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Abstract

Feature matching is a challenging computer vision task
that involves finding correspondences between two images
of a 3D scene. In this paper we consider the dense approach
instead of the more common sparse paradigm, thus striv-
ing to find all correspondences. Perhaps counter-intuitively,
dense methods have previously shown inferior performance
to their sparse and semi-sparse counterparts for estimation
of two-view geometry. This changes with our novel dense
method, which outperforms both dense and sparse methods
on geometry estimation. The novelty is threefold: First, we
propose a kernel regression global matcher. Secondly, we
propose warp refinement through stacked feature maps and
depthwise convolution kernels. Thirdly, we propose learn-
ing dense confidence through consistent depth and a bal-
anced sampling approach for dense confidence maps.

Through extensive experiments we confirm that our pro-
posed dense method, Dense Kernelized Feature Matching,
sets a new state-of-the-art on multiple geometry estimation
benchmarks. In particular, we achieve an improvement on
MegaDepth-1500 of +4.9 and +8.9 AUC@5◦ compared to
the best previous sparse method and dense method respec-
tively. Our code is provided at the following repository:
https://github.com/Parskatt/dkm.

1. Introduction

Two-view geometry estimation is a classical computer
vision problem with numerous important applications, in-
cluding 3D reconstruction [37], SLAM [29], and visual re-
localisation [26]. The task can roughly be divided into two
steps. First, a set of matching pixel pairs between the im-
ages is produced. Then, using the matched pairs, two-view
geometry, e.g., relative pose, is estimated. In this paper, we
focus on the first step, i.e., feature matching. This task is
challenging, as image pairs may exhibit extreme variations
in viewpoint [21], illumination [1], time of day [36], and
even season [45]. This stands in contrast to small baseline
stereo and optical flow tasks, where the changes in view-

Previous SotA [47]
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Figure 1. Comparison between our proposed approach DKM and
the previous SOTA method PDC-Net+ [47] on Milan Cathedral.
Top row, image A and B. Middle row and bottom row, forward
and reverse warps for PDC-Net+ and DKM weighted by certainty.
DKM provides both superior match accuracy and certainty estima-
tion compared to previous methods.

point and illumination are typically small.
Traditionally, feature matching has been performed by

sparse keypoint and descriptor extraction, followed by
matching [25,35]. The main issue with this approach is that
accurate localization of reliable and repeatable keypoints
is difficult in challenging scenes. This leads to errors in
matching and estimation [12,22]. To tackle this issue, semi-
sparse or detector-free methods such as LoFTR [40] and
Patch2Pix [52] were introduced. These methods do not de-
tect keypoints directly but rather perform global matching at
a coarse level, followed by mutual nearest neighbour extrac-
tion and sparse match refinement. While those methods de-
grade less in low-texture scenes, they are still limited by the
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fact that the sparse matches are produced at a coarse scale,
leading to problems with, e.g., repeatability due to grid ar-
tifacts [16]. By instead extracting all matches between the
views, i.e., dense feature matching, we face no such issues.
Furthermore, dense warps provide affine matches for free,
which yield smaller minimal problems for subsequent esti-
mation [3, 4, 14]. While previous dense approaches [38, 46]
have achieved good results, they have however failed to
achieve performance rivaling that of sparse or semi-sparse
methods on geometry estimation.

In this work, we propose a novel dense matching method
that outperforms both dense and sparse methods in homog-
raphy and two-view relative pose estimation. We achieve
this by proposing a substantially improved model architec-
ture, including both the global matching and warp refine-
ment stage, and by a simple but strong approach to dense
certainty estimation and a balanced dense warp sampling
mechanism. We compare qualitatively our method with the
previous best dense method in Figure 1.

Our contributions are as follows. Global Matcher: We
propose a kernelized global matcher and embedding de-
coder. This results in robust coarse matches. We describe
our approach in Section 3.2 and ablate the performance
gains in Table 4. Warp Refiners: We propose warp re-
finement through large depthwise separable kernels using
stacked feature maps as well as local correlation as input.
This gives our method superior precision and is described
in detail in Section 3.3 with corresponding performance im-
pact ablated in Table 5. Certainty and Sampling: We
propose a simple method to predict dense certainty from
consistent depth and propose a balanced sampling approach
for dense matches. We describe our certainty and sampling
approach in more detail in Section 3.4 and ablate the per-
formance gains in Table 6. State-of-the-Art: Our exten-
sive experiments in Section 4 show that our method sig-
nificantly improves on the state-of-the-art. In particular,
we improve estimation results compared to the best previ-
ous dense method by +8.9 AUC@5◦ on MegaDepth-1500.
These results pave the way for dense matching based 3D
reconstruction.

2. Related Work
Global Matching Traditionally, global matching has been
performed by computing pair-wise descriptor distances for
detected keypoints in the two images, with match extrac-
tion performed by mutual nearest neighbours in the distance
matrix, see e.g. [9, 10, 25]. Instead of directly computing
pair-wise distances, one can first condition the descriptors
based on the complete set of detections. Sarlin et al. [35]
proposed a graph neural network approach to condition the
descriptors, and optimal transport instead of mutual near-
est neighbours for match extraction. Detector-free methods
instead perform global matching uniformly over the image

grid at a coarse scale [32, 33, 44, 52]. This has the benefit
of avoiding the detection problem [40]. These methods typ-
ically extract matches by (soft-)mutual-nearest neighbours,
or optimal transport [32, 40]. In contrast to detector-free
methods, dense methods must produce a dense warp. This
warp is typically predicted by regression based on the global
4D-correlation volume [28,46,48]. In this work we propose
a Gaussian Process (GP) formulation of the matching prob-
lem, as detailed in Section 3.2.
Match Refinement For detector-free methods, match
refinement is typically performed by extracting patches
around the sparse matches. Zhou et al. [52] propose
to refine matches by CNN regression. Sun et al. [40]
use transformers, with additional improvements by later
work [6, 43, 49]. Dense methods in contrast refine matches
by dense warp refinement. Troung et al. [46, 48] proposed
a local-correlation based warp refinement network. In this
work, we propose to use stacked feature maps combined
with large depth-wise convolution kernels. Our approach to
refinement is described in Section 3.3.
Match Certainty and Sampling Although the dense
paradigm provides subpixel-level feature matching capabil-
ities, it also comes with inaccurate correspondences in un-
matchable regions, resulting in a need for certainty estima-
tion. Wiles et al. [50] proposed an MLP-based regressor
to infer the matchability potential of dense feature descrip-
tors. A matchability branch was employed in DGC-Net [28]
aiming at predicting the presence or the absence of a pixel
correspondence between the images in the form of a binary
mask. Recently, in PDC-Net [48] and its extension PDC-
Net+ [47], the warp estimation was formulated in a prob-
abilistic manner, thus pairing the proposed feature corre-
spondences along with certainty estimates by means of mix-
ture models. We found, however, that their estimated cer-
tainty is often confident for unmatchable pairs (Figure 6). In
this work, we propose to model certainty as the likelihood
of a pixel having a consistent pairwise match in terms of
3D reconstruction, which provides potent certainty maps as
illustrated in Figure 1. However, in downstream tasks, e.g.,
relative pose, the reliability of the extracted correspondence
is not the sole factor influencing the performance. For un-
calibrated estimation, planar warps are a well known degen-
erate case [7], and even in the calibrated case the five-point
problem is often ill-conditioned [5, 11]. Hence, well dis-
tributed matches are important for estimation [2, 17]. Moti-
vated by this, we propose a balanced sampling mechanism
that provides the estimator with diverse matches. We de-
scribe the certainty estimation and balanced sampling in
more detail in Section 3.4.

3. Method
In the following sections we describe our approach to

geometry estimation by dense matching. For an overview,
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Figure 2. An overview of geometry estimation by dense matching. I: In the first stage, a multistride feature pyramid is extracted. We
follow previous approaches and use ResNet encoders with shared weights. II: In the second stage coarse global matches are established.
We improve this stage by viewing it as a embedded probabilistic regression problem combined with a strong embedding decoder. We
describe our approach in more detail in Section 3.2. III: The coarse warp is then refined. We propose a stacked feature map approach
combined with large depthwise kernels, which increases performance. This is detailed in Section 3.3. IV: Finally, for geometry estimation
a robust certainty estimate is crucial for selecting a set of reliable matches. We find that letting the network learn to classify consistent
depth yields a trustworthy certainty estimate. Further combining this with balanced sampling yields even better results. We discuss this in
Section 3.4. V: Once a set of matches have been selected, we use standard robust solvers for estimation as previous methods.

see Figure 2. We first provide a general overview of the
dense matching framework (Section 3.1). We then describe
our approach for improving the global matcher Gθ (Sec-
tion 3.2), the warp refiners Rθ (Section 3.3), and certainty
estimation along with match sampling (Section 3.4). Lastly,
we discuss our loss formulation (Section 3.5).

3.1. Preliminaries

In this paper we consider the task of estimating 3D scene
geometry from two images (IA, IB). For matching we
choose the dense feature matching paradigm, i.e., to esti-
mate a dense warp WA→B and a dense certainty pA→B,
that is zero for unmatchable pixels. From this complete set
of certain and uncertain matches, a subset of matches are
sampled (without replacement). Finally, a robust estima-
tion method is used to infer the geometry from the sampled
matches. The task can be divided into five stages.

In stage I, a feature pyramid is extracted for A and B,

{ϕAl }Ll=1 = Fθ(I
A) , {ϕBl }Ll=1 = Fθ(I

B) , (1)

where Fθ is an encoder (we use a ResNet50 [15] pretrained
on ImageNet-1K [34]), and l ∈ {1, . . . , L} are the indices
for the multiscale features (in our approach l = 1 corre-
sponds to the rgb values of stride 1, and l = L corre-
sponds to deep features of stride 2L−1 = 32). We denote
the coarse features as (ϕAcoarse, ϕ

B
coarse) and fine features as

(ϕAfine, ϕ
B
fine). In this work the coarse features correspond to

stride {32, 16} and the fine features to {8, 4, 2, 1}.
In stage II, we estimate a coarse global warp and cer-

tainty from the deep features with a global matcher Gθ.

Here potential global matches are embedded by the embed-
der Eθ. We propose to construct the embeddings as solu-
tions to a probabilistic regression problem using a Gaussian
Process (GP) formulation. After the embeddings have been
computed, an embedding decoder Dθ decodes the embed-
dings into a dense warp and certainty, i.e.,{(

Ŵ
A→B
coarse , p̂

A→B
coarse

)
= Gθ(ϕ

A
coarse, ϕ

B
coarse),

Gθ(ϕ
A
coarse, ϕ

B
coarse) = Dθ

(
Eθ(ϕ

A
coarse, ϕ

B
coarse)

)
.

(2)

We describe our approach to global matching in detail in
Section 3.2.

In stage III, we refine the coarse warp of Gθ, i.e.,

(
Ŵ
A→B

, p̂A→B
)

= Rθ
(
ϕAfine, ϕ

B
fine, Ŵ

A→B
coarse , p̂

A→B
coarse

)
, (3)

where Ŵ is the predicted warp, p̂ is the predicted certainty,
and Rθ is a set of refiners. This is typically done by local
correlation volume refinement. In this work we additionally
stack the warped feature maps of B, and use large depthwise
convolution kernels. We describe our approach in detail in
Section 3.3.

In stage IV, reliable and accurate matches need to be se-
lected for estimation of scene geometry. For sparse methods
this is done at the coarse level by mutual nearest neighbour
matching and certainty thresholding. For dense matching,
we are free to choose any method, which is an advantage.
In this work we do this by sampling the estimated warp and
propose a balanced sampling approach. We describe this in
Section 3.4.
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Figure 3. Illustration of the proposed global matcher. The GP, given features and coordinate embeddings, produces a predicive posterior
for the warp. The embedding decoder then finds the most likely warp and certainty over the grid in image A. This is done both at stride 32
and 16. For more details, see Section 3.2.

Finally, in stage V, a robust estimator is used to estimate
geometry. We use RANSAC with minimal solvers like pre-
vious work.

3.2. Constructing the Global Matcher Gθ
For an overview of the proposed global matcher, see Fig-

ure 3.
Global Matching as Regression In this work we construct
the global match embeddings as the solution to a (embed-
ded) coordinate regression problem. We phrase this prob-
lem as finding a mapping ϕ→ χ where χ are (embeddings
of) spatial coordinates in image B. We can choose any suit-
able regression framework to infer the mapping for the pix-
els in A. In this work we consider GP regression.

In GP regression, the output (embedded coordinates)
χ ∈ RH·W×C is regarded as a collection of random vari-
ables, with the main assumption being that these are jointly
Gaussian. A GP is uniquely1 defined by its kernel that de-
fines the covariance between outputs, and hence must be a
positive-definite function to be admissible. We choose the
common assumption [53] that the coordinate embedding di-
mensions are uncorrelated, which makes the kernel block
diagonal. We choose the exponential cosine similarity ker-
nel [23], which is defined by

k(ϕ,ϕ′) = exp(−τ) exp

(
τ

〈ϕ,ϕ′〉√
〈ϕ,ϕ〉〈ϕ′, ϕ′〉+ ε

)
, (4)

since we empirically found it to work well. We found the
squared exponential kernel to perform similarly in early ex-
periments, and other kernels could also be considered. We
initialize τ = 5 and keep it fixed and set ε = 10−6. We
found that letting the kernel temperature τ be learnable had
negligible effect on the performance, and that our method
was robust to initializations for τ ∈ [3, 10].

With the standard assumption [31] that the measure-
ments (ϕBcoarse, χ

B
coarse) are observed with i.i.d. noise, the an-

alytic formulae for the posterior conditioned on the features

1With the common assumption that the mean function is 0.

of B are given by{
µ(ϕAcoarse|ϕBcoarse) = KAB(KBB + σ2

nI)−1χBcoarse,

Σ(ϕAcoarse|ϕBcoarse) = KAA −KAB(KBB + σ2
nI)−1KBA,

(5)
where K denotes the kernel matrix, µ is the posterior mean
function, σn = 0.1 is the standard deviation of the measure-
ment noise, and Σ is the posterior covariance. We refer to
Rasmussen [31] for details on GP regression.
Coordinate Embeddings One issue with coordinate re-
gression is how to deal with multimodality. GP posteriors
are unimodal in the output space, and hence multimodal
matches can degrade performance.

To deal with this issue we use a cosine embedding

BF (x;W, b) = cos(Wx+ b), (6)

where x ∈ R2 is the image coordinate, Wij ∼ N (0, `2),
bi ∼ U[0,2π], i ∈ {1, . . . , C}, j ∈ {1, 2}. These types of
embeddings are well known to preserve multimodality [39],
and possess multiple other nice properties [30, 42].
Embedding Decoder While the embedded regression
yields a powerful probabilistic representation of the warp,
most dense methods require a unimodal warp estimate for
the subsequent refinement steps. There are multiple ways
of decoding coordinates from the posterior. We use a sim-
ple method of reshaping the predictive mean back into grid
form µgrid(ϕAcoarse|ϕBcoarse) ∈ RHcoarse×Wcoarse×C and let

Gθ(ϕ
A
coarse, ϕ

B
coarse) = Dθ(µgrid(ϕAcoarse|ϕBcoarse), ϕ

A
coarse),

(7)
where Dθ is an embedding decoder. The decoder predicts
coordinates in the canonical grid [−1, 1] × [−1, 1], and ad-
ditionally logits for the predicted validity of the matches,
for each pixel. The architecture of the embedding decoder
is inspired by the decoder proposed by Yu et al. [51]. We
use global matchers on both stride 32 and 16 features of
the backbone, and the stride 16 embedding decoder takes in
context feature maps from the stride 32 decoder.
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Figure 4. Illustration of the proposed Warp Refiners. Warp Refiners take in fine features, and the upsampled coarse warps and certainty
estimates. The coarse warp is used both to warp the B features directly to the A feature grid, as well as being used to construct a
local correlation volume around the warp target in the image B. Furthermore the warp itself is converted to a displacement, and linearly
embedded. These features combined are concatenated and fed into the refiner blocks. For more details, see Section 3.3.

Robust 
uncertainty.
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warps.
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Figure 5. Dense methods often struggle with large viewpoint
changes. Our proposed global matcher + refiner architecture is
able to produce accurate warps and certainty even for extreme per-
spective. Top row, image A and B. Bottom row, forward and
reverse warp weighted by certainty.

3.3. Refining the Warp with Rθ

Once the embeddings have been decoded, we refine the
warp using CNN refiners similarly to previous work [38,
46]. They take as input the feature maps and the previous
warp and certainty. The warp and certainty are bilinearly
upsampled to match the scale of the feature maps. These
predict a residual offset for the estimated warp, and a logit
offset for the certainty. The process is repeated until we
reach full resolution. The process is described recursively
by(
ŴA→Bl , p̂A→Bl

)
= Rθ,l(ϕ

A
l , ϕ

B
l , Ŵ

A→B
l+1 , p̂A→Bl+1 ). (8)

Compared to previous work, we make improvements to
both the input representations and the architecture of the
refiners. Previous work [47, 48] uses the warp, the feature

maps of A, and local correlation in A with warped feature
maps from B. In contrast, we use all channels of the warped
feature maps of B by simple concatenation, as well as lo-
cal correlation in B instead of A. We investigate the effect
of this change of representation in Table 5 and find that it
yields improvements in warp accuracy.

Finally, we improve the architecture of the refiner blocks
themselves. Previous work [46, 48] uses a DenseNet [18]
architecture with 3x3 non-separable kernels. We instead
propose to use bigger 5x5 depthwise separable kernels, fol-
lowed by a 1x1 convolution. As we show in Table 5, this im-
provement leads to large gains in performance. Empirically
we found 8 refiner blocks per scale to give the best perfor-
mance. The architecture is detailed in Figure 4. We qual-
itatively show the high robustness and accuracy of DKM
warps in Figure 5.

3.4. Certainty Estimation and Sampling for Geom-
etry Estimation

Certainty Estimation by Classifying Depth-consistent
Matches We leverage the rich 3D models and densified
depth maps in the large scale MegaDepth [21] dataset. We
find consistent matches first by warping A → B using the
ground truth depth, and then applying a relative depth con-
sistency constraint in image B. This equates to

pA→B =

∣∣∣∣zA→B − zBzB

∣∣∣∣ < α (9)

where z is the depth, zA→B depth projected using the
ground truth 3D model, and α = 0.05. This approach
has similarities to the approach in LoFTR [40], but they in-
stead indirectly apply the constraint by finding mutual near-
est neighbours. We demonstrate the importance of a good
certainty estimate in Table 6, and show a qualitative com-
parison of our certainty estimate compared to the previous
best perfoming dense work PDC-Net+ [47] in Figure 6.
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Previous SotA [47]

DKM

Overconfident

Uncertainty
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Figure 6. Qualitative Comparison of our certainty estimate com-
pared to PDC-Net+. Top row, image A, image B. Middle row,
results for PDC-Net+. Bottom row, results for DKM. DKM places
high certainty on repeatable matches, while PDC-Net+ is often
overconfident in untextured regions, even predicting high certainty
for non-matchable pixel-pairs.

Sampling Balanced Matches For estimation, match sam-
pling is required. A simple approach is to sample using the
estimated warp certainty as weight. This approach is writ-
ten as,

{xAi , xBi }Ni=1 ∼ p̂A→B. (10)

Like previous semi-sparse [6, 40] and dense works [47]
we threshold the estimated certainty. We use a threshold of
0.05, and sample matches from the thresholded distribution.

While certainty weighted sampling produces good
matches, having diverse matches typically improves esti-
mation [5, 7, 11, 17]. To achieve this, we propose a simple
method for producing scene balanced matches. First, we
sample a large set of matches using the estimated certainty.
Secondly, we compute a kernel density estimate (KDE) in
the 4-dimensional match space. Thirdly, we weight each
match with the reciprocal of the KDE to produce a bal-
anced set of samples. This procedure produces a balanced
distribution in the scene. We investigate the impact of the
balanced sampling in Table 6, and find that it improves per-
formance.

3.5. Loss Formulation

Like previous work [35, 38, 48] we use separate losses
for each stride l ∈ {1, ..., L}, and use a combination of re-
gression and certainty [28,41,52] losses to train our model.
The combined loss is

L =

L∑
l=1

Lwarp(ŴA→Bl ) + λLconf(p̂
A→B
l ), (11)

where λ = 0.01 is a balancing term, similarly to [28, 41].

Specifically, for the warp loss we use the `2 distance be-
tween the predicted and ground truth warp, as in [40]. For
the certainty loss we use the unweighted binary cross en-
tropy between the predicted certainty and the ground truth
consistent depth mask. Our losses at a given stride l are

Lwarp(ŴA→Bl ) =
∑
grid

pl �
∥∥WA→Bl − ŴA→Bl

∥∥
2
, (12)

Lconf(p̂l) =
∑
grid

pl log p̂l + (1− pl) log (1− p̂l),

(13)

where the summation is done over the image grid inA. Like
Zhou et al. [52] we set p in the fine stride loss to 0 whenever
the coarse stride warp is outside a threshold distance from
the ground truth. We further found it beneficial to detach
the gradients between scales.

4. State-of-the-Art Comparison
Similarly to previous approaches [6, 35, 40, 43], we train

and evaluate our approach separately on outdoor and in-
door geometry estimation. For evaluation we present the
average of 5 benchmark runs. For DKM we sample a max-
imum of 5000 matches.

4.1. Training Details

We use a batch size of 32 with a learning rate of 4 · 10−4

for the decoder and refiners, and 2 · 10−5 for the backbone.
We use the AdamW [24] optimizer with a weight-decay
factor of 10−2. We train for 250 000 steps, decaying the
learning rate by a factor 0.2 at step 166 666 and 225 000.
Training takes roughly 5 days on 4 A100fat GPUs, which is
comparable to LoFTR that converges in 1 day on 64 1080ti
GPUs.
Outdoor Training We train on the real world dataset
MegaDepth [21], using the same training and test split as
in previous work [6, 40]. We resize the images to a fixed
resolution of 540× 720.
Indoor Training For indoor two-view pose estimation we
additionally train on the ScanNet [8] dataset in a similar
fashion as previous work [35, 40] and use a resolution of
480× 640.

4.2. Outdoor Geometry Estimation

HPatches Homography HPatches [1] depicts planar
scenes divided in sequences, with transformations restricted
to homographies. We follow the evaluation protocol pro-
posed LoFTR [40], resizing the shorter side of the images to
480. Table 1 clearly shows the superiority of DKM, show-
ing gains of +3.6 AUC@3px compared to the best previous
method.
MegaDepth-1500 Pose Estimation We use the
MegaDepth-1500 test set [40] which consists of 1500

6



Table 1. Homography estimation on HPatches, measured in AUC
(higher is better). The top portion contains sparse methods, while
the bottom portion contains dense methods

Method ↓ AUC→ @3px @5px @10px

SuperGlue [35] CVPR’19 53.9 68.3 81.7
LoFTR [40] CVPR’21 65.9 75.6 84.6
TopicFM [13] Arxiv’22 67.3 77.0 85.7
3DG-STFM [27] ECCV’22 64.7 73.1 81.0
ASpanFormer [6] ECCV’22 67.4 76.9 85.6

PDC-Net+ [47] Arxiv’21 67.7 77.6 86.3
DKM 71.3 80.6 88.5

Table 2. Pose estimation results on the Megadepth-1500 bench-
mark, measured in AUC (higher is better). The top portion con-
tains sparse methods, while the bottom portion contains dense
methods.

Method ↓ AUC→ @5◦ @10◦ @20◦

SuperGlue [35] CVPR’19 42.2 61.2 76.0
LoFTR [40] CVPR’21 52.8 69.2 81.2
QuadTree [43] ICLR’22 54.6 70.5 82.2
MatchFormer [49] ACCV’22 52.9 69.7 82.0
TopicFM [13] Arxiv’22 54.1 70.1 81.6
3DG-STFM [27] ECCV’22 52.6 68.5 80.0
ASpanFormer [6] ECCV’22 55.3 71.5 83.1

PDC-Net+ [47] Arxiv’21 51.5 67.2 78.5
DenseGAP [20] ICPR’22 41.2 56.9 70.2
ECO-TR [41] ECCV’22 48.3 65.8 78.5
DKM 60.4 74.9 85.1

pairs from scene 0015 (St. Peter’s Basilica) and 0022
(Brandenburger Tor). We follow the protocol in [6, 40]
and use a RANSAC threshold of 0.5 with intrinsics equiv-
alent to a longer side of 1200. Our results, presented in
Table 2, show that our method sets a new state-of-the-art.
Notably, we outperform the current best sparse method
ASpanFormer [49] with an improvement of +4.9 AUC@5◦.
Furthermore, we significantly outperform the best pre-
vious dense method PDC-Net+ [47] with an impressive
improvement of +8.9 AUC@5◦.

Additional Benchmarks We create a novel benchmark
based on 8 diverse MegaDepth scenes, where we show ma-
jor improvements. We further do additional comparisons to
COTR [19] and ECO-TR [41] on the St. Paul’s Cathedral
scene, with DKM showing large improvements. The details
of both these experiments can be found in supplementary
material A.1 and A.2 respectively.

4.3. Indoor Geometry Estimation

ScanNet-1500 Pose Estimation ScanNet [8] is a large
scale indoor dataset, composed of challenging sequences
with low texture regions and large changes in perspective.
We follow the evaluation in SuperGlue [35]. Results are
presented in Table 3. Our model achieves a +4.0 AUC@5◦

gain compared to the previous best sparse method. Com-
pared to the previous best dense method our performance
gains are even larger, with gains of +9.3.

Table 3. Pose estimation results on the ScanNet-1500 benchmark,
measured in AUC (higher is better). The upper portion contains
sparse and semi-sparse methods, while the lower portion contains
dense methods.

Method ↓ AUC→ @5◦ @10◦ @20◦

SuperGlue [35] CVPR’19 16.2 33.8 51.8
LoFTR [40] CVPR’21 22.1 40.8 57.6
QuadTree [43] ICLR’22 24.9 44.7 61.8
MatchFormer [49] ACCV’22 24.3 43.9 61.4
3DG-STFM [27] ECCV’22 23.6 43.6 61.2
ASpanFormer [6] ECCV’22 25.6 46.0 63.3

PDC-Net [48] CVPR’21 18.7 37.0 54.0
PDC-Net+ [47] Arxiv’21 20.3 39.4 57.1
DenseGAP [20] ICPR’22 16.9 34.9 53.2
DKM 29.4 50.7 68.3

5. Ablation Study
Next, we investigate design choices of our approach.

Global Matcher Here we investigate the performance im-
pact of replacing a strong baseline correlation volume re-
gressor, similar to the one used in [48] with our proposed
kernelized regression and embedding decoder approach.
The results are shown in Table 4. We see that our proposed
method yields an improvement of +1.1 AUC@5◦, highlight-
ing the benefits of our proposed global matcher. As ex-
pected, the linear regression approach instead of cosine em-
bedded coordinates does not perform as well.

Table 4. Impact of our proposed Global Matcher (GM), using ei-
ther linear or cosine coordinate embeddings, compared to a strong
baseline. Measured in AUC (higher is better).

GM ↓ AUC→ @5◦ @10◦ @20◦

Baseline 57.0 72.1 82.9
Proposed Linear 57.9 72.9 83.7
Proposed Cosine 58.1 73.2 83.8

Warp Refiners Here we ablate both the architecture, and
the effect of the features used. For the architecture we ex-
change the depthwise convolution blocks for refiners used
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Table 5. Impact of our proposed depthwise (DW) warp refin-
ers, and stacked feature map (FM) approach compared to a strong
baseline. Measured in AUC (higher is better).

Warp Refiner ↓ AUC→ @5◦ @10◦ @20◦

Baseline Refiners 54.9 70.0 81.6
Baseline Inputs 56.5 71.8 82.7
DW Refiners, Stacked FM 58.1 73.2 83.8

Table 6. Impact of balanced match sampling for two-view pose
estimation, measured in AUC (higher is better).

Sampling ↓ AUC→ @5◦ @10◦ @20◦

No Certainty Sampling 42.9 58.1 70.4
Certainty Sampling 56.1 71.7 83.0
Balanced Sampling 58.1 73.2 83.8

Table 7. Impact of changing training resolution for two-view pose
estimation, measured in AUC (higher is better).

Resolution ↓ AUC→ @5◦ @10◦ @20◦

384×512 58.1 73.2 83.8
480×640 58.9 73.9 84.4
540×720 59.4 74.0 84.5

in previous dense matching work [48]. The results of
this ablation are shown in Table 5. Our depthwise refin-
ers significantly outperform the baseline, with a gain of
+4.8 AUC@5. Furthermore, we find that our input repre-
sentation yields an improvement of +1.5 AUC@5.
Match Sampling Here we investigate the impact of the
match sampling strategy. First, we compare to a base-
line using no certainty estimate. We then ablate the ef-
fect of balancing the match sampling using the reciprocal
of the KDE estimate. We present results in Table 6, which
clearly shows the need for certainty. We also find that the
proposed balanced sampling approach helps in the estima-
tion stage, increasing performance with an improvement of
+2.0 AUC@5.
Resolution Tinchev et al. [44] recently noted the impor-
tance of increasing input resolution for estimation perfor-
mance. To gauge the effect of resolution on estimation per-
formance in the dense paradigm we trained DKM on a set of
different resolutions. We present the results of our study in
Table 7. We find that setting the resolution sufficiently high
is important for accurate estimation. In particular, compar-
ing 384 × 512 to 540 × 720 we find an increase in perfor-
mance of +1.3 AUC@5◦.
Bidirectionality Previous dense work [41, 47] has inves-
tigated incorporating mutual nearest neighbours in dense
matching. Here we propose to instead simply concatenate

Table 8. Impact of bidirectional DKM for two-view pose estima-
tion, measured in AUC (higher is better).

Warp ↓ AUC→ @5◦ @10◦ @20◦

Unidirectional 59.4 74.0 84.5
Bidirectional 60.4 74.9 85.1

Overly uncertain warp

Inaccurate warp 
near depth discontinuities

A B

Figure 7. Representative failure case for DKM. Our unimodal
warp refinement can struggle near depth-discontinuities, and the
proposed certainty estimate is occationally overly uncertain.

the reverse warp matches. Results are presented in Table 8.
We find an improvement of +1.0 AUC@5◦.

6. Conclusion
We have presented DKM, a novel dense feature match-

ing approach that achieves state-of-the-art two-view geom-
etry estimation results. Three distinct contributions were
proposed. We proposed a strong global matcher with a ker-
nelized regressor and embedding decoder. Furthermore, we
proposed warp refinement through large depth-wise kernels
on stacked feature maps. Finally, we proposed a simple
way of learning dense confidence maps by directly classi-
fying consistent depth, and a balanced sampling approach
for dense warps. Our extensive experiments clearly showed
the superiority of our method, with gains of +8.9 AUC@5◦

on the MegaDepth-1500 benchmark.
Limitations While our global matcher can gracefully han-
dle multimodality, the proposed dense warp refinement is
unimodal. This poses challenges where the warp is discon-
tinuous, e.g., at depth boundaries. We also found DKM to
be overly uncertain for small objects bordering the sky. This
could be a limitation of learning to classify consistent depth,
instead of predicting model uncertainty as in, e.g., PDC-
Net. We illustrate an example of both these weaknesses in
Figure 7.
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Supplementary Material for

DKM: Dense Kernelized Feature Matching for Geometry Estimation

Figure 8. Qualitative example of pair in Piazza San Marco (0008)
with DKM warp and certainty.

A. Additional State-of-the-Art Comparison
A.1. MegaDepth-8-Scenes Pose Estimation

Since the MegaDepth-1500 benchmark is sampled from only
2 scenes, it is of interest to ascertain that results hold in a wider
setting. We therefore sample a total of 1600 pairs from 8 different
scenes:

1. Piazza San Marco (0008): Example in Figure 8.

2. Sagrada Familia (0019): Example in Figure 9.

3. Lincoln Memorial Statue (0021): Example in Figure 6.

4. British Museum (0024): Example in Figure 10.

5. Tower of London (0025): Example in Figure 2.

6. Florence Cathedral (0032): Example in Figure 11.

7. Milan Cathedral (0063): Example in Figure 1.

8. Mount Rushmore (1589): Example in Figure 12.

We use the same protocol as in MegaDepth-1500. We call this new
benchmark MegaDepth-8-Scenes. Results on this benchmark are
presented in Table 9. We achieve state-of-the-art results here as
well, with a relative performance increase of +3.3 AUC@5◦ com-
pared to the previous best sparse method, and by +8.7 percentage
points compared to the previous best dense method.

A.2. St. Paul’s Cathedral
COTR and ECO-TR [19, 41] are two recent dense methods

based on transformer architectures. Here we compare results of
our approach compared to those works on the St. Paul’s Cathe-
dral scene. We use the evaluation protocol of ECO-TR. We

Figure 9. Qualitative example of pair in Sagrada Familia (0019)
with DKM warp and certainty.

Figure 10. Qualitative example of pair in Britism Museum (0024)
with DKM warp and certainty.

present results in Table 10. We find that our method outperforms
both COTR and ECO-TR, achieving a performance increase of
+8.0 mAA@5◦. We additionally present a representative qualita-
tive example in Figure 13.

B. Further Qualitative Examples
B.1. MegaDepth-1500

In Figure 14 we present a qualitative example on the St. Peter’s
Basilica (0015) scene.
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Figure 11. Qualitative example of pair in Florence Cathedral
(0032) with DKM warp and certainty.

Figure 12. Qualitative example of pair in Mount Rushmore (1589)
with DKM warp and certainty.

Table 9. Pose estimation results on the Megadepth-8-Scenes
benchmark, measured in AUC (higher is better). Top section,
sparse methods, bottom section, dense methods.

Method ↓ AUC→ @5◦ @10◦ @20◦

ASpanFormer [6] ECCV’22 57.2 72.1 82.9

PDCNet+ [47] Arxiv’21 51.8 66.6 77.2
DKM 60.5 74.5 84.2

B.2. HPatches

In Figures 15 and 16 we present qualitative results on
HPatches. We find that despite not being trained for planar scenes,
DKM performs very well here as well.

Table 10. Pose estimation results on the St. Paul’s Cathedral
benchmark, measured in mAA (higher is better). We report the
average and estimated standard deviation over five runs.

Method ↓ mAA→ @5◦ @10◦

COTR [19] ICCV’21 44.3 66.0
ECO-TR [41] ECCV’22 45.3 66.1
DKM 53.3 72.1

Figure 13. Qualitative example of DKM warp and certainty on the
St. Paul’s Cathedral benchmark.

Figure 14. DKM warp and certainty on a pair from the St. Peter’s
Basilica (0015) scene.

B.3. ScanNet

In Figure 17, we present a qualiative example of the indoor
model of DKM on the ScanNet-1500 benchmark.
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Figure 15. DKM result on the HPatches planar scene v bird.

Figure 16. DKM result on the HPatches planar scene v graffiti.

C. Additional Failure Cases
Extreme Lack of Texture In Figure 18 we show a failure case
where our method completely fails. We believe this failure is due
to the complete lack of unique local textures. However, the match-
ing is not ill-defined as unique global patterns exist. Encourag-
ingly however, the model predicts a very low certainty for this
pair, indicating a well calibrated uncertainty estimate.

Figure 17. DKM indoor model results on a kitchen scene in the
ScanNet-1500 benchmark.

Figure 18. Failure case of DKM. The warp completely fails, and
the estimated certainty is very low.
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