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Abstract

Neural signed distance functions (SDFs) have shown re-
markable capability in representing geometry with details.
However, without signed distance supervision, it is still a
challenge to infer SDFs from point clouds or multi-view im-
ages using neural networks. In this paper, we claim that
gradient consistency in the field, indicated by the paral-
lelism of level sets, is the key factor affecting the infer-
ence accuracy. Hence, we propose a level set alignment
loss to evaluate the parallelism of level sets, which can be
minimized to achieve better gradient consistency. Our nov-
elty lies in that we can align all level sets to the zero level
set by constraining gradients at queries and their projec-
tions on the zero level set in an adaptive way. Our in-
sight is to propagate the zero level set to everywhere in the
field through consistent gradients to eliminate uncertainty
in the field that is caused by the discreteness of 3D point
clouds or the lack of observations from multi-view images.
Our proposed loss is a general term which can be used
upon different methods to infer SDFs from 3D point clouds
and multi-view images. Our numerical and visual compar-
isons demonstrate that our loss can significantly improve
the accuracy of SDFs inferred from point clouds or multi-
view images under various benchmarks. Code and data
are available at https://github.com/mabaorui/
TowardsBetterGradient.

1. Introduction
Signed distance functions (SDFs) have shown remark-

able abilities in representing high fidelity 3D geometry [6,
14,16,28,32,36,38,41,42,45,51,52,54,56,62,63,67–69,76].
Current methods mainly use neural networks to learn SDFs
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as a mapping from 3D coordinates to signed distances. Us-
ing gradient descent, we can train neural networks by ad-
justing parameters to minimize errors to either signed dis-
tance ground truth [9, 31, 45, 51, 52] or signed distances in-
ferred from 3D point clouds [1,2,11,22,38,61,77] or multi-
view images [19, 24, 66–69, 73, 74, 76]. However, factors
like the discreteness in point clouds and the lack of obser-
vations in multi-view images result in 3D ambiguity, which
makes inferring SDFs without ground truth signed distances
remain a challenge.

Recent solutions [1,23,32,61,68] impose additional con-
straints on gradients with respect to input coordinates. The
gradients determine the rate of change of signed distances in
a field, which is vital for the accuracy of SDFs. Specifically,
Eikonal term [1,23,32] is widely used to learn SDFs, which
constrains the norm of gradients to be one at any location
in the field. This regularization ensures the networks to pre-
dict valid signed distances. NeuralPull [38] constrains the
directions of gradients to pull arbitrary queries onto the sur-
face. One issue here is that these methods merely constrain
gradients at single locations, without considering gradient
consistency to their corresponding projections on different
level sets. This results in inconsistent gradients in the field,
indicated by level sets with poor parallelism, which drasti-
cally decreases the accuracy of inferred SDFs.

To resolve this issue, we introduce a level set alignment
loss to pursue better gradient consistency for SDF inference
without ground truth signed distances. Our loss is a general
term which can be used to train different networks for learn-
ing SDFs from either 3D point clouds or multi-view images.
Our key idea is to constrain gradients at corresponding lo-
cations on different level sets of the inferred SDF to be con-
sistent. We achieve this by minimizing the cosine distance
between the gradient of a query and the gradient of its pro-
jection on the zero level set. Minimize our loss is equivalent
to aligning all level sets onto a reference, i.e. the zero level
set, in a pairwise way. This enables us to propagate the
zero level set to everywhere in the field, which eliminates
uncertainty in the field that is caused by the discreteness of
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3D point clouds or the lack of observations from multi-view
images. Moreover, we introduce an adaptive weight to fo-
cus more on the gradient consistency nearer to the zero level
set. We evaluate our loss upon the latest methods in surface
reconstruction and multi-view 3D reconstruction under the
widely used benchmarks. Our improvements over baselines
justify not only our effectiveness but also the importance
of gradient consistency to the inference of signed distance
fields. Our contributions are listed below.

i) We introduce a level set alignment loss to achieve bet-
ter gradient consistency for inferring SDFs without
signed distance ground truth.

ii) We justify the importance of gradient consistency to
the accuracy of SDFs inferred from 3D point clouds
and multi-view images, and show that aligning level
sets together is an effective way of learning more con-
sistent gradients for eliminating 3D ambiguity.

iii) We show our superiority over the state-of-the-art meth-
ods in surface reconstruction from point clouds and
multi-view 3D reconstruction under the widely used
benchmarks.

2. Related Work

Neural implicit representations have shown prominent
performance in representing 3D geometry with details [14,
25, 32,38, 43,45, 46, 49,51, 52,68–70, 76]. With signed dis-
tances and occupancy labels as supervision, we can learn
neural implicit representations as a regression [52] or clas-
sification [43] problem. In the following, we focus on
reviewing methods inferring supervision from 3D point
clouds [1, 23, 32] and multi-view images [46].
Supervision from 3D Point Clouds. Some methods learn
SDFs or occupancy with 3D point clouds as conditions.
They require signed distances and occupancy labels as su-
pervision to learn global priors [8,18,21,30,35,44,51,55,64]
or local priors [8, 9, 12, 31, 34, 65, 71], which can be gener-
alized to unseen cases. With the ground truth field, these
methods get benefits including perfect scalar fields with
consistent gradients, but struggle to generalize the learned
priors to unseen cases with large geometry variations.

Some other methods infer SDFs without supervision by
training neural networks to overfit to single point cloud.
These methods require additional constraints [1, 2, 5, 22,
75, 77], specially designed operations [11, 38, 54] or nor-
mals [7, 33, 72] to estimate signed distances or occupancy
using point clouds as a reference. Using similar idea, we
can infer unsigned distances from point clouds [13, 78].
Using inferred signed distances, some methods use the in-
ferred SDFs as priors, and then guide the SDF inference
from a novel point cloud [39, 40].

Supervision from Multi-View Images. With multi-view
images as supervision, classic multi-view stereo (MVS) [59,
60] methods use multi-view consistency to estimate depth
maps. With differentiable renderers [26,32,66], we can ren-
der images from the learned SDFs, and refine the learned
SDFs by minimizing errors between the rendered images
and ground truth images. Similarly, DVR [48] and IDR [74]
infer the radiance on surfaces, where IDR models view di-
rection as a condition to reconstruct high frequency details.
However, these methods focus on surfaces, which makes
them require masks of objects during optimization. Hence,
we can not use them to reveal structures for scenes, where
no masks are available.

NeRF [46] and the following work [47, 53, 57, 58] were
proposed for novel view synthesis, and render images
from radiance field use volume rendering without requiring
masks. By simultaneously modelling geometry and color,
we can infer signed distance or occupancy fields by min-
imizing rendering errors. With samples on rays shooting
from pixels into the field, unisurf [49] and NeuS [68] use a
revised rendering procedure to render occupancy and signed
distance fields with radiance into pixel colors. Follow-
ing methods improve accuracy of implicit functions using
multi-view consistency [10, 20, 27, 68, 69, 76] or additional
priors including depth [3, 76, 80], normals [24, 67, 76].

The SDFs inferred these methods are not accurate, due
to the poor gradient consistency in signed distance fields,
indicated by level sets with poor parallelism. This is the
key factor that impacts on the accuracy of inferred SDFs
through neural rendering in a multi-view context or reason-
ing on point clouds. We improve gradient consistency by
aligning level sets on the zero level set via minimizing a
level set alignment loss. Our loss is a general term that can
be used upon different methods.

3. Method
Neural SDFs and Level Sets. We focus on inferring an
SDF f from a 3D point cloud or a set of multi-view images
which does not provide ground truth signed distances. f
predicts a signed distance s ∈ R for an arbitrary query point
q ∈ R3, as formulated by,

s = fθ(q), (1)

where we use a neural network parameterized by θ to learn
the SDF f . Level sets of fθ are denoted as {Sl}, each of
which is a set of points where fθ takes on a given constant
value l,

Sl = {q|fθ(q) = l}, (2)

where we regard zero level set S0 as the surface of the scene.
We extract the surface as a triangle mesh by running the
marching cubes algorithm [37].



Inferring SDFs. Without signed distance ground truth, cur-
rent methods infer SDFs by mining supervision from 3D
point clouds with normals [1,23,61], 3D point clouds with-
out normals [11, 38, 54], or multi-view images [19, 24, 66–
69, 73, 74, 76]. Although these methods use supervision in
different modalities, all of them minimize a general form of
loss function E to infer the SDF fθ below,

min
θ
E(T (fθ),G), (3)

where G is the supervision including 3D point clouds with
or without normals or multi-view images, T is a transfor-
mation function that transforms signed distances into a rep-
resentation in the same modality of G, and E is the met-
ric function that evaluates the error between the represen-
tation transformed from fθ and the ground truth supervi-
sion G. More specifically, NeuralPull [38] uses 3D point
clouds without normals as G, then the function T projects
a query q on G using its singed distance fθ(q) and gradi-
ent ∇fθ(q), and the loss E is mean squared error (MSE)
between query projections and ground truth G. Siren [61]
uses 3D point clouds with normals as G, the function T is
the Eikonal term regulating gradients and MSE over signed
distances of surface points, the loss E is an energy based
metric. NeuS [68] uses a set of multi-view images as G,
then uses volume rendering as the function T to render fθ
along with radiance into images, and compares the rendered
images to G using a MSE E.
Gradient Consistency. Our main contribution lies in pur-
suing better gradient consistency. We illustrate gradient
consistency in the field using one query q in Fig. 1. If gra-
dients are consistent, as shown in Fig. 1 (c), the gradient at
query q and the gradient at its projection on each level set Sl
should point to the same direction, which leads to level sets
with great parallelism, while inconsistent gradients shown
in Fig. 1 (a) result in level sets with poor parallelism. To
evaluate gradient consistency at a query q, we use cosine
distance between gradients at query and its projection on a
level set Sl,

c(q,Sl) = 1− ∇fθ(q) · ∇fθ(pl)
||∇fθ(q)||2 · ||∇fθ(pl)||2

, (4)

where pl is the projection of q on the level set Sl. c(q,Sl)
is in a range of [0, 2], where 0 indicates fθ(q) and fθ(pl)
are pointing to the same direction, which are the most con-
sistent.

One issue here is that it costs extensive computation if we
evaluate c(q,Sl) on each level set Sl. Our solution here is
to use zero level set S0 as a reference and project all queries
onto the reference to evaluate the gradient consistency. In
this pairwise way, we associate all level sets Sl to the zero
level set S0, which can propagate consistency to all level

sets through the projections on S0 since we randomly sam-
ple a large amount of queries in each iteration during opti-
mization. Hence, we pursue a better gradient consistency
by minimizing Eq. 4 over all sampled queries Q,

min
θ

∑
q∈Q

c(q,S0). (5)

Minimizing the loss in Eq. 5 is equivalent to align all
level sets to the zero level set, which we named it as level
set alignment loss, as illustrated in Fig. 1 (c).
Loss Function. We use our level set alignment loss upon
methods for inferring neural SDF without signed distance
ground truth. We formulate our loss function by combining
Eq. 3 and Eq. 5 below,

min
θ
Eq∈Q(T (fθ(q)),G) + α

∑
q∈Q

βqc(q,S0). (6)

where α is the balance weight for our level set alignment
loss, and it scales the per point weight βq which is an adap-
tive weight indicating the importance of each query q, as
defined below,

βq = exp(−δ ∗ |fθ(q)|), (7)

where we model βq according to the predicted signed dis-
tance, which aims to encourage the optimization to focus
more on the area near the surface. Another option to replace
|fθ(q)| is to use the distance between q and its nearest point
in point cloud representing a surface. However, finding the
nearest point for each query q increases computational bur-
den. Moreover, we can not use it in scenarios without point
clouds such as multi-view images.

By optimizing the objective function in Eq. 6, we can
achieve more consistent gradients in the field, as illustrated
in Fig. 2. By optimizing with our level set alignment loss,
we reformulate the loss function of NeuralPull [38] into
Eq. 6, which improves the gradient consistency in the field
learned from 3D point clouds without normals. Fig. 2 (a)
shows that we improve the parallelism of level sets, es-
pecially near the surface and inside of the dragon, where
we visualize the signed distance field on a cross section of
the reconstructed surface. This enables us to eliminate the
swollen effect on the reconstructed surface of NeuralPull,
which achieves a more compact surface with sharper edges.
Similarly, we reformulate the loss function of NeuS [68]
into Eq. 6 by adding our level set alignment loss, which
improves the gradient consistency in the field learned from
multi-view images. Fig. 2 (b) shows that the better gradi-
ent consistency leads to level sets with better parallelism,
which propagates the zero level sets to everywhere in the
field. This is a key factor to eliminate the artifacts in the
empty space.
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Figure 1. Overview of our level set alignment loss. We minimize our loss to pursue better gradient consistency in (c). The inconsistent
gradient at a query q in (a) and its projections on zero level set in (b) are constrained to be consistent.
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Figure 2. Visualization of level sets on a cross section. We pursue better gradient consistency in a field learned from 3D point clouds in
(a) and multi-view images in (b). We minimize our level set alignment loss with NeuralPull in (a) and NeuS in (b), which leads to more
accurate SDFs with better parallelism of level sets and less artifacts in empty space.

Projections on the Zero Level Set. We project a query q
onto the zero level set S0, and use the projection p0 to eval-
uate the gradient consistency defined in Eq. 4. As illustrated
in Fig. 1(b), we follow the differentiable pulling operation
in [38], and use the predicted signed distance fθ(q) and the
gradient ∇fθ(q) to project q, as formulated by,

p0 = q − |fθ(q)|
∇fθ(q)
||∇fθ(q)||2

. (8)

By replacing pl in Eq. 4 into p0, we obtain c(q,S0) in
Eq. 5 and Eq. 6 below,

c(q,S0) = 1− ∇fθ(q) · ∇fθ(p0)

||∇fθ(q)||2 · ||∇fθ(p0)||2
. (9)

4. Experiments

We conduct experiments to evaluate our method in learn-
ing neural signed distance functions for 3D reconstruction
from 3D point clouds and multi-view images. We use our
level set alignment loss upon different methods to improve
the performance by encouraging more consistent gradients
in the field. We extract the zero level set of the learned

signed distance functions using the marching cubes algo-
rithm [37] as a surface. Note that we do not evaluate our
performance with methods learning from signed distance
ground truth, since the supervision provides perfect gradi-
ent consistency in the field, which dose not highlight our
inference capability.

4.1. Surface Reconstruction from 3D Point Clouds

Datasets.We evaluate our performance under three datasets
including the one released by SIREN [61], Stanford Scan-
ning [15] and 3D Scene [79]. These datasets contains chal-
lenging cases including single objects and scenes with ar-
bitrary topology and complex geometry. We use the point
clouds in the dataset released by SIREN, which each scene
contains millions points, and we sample 2 million points for
each shape or scene in Stanford Scanning and 3D Scene.
Metrics. We evaluate the accuracy of the learned SDFs us-
ing the error between the reconstructed meshes and ground
truth. We use L1 Chamfer distance (CD) and normal con-
sistency (NC) to measure the error. We sample 100k points
on the reconstructed mesh and ground truth to calculate CD
in Stanford Scanning dataset, and sample 1 million points
to calculate CD in SIREN dataset and 3D Scene. We also
use the normals estimated on the reconstructed meshes for



the calculation of NC.
Baselines. We report our performance with the latest
methods learning SDFs from 3D point clouds including
IGR [22], SIREN [61], NeuralPull [38]. These methods in-
fer SDFs by training neural networks to overfit single 3D
point cloud, with learning priors from large scale dataset.
Specifically, IGR and SIREN adopt similar strategy to in-
fer SDFs. They use Eikonal term to constrain the length of
gradients to be one at everywhere, employ additional point
normals to constrain gradients at points on surface, and set
signed distances on surface to be zero. While NeuralPull
constrains the gradients and signed distances together via
pulling a query onto the surface without normals.
Details. To highlight our capability of inferring consistent
gradients, we do not use the ground truth normal to produce
our results with IGR and SIREN, since the ground truth nor-
mal is a direct supervision for gradients. We report our re-
sult upon the baselines using their official code. We use
the loss function of the baseline to replace the first term in
Eq. 6, which is combined with our level set alignment loss
into a loss function we use to report our results. We set the
weight α to make our loss contribute equally as the loss of
the baseline.
Comparison. We report numerical evaluations in SIREN
dataset in Tab. 1. In these point clouds with high frequency
details, SIREN performs not well without using normals as
supervision. Since ground truth normals determines the dis-
tance field near point clouds, which is the key to reconstruct
accurate surface. But, without normals, the other loss terms
in SIREN, such as the Eikonal term, can not infer accurate
signed distances. While minimizing our loss can achieve
more accurate signed distance field, which reveals surfaces
with details even without using normal supervision. We also
report the comparison with normal supervision in our sup-
plementary materials.

We report our evaluation in Stanford scanning dataset
in Tab. 2. Without using normals as supervision, SIREN
and IGR reconstruct surfaces with artifacts. With our loss,
we improve the gradient consistency in the field, especially
near the surfaces. As shown in Fig. 5, we can eliminate the
artifacts in the empty area, and obtain more completed and
smoother surface. Since NeuralPull can not infer the zero
level set very accurately, its reconstructed surfaces look a
little bit “fat”. The swollen effect is mainly caused by infer-
ence uncertainty near surfaces. Training with our loss can
make NeuralPull infer more accurate distance fields with
much less uncertainty. This leads to more compact surfaces
with more details, as shown in Fig. 5.

We visualize the level sets learned with our loss in Fig. 3
and Fig. 4. The comparisons of level sets shown in Fig. 3
indicate that better gradient consistency can achieve more
completed level sets near the surface. More visualization of
level sets can be found in Fig. 4.
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Figure 3. Visual comparisons of level sets with NeuralPull.

Figure 4. Visualization of level sets learned with our loss.We vi-
sualize the internal and external level sets, where the red surface
represents the zero level set.

Thai Room
Metric SIREN Ours(SIREN) SIREN Ours(SIREN)

CD 0.0043 0.0011 0.0189 0.0023

Table 1. Numerical comparison in SIREN dataset.

SIREN Ours(SIREN) IGR Ours(IGR) NP Ours(NP)
CD 0.0130 0.0129 0.020 0.011 0.006 0.004
NC 0.942 0.948 0.946 0.947 0.955 0.958

Table 2. Numerical comparison in Stanford scanning.

We further evaluate our method in 3D scene dataset in
Tab. 3. Our level set alignment loss significantly improves
the performance of baselines. Visual comparisons in Fig. 6
illustrate that we improve the field by removing artifacts
near the surface, reconstructing thinner and more compact
surfaces, and sharpening surface edges. Moreover, we also
report visual comparisons with methods using learned pri-
ors in our supplementary materials.

4.2. 3D Reconstruction from Multi-view Images

Dataset. We further evaluate our loss in reconstructing 3D
shapes from multi-view images in the DTU datatset [29].
Following previous methods [19, 49, 68, 69, 73, 74, 76], we



Burghers Lounge Copyroom Stonewall Totempole
CD NC CD NC CD NC CD NC CD NC

MPU [50] 0.456 0.720 0.206 0.817 0.062 0.832 0.428 0.800 0.671 0.763
ConvOcc [55] 0.077 0.865 0.042 0.857 0.045 0.848 0.066 0.866 0.016 0.925

LIG [31] 0.018 0.904 0.017 0.910 0.018 0.910 0.020 0.928 0.023 0.917
NP [38] 0.010 0.883 0.059 0.857 0.011 0.884 0.007 0.868 0.010 0.765

Ours (NP) 0.008 0.947 0.020 0.936 0.009 0.941 0.006 0.972 0.008 0.968
SIREN [61] 0.025 0.944 0.064 0.933 0.032 0.917 0.026 0.938 0.032 0.952

Ours (SIREN) 0.016 0.948 0.021 0.929 0.026 0.922 0.031 0.940 0.028 0.937

Table 3. Numerical comparison with baselines in 3D scene dataset.

NeuralPull Ours(NeuralPull) GT

IGR Ours(IGR) GT

SIREN Ours(SIREN) GT

Figure 5. Visual comparison with baselines in 3D scene dataset.

report our results on the widely used 15 scenes, each of
which shows single object with background in 49 to 64
images with different shape appearances. For larger scale
scenes, we report our results under ScanNet [17]. For fair
comparison, we follow MonoSDF [76] to conduct evalua-
tions using the same scenes.
Metrics. For evaluations under DTU dataset, we use L1
Chamfer distance to evaluate the error of points randomly
sampled on the reconstructed surfaces compared to the
ground truth. Following previous methods [19,49,68,69,73,
74,76], we clean the reconstructed meshes using the respec-
tive masks. We use the official evaluation code released by
the DTU dataset to measure our accuracy. For evaluations
under ScanNet [17], we use the same metrics as MonoSDF,
which includes Chamfer distance, F-Scores with a thresh-
old of 5cm, and normal consistency to measure the error
between the reconstructed surface and the ground truth sur-
face in ScanNet.
Baselines. We add our loss on the latest methods for learn-
ing SDFs from multi-view images. we use NeuS [68] and
MonoSDF [76] as baselines. NeuS does not use priors, and
infer an SDF using multi-view consistency through volume
rendering. MonoSDF adopts the same strategy and learns
SDFs with depth and normal priors on images.
Details. We use the official code released by NeuS and
MonoSDF to produce our results with our level set align-
ment loss. We use the loss function of the baseline to re-
place the first term in Eq. 6, which is combined with our
level set alignment loss into a loss function we use to report
our results. We set the weight α to make our loss contribute
equally as the loss of the baseline.
Comparison. We report numerical evaluations in DTU
Tab. 4. We achieve better performance in 10 out of 15
scenes, and get comparable results in the other 5 scenes.
In terms of the Chamfer distance, our improvements over
NeuS are subtle. The reason is that the advantages of bet-
ter gradient consistency lie in the ability of improving the
smoothness of surfaces and removing artifacts in empty
space. However, the smoothness does not significantly im-
prove the numerical results, and artifacts in empty space has



SIREN Ours(SIREN) GTOurs(NeuralPull)NeuralPull

Figure 6. Visual comparison with baselines in 3D scene dataset.

been cleaned using respective masks following the evalua-
tion protocol. Hence, we highlight our improvements in vi-
sual comparison in Fig. 7, where we show the reconstructed
surfaces before the cleaning. More analysis and compar-
isons with NeuS can be found in supplementary materials.

As we can see, unisurf and NeuS learn neural implicit
fields with lots of uncertainty, which is caused by the lack
of multi-view consistency constraints or the ambiguity with
the textureless background. This uncertainty results in ar-
tifacts especially in empty space. By minimizing our level
set alignment loss, we can propagate the zero level set to all
other level sets everywhere in the field through consistent
gradients, which eliminates the uncertainty that can not get
inferred from multi-view images. Hence, our results pro-
duce much less artifacts even in the area that few images
can cover. We also show our rendered images as reference.

We further evaluate our method in ScanNet. We report
average performance over each scene in Tab. 5. The numer-
ical comparison show that we achieve the best performance
among the state-of-the-art methods. Visual comparisons in
Fig. 8 show that better gradient consistency reveals more
geometry details.

4.3. Ablation Studies

We conduct ablation studies to justify the effectiveness
of modules in our method. We use NeuralPull as a baseline
and train it using our loss as one term in the loss function.
We report our ablation studies under 3D scene dataset.
Weights. We explore the effect of our loss by adjusting the
weight α in Eq. 6. We report our results with different can-
didates {0, 0.001, 0.01, 0.1, 1.0}. The comparison in Tab. 6
shows that our level set alignment loss can improve the ac-
curacy of inferred SDFs, it may affect the optimization to
converge if we weight it too much.
Adaptive per Point Weights. We show the effect of the
adaptive weight βq for each query in Tab. 7. We report the
result without the weight βq , and the result with βq that is
obtained using the nearest distance to the point cloud rather
than the predicted signed distance. The result of “0” in-

GT ImagesOurs(Neus)NeuS Rendered ImagesUNISURF

Figure 7. Visual comparison with baselines in DTU dataset.

MonoSDF Ours(MonoSDF) GT

Figure 8. Visual comparison with baselines in ScanNet.

dicates that weighting queries nearer to the surface more
is important for the level set alignment, since all level sets
are aligned to the zero level set. The result of “Euclidean”
indicates that using inferred SDF achieves comparable re-



Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
COLMAP [60] 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36

NeRF [46] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
UNISURF [49] 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62 1.02

VolSDF [73] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS [68] 1.37 1.21 0.73 0.40 1.20 0.70 0.72 1.01 1.16 0.82 0.66 1.69 0.39 0.49 0.51 0.87

Ours(NeuS) 0.88 0.90 0.80 0.41 1.13 0.63 0.58 1.37 1.157 0.83 0.51 1.26 0.33 0.48 0.52 0.78

Table 4. Numerical comparison with baselines in DTU dataset. The bars above numbers indicate the best.

COLMAP [60] UNISURF [49] NeuS [68] VolSDF [73] Manhattan-SDF [24] MonoSDF [76] Ours(MonoSDF)
CD 0.141 0.359 0.194 0.267 0.070 0.042 0.041

F-score 0.537 0.267 0.291 0.364 0.602 0.733 0.750

Table 5. Numerical comparison with the state-of-the-art in ScanNet. We show normals as the color map on the surface.

Weight α 0 0.001 0.01 0.1 1.0
CD×100 0.586 0.550 0.394 0.433 0.601

NC 0.955 0.955 0.958 0.957 0.940
Table 6. Effect of weight α.

Adaptive Weight βq 0 1 10 100 Euclidean
CD×100 0.455 0.439 0.394 0.489 0.391

NC 0.955 0.957 0.958 0.956 0.958

Table 7. Effect of adaptive weight βq .

Loss Fixed MSE-Nor MSE Cosine DiGS DiGS+Cosine
CD×100 1.384 0.486 0.494 0.394 0.601 0.412

NC 0.941 0.953 0.951 0.958 0.938 0.951

Table 8. Ablation studies on the loss function.

sults (the results of “10”) with using its nearest distance to
the point cloud, but finding the nearest point for each query
may increase the computational burden in large scale point
clouds. We also compare the decay parameters δ to obtain
βq in Eq. 7, and δ = 10 performs the best.
Consistency with Surface Points. We further justify how
we compute gradient consistency. We report results with
maximizing consistency between gradients at queries and
gradients at their nearest points on the surface, rather than
their projections on the zero level set. Compared to the pro-
jections on the zero level set which is optimized in different
iterations, the nearest point on surface is fixed. In Tab. 8, the
results of “Fixed” degenerate from the results of “Cosine”.
The reason is that, during the early stage of optimization,
the surface may not be the zero level set of the learned SDF,
which brings lots of ambiguity and conflict if we use the
nearest point as a reference. Hence, using projections on
the zero level set in current iteration produces better results.
Cosine Distance. We show the advantages of cosine dis-
tance in Eq. 4. We replace cosine distance using a mean
squared error with normalized gradients or with gradients
without normalization. The results of “MSE-Norm” and
“MSE” in Tab. 8 show that cosine distance performs bet-
ter than MSE in SDF inference.
Constraint on Second Order Derivatives. We compare

DiGS(NeuralPull) Ours(NeuralPull) GT

Figure 9. Visual comparison with the constraint on second order
derivatives in DiGS.

our loss with the constraints on second order derivatives
in [4] which aims to smooth the change of gradients. Al-
though our loss also involves second order derivatives dur-
ing gradient descent, we do not explicitly add constraints on
the second order derivatives, which may result in unstable
optimization. The comparison with the results of “DiGS”
and the results of “DiGS+Cosine” indicate that our loss can
reveal more accurate SDFs than the constraint on second
order derivatives. The visual comparison with [4] in Fig. 9
shows that the constraint on second order derivatives can
not achieve more compact and sharper surfaces as ours.

5. Conclusion
We improve the learning of SDFs without signed dis-

tance supervision by pursuing better gradient consistency.
Our analysis shows that consistent gradients in the field are
the key factor affecting the accuracy of inferred SDFs. To
evaluate the gradient consistency, we introduce a level set
alignment loss. By minimizing our loss, we successfully
align all level sets onto the zero level set, which propagates
the zero level set to eliminate 3D ambiguity through better
gradient consistency. Our loss can be applied upon different
methods a general term in loss function to improve the gra-
dient consistency in the SDFs inferred from 3D point clouds
or multi-view images. The visual and numerical compar-
isons with the state-of-the-art methods justify our effective-



ness and show our superiority over the latest methods in
SDF inference.
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