domain feature fusion module is de-
signed to combine the knowledge of global shapes and
local patterns learned in the synthetic and real domain,

respectively. Such a feature fusion manner may also
inspire the works in the 2D domain adaption field.

* A volume-consistent self-training framework is pro-
posed to improve the robustness of shape completion
to the complex incompleteness of real scans.

* A benchmark with multiple methods evaluated is con-
structed for the task of SCoDA based on ScanSalon,;
Extensive experiments also demonstrate the superior-
ity of the proposed method.

2. Related Work

Shape Completion Shape completion or reconstruction
from point clouds is a branch of 3D reconstruction task [20,

,54,68,72,91,94]. The recovered shape can be repre-
sented as dense points [45, 46, 60] (i.e., point cloud com-

pletion or consolidation), polygonal meshes [28,35,48,78],
manifold atlases [4,25,27,32, 83], voxel grids [20, 34, 85],
or implicit representations [18,26,40,61,70,82]. Among

them, the task of point cloud completion is related to our
work, which aims to recover a complete, dense, and clean
point cloud for the 3D shape, from a partial, sparse, and
noisy input scanned by sensors. The pioneering work,
PCN [99], proposes a coarse-to-fine completion framework
with an encoder-decoder architecture, which encodes the
partial points into global features and recovers the fined
results in the decoding stage. The following works ex-
plore further to better exploit local or multi-scale fea-
tures for higher-quality completion [38, 49, 57,73,76,77,

, 81, 89, 92, 95, 98, 99, ]. In addition, the implicit
representation based approaches now attract increasing at-
tention because of its superior property that enables con-
tinuous shape recovery for objects with arbitrary topolo-
gies [17,18,54,58]. Although numerous efforts have been
contributed, the existing approaches are usually performed
on point clouds scanned from synthetic data via simulation,
and a straightforward application on real scans results in
an unsatisfactory performance due to the domain gap be-
tween synthetic and real scans [18, 26, 64]. For the task of
point completion, some works also adopt unsupervised or
weakly-supervised learning techniques to learn from unla-
beled data [8, 14,33,79,86,87, ]. Another line of works
retrieve suitable models from 3D CAD repositories and de-
form them as the estimated shape ground truths of object
scans [3, 75]. Differently, our work first proposes the task
of domain adaptive shape completion for real scans, which
aims to sufficiently transfer the knowledge from the label-
rich synthetic domain into real scan shape completion.

2D Domain Adaptation Domain adaptation has been a
popular research topic in various 2D vision tasks, includ-
ing image recognition [5, 1 1, 15,22,24,29,50,67], semantic
segmentation [16, 36,52, 53], and object detection [12,42,

,65]. Existing works can broadly be categorized as (i)



adversarial-based methods [12, 13, 15, 16,22, 67] that train
a discriminator to discriminate the source and the target do-

main, (ii) alignment-based methods [11,24,29,65,78] that
use pre-defined metrics to align the source and the target do-
main, and (iii) self-training-based methods [5,36,52,53,55]

that exploit the pseudo labels of the target domain to train
the model. Recently, consistency-based self-training meth-
ods have become the most popular approach due to their
impressive performance. One key factor in the success of
consistency training is the augmentations applied to the in-
puts [31,71,93], e.g., stronger augmentations have better
performance in domain adaptive image recognition [5]. To
this end, we design a novel consistency training framework
specialized for the shape completion task. Furthermore, we
propose to conduct knowledge transfer via a cross-domain
feature fusion manner, which has not been explored by ex-
isting works, to our best knowledge.

3D Domain Adaptation In the 3D vision field, exist-
ing works on domain adaptation are mainly committed to
the task of point cloud understanding, including classifi-
cation, part segmentation, and semantic segmentation. For
object-centric point clouds, PointDAN [63] constructs a do-
main adaptive classification benchmark by collecting point
clouds from ShapeNet [10], ModelNet [88], and Scan-
Net [23] datasets to compose 3 different domains. It also
proposes an adversarial representation learning approach
with feature alignment at both local and global levels.
The following works improve the classification precision
by adopting techniques of consistency training [44], self-
training [9, ], multimodal learning [2], or learning from
self-supervised tasks [1,37,51,69]. Another line of works
are committed to scene-centric point cloud analysis, i.e.,
point cloud semantic segmentation [0,7,39,41,59,66,84,90,

, 102]. Considering the exhaustive annotation process for
3D point semantics, they propose to transfer the segmen-
tation knowledge in synthetic scenes into real-world point
clouds [41, 84,90, ]. Besides, there are a few attempts
contributed to domain adaptive single-view reconstruction
(SVR) [43,62,97], which is highly related to our work. Ex-
cept for the difference in tasks (SVR v.s. shape completion),
these works usually apply existing domain adaptation tech-
niques to the target task, while we propose a novel domain
adaptation method based on cross-domain feature fusion,
which may also inspire others working on domain adaption.

3. Method

IF-Nets are a promising reconstruction method for their
impressive performance [18], which is also successfully
used in many applications [19,56]. Constructed on IF-Nets,
our approach first improves the representation learning by
proposing a novel cross-domain feature fusion module,
which aims to transfer the knowledge on the global-level
object shape learned in the label-rich synthetic domain into

the real domain. Secondly, to exhaust the domain-specific
information in the real data, a novel volume-consistent self-
training method is proposed for the specific shape comple-
tion task, which also leads to a robust implicit prediction of
IF-Nets. An illustration is presented in Fig. 2.

3.1. Implicit Feature Networks

We first introduce IF-Nets [18] as our reconstruction
framework. An IF-Net is composed of a 3D convolution
neural network encoder g(-) for multi-scale feature extrac-
tion and a multi-layer perceptron (MLP) f(-) for implicit
shape decoding.

Given a point cloud sample P, it is first converted into
a discrete voxel representation X € RNXNXN ' \here
N € N is the resolution of the input space. X is then
fed into the L-layer encoder g(-) to generate a set of multi-
scale features {F,...,F}, then they are upsampled to
the same spatial dimension and been concatenated along
the channel dimension to create the final feature F =
concat({upsample(F;), ..., upsample(Fr,)}). Formally:

g(X):F, XERNXNXN, FERdXNXNXN,

where d is the feature channel number that equals the sum-
mation of the channel numbers of F;. Note that F' has a
3D structure aligned with the input X. Given a point query
p € R3, continuous features F(p) at this point can be ex-
tracted from F using trilinear interpolation.

Then, the encoding at the point p is fed into a point-wise
decoder f(-) to give a binary prediction indicating if the
point lies inside or outside the shape:

f(F,p) = f(F(p)) — {0,1}.

Given the occupancy value o(p) € {0, 1} at each position
p pre-computed according to the ground truth shape mesh,
a binary cross-entropy loss is used to train g and f:

min L[F = BCE(f(F,p), O(p)).

Note that the prediction values can also be continuous
signed distance values as in [58].

3.2. Cross-Domain Feature Fusion

The training of a naive IF-Net demands ground truth
shapes for generating numerous occupancy labels to super-
vise the output of f(-), yet most of the real scans are un-
paired with shape ground truths. So we develop a cross-
domain feature fusion module to well transfer the knowl-
edge in the label-rich source domain. Our idea of exploit-
ing the source knowledge stems from an important obser-
vation: although synthetic data have distinct local patterns
from real scans, the global-level knowledge (e.g., the com-
mon structure and coarse shape) of a certain category can
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Figure 2. Overview of the proposed method. Two IF-Net encoders are used for the source and the target domain, respectively, and they
share an implicit function decoder. The cross-domain feature fusion (CDFF) works by adaptively combining the global-level and local-level
knowledge learned from the source and target domain, respectively. The volume-consistency self-training (VCST) works by enforcing the
prediction consistency between two different augmented views to learn the local details.

be shared in both domains. Besides, the target data with
few labels may be enough for learning rich local-level infor-
mation. On the other hand, IF-Nets conduct shape comple-
tion via exploiting local representations, so it is important to
extract high-quality local-level features without introducing
bias from the source domain.

To this end, we develop a cross-domain feature fusion
module (CDFF) for knowledge transfer. First, two shape
encoders, ¢s(-) and g¢.(-), are used for feature extraction
of source and target data, generating F', and F,, respec-
tively. As explained above, F'; contains rich global informa-
tion, and F; is more reliable in providing domain-specific
local-level representations. A simple linear combination is
adopted to fuse them into F:

F=w-F,+(1—-w)- Fy

where w € [0, 1]% is a channel-wise weight vector. To better
combine the advantages of F; and Fy, the computation of
w takes two aspects into account: (i) exploiting the global-
level features in F'; while believing F; for local ones (based
on our observation), and (ii) learning w adaptively to main-
tain the flexibility. The adaptive weight vector w is com-
puted as:
w=a- h(F; ©F,) +w’,

where o € R7 is the ratio of adaptiveness, h(-) — [0, 1]¢
is a two-layer MLP with a sigmoid activation at the output
layer, and ©® indicates the operation of element-wise mul-
tiplication plus a global pooling on the spatial dimension
(returns a vector of dimension d). w® € [0, 1]d is a constant
weight vector that implies a prior derived from our observa-
tion, of which each value w{ is simply defined by a linear
mapping as follows:

l:
0 _* 4 1,2.---.d
wz L+1ale{a 9 9 }7

where I; € {1,2,---,L} indicates which layer the i-th
channel belongs to. In this way, the deeper layer one chan-
nel is from, the more the computation of F in this channel
relies on F, as the deeper layers of IF-Nets capture more
global information. In addition, a clipping operation is ap-
plied to w to limit all values to [0, 1].

3.3. Volume-Consistent Self-training

With few shape ground truths in the target domain, it
is hard to learn rich information in a supervised manner.
A typical way is to adopt self-supervised learning to learn
from the data itself. In the task of SCoDA, the incomplete-
ness is a significant characteristic of real scans that hampers
the shape completion quality. Thus, we create two views of
scans with different levels of incompleteness, and encour-
age the model to make consistent implicit predictions on
their volume occupancy. Such a volume-consistent self-
training (VCST) encourages the model to keep robust to
various incompleteness and “imagine” the missing parts for
shape completion.

Specifically, we first adopt an unsupervised clustering
algorithm (e.g., k-means clustering) to partition the point
cloud into K different parts (see Fig. 2 for examples). The
clustering is based only on the spatial positions of points
and thus coarsely splits an object scan into multiple com-
ponents. With the pre-computed partitions, two views X4
and X? can be generated by randomly dropping different
clusters of points from the original real scan, with K 4 and
K clusters left, respectively, where K > K4 > Kp. Be-
sides, two random downsamplings are also conducted on
the two views to create different sparsity. Note that the
clustering-based augmentation is actually a surface-aware
augmentation. Compared with volume-based ones that ran-
domly mask some spatial volumes, our augmentation strat-



egy implies more object-part knowledge to some extent.
Given the two views of input, their features are extracted
by g(-) and then taken by f(-) to give implicit predictions:

gX")=F" v=A,B,
f(F’,p) —{0,1}.

Note that F¥ can also be generated via our CDFF mod-
ule. Here we simplify the formulation to better present our
VCST. The consistency constraint is imposed on the im-
plicit predictions of f(F4, p) and f(FZ, p) with the same

point query p:
min LCT = BCE(f(FBa p); f(FA> p))7

where BCE(-,-) indicates the binary cross-entropy loss.
The consistency objective can be viewed as using the pre-
diction from view A as the pseudo label of view B, because
X5 has a poorer completeness than X4 with Kp < K 4.
As there will be noises in the implicit predictions due to
the limited shape ground truths of target data, using the
noisy prediction as the pseudo label will mislead the train-
ing. Therefore, a thresholding operation is performed to
mask the predictions with low confidence in f(F4,p). The
overall loss function is a summation of L;r and Lor.

4. Dataset

Figure 3. The procedure of 3D model crafting. From left to
right: (i) extracting the object scan from a scene; (ii) construct-
ing a coarse mesh frame to fit the scan; (iii) adding fine details;
(iv) adjusting the defects detected by inspectors.

Overview The proposed ScanSalon dataset collects 7,644
real scans, of which 800 objects are equipped with 3D shape
(artificial) ground truths. All models or scans are from 6
categories of objects, with 5 common indoor objects: chair,
desk (or table), sofa, bed, and lamp, and 1 outdoor object:
car. Detailed statistics are listed in Tab. 1. In Fig. 4, we
exhibit some samples of real scans and corresponding 3D
shapes in ScanSalon. More visualizations could be seen in
the supplementary materials.

Data Collection The real scans are collected from two
datasets, the ScanNet [23] and KITTTI [30] dataset for in-
door and outdoor objects, respectively. The object scans are
extracted from a scene point cloud according to the point-
level instance segmentation annotations provided by the two

Table 1. Statistics of the proposed dataset ScanSalon.

‘Chair Desk Sofa Bed Lamp Car ‘ Total

Real Scans 4,651 1,630 428 365 133 437 | 7,644
Paired Models | 497 161 43 36 20 43 800

datasets, and then rotated and normalized into the same pose
and scale, with the aid of pose annotations provided by the
Scan2CAD [3] and KITTI [30] dataset. These data are also
aligned with models in the ShapeNet database [10], which
provides a bunch of synthetic models as the source domain.

Shape Annotation for Real Scans Two skillful artists par-
ticipate in the annotation procedure. In addition to the real
scans, we provide several photos for each scan from differ-
ent viewpoints (selected from the videos contained in the
ScanNet and KITTI datasets), which provide 2D references
to improve the model quality. A brief creation pipeline is
shown in Fig. 3, where the artists are required to create the
shapes according to both scans and photo references (see
Fig. 4), overcome the distractions of scan noise, and re-
cover the incompleteness by his(her) rich experience when
the photo references are poor or inadequate. They use pro-
fessional 3D software, Maya' to create models. On average,
it takes 0.5~1.0 person-hours to create a 3D model and the
creation of all 800 models takes 2.5 months in total. For
each created model, another 8 inspectors are invited to ver-
ify their (i) recovery extent compared with the real objects
in photos and (ii) matching extent with the given scan, and
the defects will be fed back to artists for further adjustments
until no defects are detected by any inspector. Considering
the inaccessibility of the objects in scans from ScanNet and
KITTI, we have made our greatest efforts to create artificial
ground truth shapes for these scans.

S. Experiments

5.1. Settings

Benchmark setting We define two settings for the pro-
posed task, which give only 3% and 5% shape ground truths
(e.g. 47 and 140 chair models randomly sampled from all
4,651 chair scans, respectively) of real scans in the training
set, and the rest of samples with corresponding 3D models
compose the test set. Note that the 3% labeled samples are
covered in the 5% labels for observing a cross-setting com-
parison when given more labels. For evaluation, we con-
sider two metrics to measure the shape completion quality,
mloU: mean volumetric intersection over union (higher is
better), and CD: [5 chamfer distance (lower is better). The
former measures the matching extent of the defined volumes
and the latter measures the surface accuracy.

Baselines We implement four baseline methods to con-
struct the benchmark of the new task. (i) IF-Net: a naive IF-

Uhttps://www.autodesk.com/products/maya



Figure 4. ScanSalon data visualization. Each tuple includes: point cloud (left), created mesh (middle), and photo references (right).

Table 2. Experiment results on the 3% and 5% labels setting of the SCoDA task. The units of CD and mIoU value are 1 x 10~ and %,
respectively. Red text indicates the best and blue text indicates the second best result, respectively (similarly hereinafter).

(a) Results on the 3% labels setting.

Chair Desk Sofa Bed Lamp Car Average
Method CD] mloUT | CD] mloUT | CD] mloUT | CD] mloUT | CD] mloUT | CD) mloU?T || CD| mloUft
IF-Net 1.57 56.10 | 244 43.04 | 0.65 79.03 1.64 6730 | 1.67 3989 | 0.74 7477 145  60.02
SelfSup 149 5855 | 349 4297 | 055 81.16 | 1.59 6858 | 241 5142 | 0.62 7875 1.69  63.57
PtComp 1.61 5733 | 216 4426 | 051 7990 | 1.52 68.23 195 4697 | 0.59  80.35 1.39  62.84
Adversarial || 1.74 5854 | 299 46.02 | 046 8142 | 1.37 71.32 | 243 5639 | 0.67 7891 1.61  65.43
Ours 1.58 60.77 | 2.36 48.62 | 042 82.00 | 1.57 73.05 | 1.62 58.57 | 0.41  80.96 132 67.32

(b) Results on the 5% labels setting.

Chair Desk Sofa Bed Lamp Car Average
Method CD] mloUtT | CD] mloUtT | CD] mloUtT | CD] mloUtT | CD] mloUtT | CD) mloUt || CD] mloUt
IF-Net 1.88 5698 | 2.14 4487 | 050 82.04 | 0.66  76.05 172 5133 | 0.52  80.13 1.24 6523
SelfSup 208 5942 | 273 4639 | 0.51 8225 | 0.61 7722 | 146 62.02 | 043  81.89 1.09  68.06
PtComp 134 5798 | 1.83 4620 | 032 82.66 | 0.61 79.07 | 144 61.61 | 043 81.89 1.00  68.24
Adversarial | 1.71  60.58 | 2.13 4846 | 041 8354 | 0.51 80.81 | 1.33 64.22 | 041 81.86 1.08 6991
Ours 137 6148 | 209 5093 | 031 8271 | 041  82.27 1.57 67.80 | 046  83.12 1.04 71.39

Net [18] is adopted without any other designs and is trained
on all supervised samples (including synthetic and real la-
bels); (ii) SelfSup: a self-supervised IF-Net that conducts
feature-level consistency (by minimizing the distance be-
tween two domain feature vectors) on unsupervised sam-
ples [50]; (iii) PtComp: a domain adaptive point comple-
tion method [14] is re-implemented to align the real scan
inputs with the synthetic ones, incorporated with an extra
IF-Net for implicit shape reconstruction. Note the encoder
and decoder used in [14] are revised into a voxel-based 3D
CNN to incorporate with IF-Net; (iv) Adversarial: a domain
adaptive IF-Net is exploited with adversarial feature learn-
ing [43,74,87] to learn domain-invariant features. The de-

tailed implementation details of each baseline are included
in the supplementary materials for the space limit.

Implementation details We adopt a 6-layer 3DCNN as
the encoder with a 4-layer MLP as the decoder to imple-
ment the IF-Nets, using the official codes released by [18].
Following [18], the channel dimension of multi-scale fea-
tures is 2,583, and a resolution N=32 is used for the train-
ing of reconstruction. For evaluation, we use a higher res-
olution with N=128. In the CDFF module, « is set to 0.2
to better combine the advantages of ¢ and F;. For the
augmentation strategy in VCST, K 4 is randomly selected
from {7,8}, and Kp is randomly selected from {5,6, 7}
for each data sample. The downsampling randomly sam-



Table 3. Ablation on using the single module of CDFF or VCST.

Chair Bed Lamp
CD] mloUt | CD{ mloUt | CD) mloUt
CDFF+VCST || 1.58  60.77 | 1.57 73.05 | 1.62  58.57
CDFF only 149 5855 | 191 71.19 | 1.73  53.18
VCST only 208 5942 | 1.63 72,62 | 1.85 50.18

Table 4. Analysis of the design of the CDFF module.

|| Fusion Observ. ~Adaptive |~ CDJ mloUt
Ours v v v 1.49 58.55
F=F, 1.57 (+0.08)  56.10 (-2.45)
F=F, 222(+0.73)  54.98 (-3.57)
Non-Adap. || v v 1.92 (+0.43)  57.77 (-0.78)
Contrad. v v 1.96 (+0.47)  56.62 (-1.93)

ples 1k points from each scan (no sampling when has <1k
points). A thresholding operation is adopted to filter out
predictions with a confidence in (0.1,0.9) (viewed as un-
confident predictions) from view A to guarantee the quality
of consistency training [71]. All models are trained with an
Adam optimizer and a learning rate 1 x 10~4, with a mini-
batch size 4. Lo only works on unsupervised data. More
implementation details of our method are introduced in the
supplementary materials.

5.2. Results

Quantitative comparison The performance of baseline
methods and ours are listed in Tab. 2 on the 3% and 5%
labels settings. It can be seen that our method is superior to
all baselines. On the 3% labels setting, our method achieves
1.32x 102 on CD and 67.32% on mloU on average, which
is higher than the second best “Adversarial” by ~0.3x10~3
CD and ~2% mloU. Besides, our method achieves good
performances consistently over all 6 categories, most of
which get a top rank over all 5 methods. The adversarial
domain adaption method achieves the top mloU among all
baseline methods. Besides, our method also achieves the
best performance on the 5% setting for both average CD and
mloU. In addition, it can be observed that an extra 2% labels
bring an improvement of around 5% mloU to all methods,
and the improvements are especially significant for the cate-
gories “bed” and “lamp”, which shows the promising prac-
tical value to provide a few more real-data labels to boost
the shape completion quality from real scans.

Qualitative comparison We visualize the shape comple-
tion results of different methods in Fig. 5 to qualitatively
compare baselines and our method. With the implicit pre-
diction at each grid, a threshold of 0.5 is used to justify
whether an occupancy is predicted here. The resulting oc-
cupancy grids with resolution 128 are then transformed into
a mesh using the marching cubes algorithm [21]. The vi-
sualizations present the superiority of the proposed method,
which achieves better completion for missing parts and gen-
erates fewer defects almost in all samples of Fig. 5.

Table 5. Analysis of the design of the VCST module.

Random  Volume  Surface || CDJ} mloU?t
w/o consistency training 1.57 56.10

v 3.65 (+2.08)  47.60 (-8.50)

v 2.03 (+0.46)  57.55 (+1.45)

v 2.37 (+0.80)  59.03 (+2.93)

v v 2.08 (+0.51)  59.42 (+3.32)

v v 2.37 (+0.80)  58.13 (+2.03)

v v v 2.30 (+0.73)  58.55 (+2.45)

5.3. Ablation

Single module We first conduct ablative studies on using
the CDFF or VCST module only. The results on 3 cate-
gories of the 3% label setting confirm the effectiveness of
either of them, see Tab. 3. Besides, integrating both two
methods brings an extra performance gain, which shows the
complementary functions of these two modules.

CDFF variants Next, we implement ablations on different
variants of the proposed two modules, and all experiments
are conducted on the “chair” category under the 3% label
setting. For the CDFF module, we experiment such vari-
ants: (i) using the whole features generated by g, rather
than via feature fusion (F = Fy); (ii) without fusion but
using the whole features generated by g; (F = F}); (iii)
conducting feature fusion but with a non-adaptive man-
ner, specifically, w; is set to O for the bottom 3 layers
and 1 for the top 3 layers (Non-Adap.); (iv) conducting
adaptive feature fusion but in a manner contradictory to
our observation (Contradict.), where we compute w via
w{ = 1—1;/(L+1) instead. The results in Tab. 4 show that
(1) fully using F'; as F is equivalent to using a naive IF-Net
that has a lower performance; (ii) using F; as F results in
a significant performance drop because g; can hardly learn
high-quality global representations with a few labels; (iii)
using a non-adaptive feature fusion that complies with our
observation also leads to a performance drop but performs
better than those without fusion; (iv) a fusion contradictory
to our observation brings a ~2% mloU drop, which further
supports the reasonableness of our observation.

VCST variants Related to our VCST design, we try dif-
ferent combinations to achieve the best augmentation strat-
egy. Alternative strategies include random downsampling,
surface-aware sampling (clustering-based), volume-aware
sampling, and adding noise. Among them, adding noise
has no effect on the performance whatever other augmen-
tations are used, which may be caused by the voxeliza-
tion operation in IF-Nets. Thus we try the following vari-
ants with the combination of the other three augmentation
strategies. Note that we control the dropping ratio to guar-
antee the expected number of dropped points (if only us-
ing dropping) are the same for all settings. The results in
Tab. 5 show that: (1) the consistency training with random
downsampling only crashed (the 2nd row), using volume-
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Figure 5. Qualitative comparison between different methods on shape completion with only 3% labels for training.

aware or surface-aware augmentation only can still work,
but the surface-aware one performs better (the 3rd and 4th
row), and the 4th row is the version used in our standard
VCST; (3) the volume-aware augmentation can bring mi-
nor improvements on mloU with or without random down-
sampling (the 3rd and 5th row), which is worse than our
surface-aware one, and using both two of them even makes
a negative effect (the last row). The reason for the failure
of using random downsampling only is that the consistency
training fails when two views are very similar in a global
fashion. An intuitive explanation for (3) is that compared
with our surface-aware augmentation, the incompleteness
created by the volume-aware one has a larger gap with real
scans. The qualitative comparisons between different vari-
ants are included in the supplementary materials.

6. Conclusion

In this paper, we propose a new task, domain adaptive
shape completion of real scans, which aims to transfer the
knowledge in the label-rich synthetic domain into the more
challenging real domain. We construct a new dataset that

contains elaborate 3D models created by professional artists
for 10% of real scans in 6 categories, which can serve for the
learning of deep reconstruction models and evaluation. Be-
sides, we develop a new domain adaptive shape completion
framework with two novel modules, cross-domain feature
fusion and volume-consistent self-training, to better exploit
both the synthetic and real data. Extensive experiments val-
idate the superiority and effectiveness of our method and a
benchmark is constructed on the proposed task.
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