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Figure 1. Our method takes an appearance reference as input and generates its talking head with disentangled control over lip motion, head
pose, eye gaze&blink, and emotional expression, where the driving signal of lip motion comes from speech audio, and all other motions
are controlled by different videos. As shown, it well disentangles all motion factors and achieves precise control over individual motion.

Abstract

We present a novel one-shot talking head synthesis
method that achieves disentangled and fine-grained con-
trol over lip motion, eye gaze&blink, head pose, and emo-
tional expression. We represent different motions via disen-
tangled latent representations and leverage an image gen-
erator to synthesize talking heads from them. To effec-
tively disentangle each motion factor, we propose a pro-
gressive disentangled representation learning strategy by
separating the factors in a coarse-to-fine manner, where we
first extract unified motion feature from the driving signal,
and then isolate each fine-grained motion from the unified
feature. We introduce motion-specific contrastive learning
and regressing for non-emotional motions, and feature-level
decorrelation and self-reconstruction for emotional expres-
sion, to fully utilize the inherent properties of each motion

factor in unstructured video data to achieve disentangle-
ment. Experiments show that our method provides high
quality speech&lip-motion synchronization along with pre-
cise and disentangled control over multiple extra facial mo-
tions, which can hardly be achieved by previous methods.
Project website:https://dorniwang.github.io/
PD-FGC/

1. Introduction
Talking head synthesis is an indispensable task for cre-

ating realistic video avatars and enables multiple applica-
tions such as visual dubbing, interactive live streaming, and
online meeting. In recent years, researchers have made
great progress in one-shot generation of vivid talking heads
by leveraging deep learning techniques. Corresponding
methods can be mainly divided into audio-driven talking
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head synthesis and video-driven face reenactment. Audio-
driven methods focus more on accurate lip motion syn-
thesis from audio signals [9, 46, 54, 56]. Video-driven ap-
proaches [52,61] aim to faithfully transfer all facial motions
in the source video to target identities and usually treat these
motions as a unity without individual control.

We argue that a fine-grained and disentangled control
over multiple facial motions is the key to achieving lifelike
talking heads, where we can separately control lip motion,
head pose, eye motion, and expression, given correspond-
ing respective driving signals. This is not only meaningful
from the research aspect which is often known as the dis-
entangled representation learning but also has a great im-
pact on practical applications. Imagining in a real scenario,
where we would like to modify the eye gaze of an already
synthesized talking head, it could be costly if we cannot
solely change it but instead ask an actor to perform a com-
pletely new driving motion. Nevertheless, controlling all
these factors in a disentangled manner is very challenging.
For example, lip motions are highly tangled with emotions
by nature, whereas the mouth movement of the same speech
can be different under different emotions. There are also in-
sufficient annotated data for large-scale supervised learning
to disentangle all these factors. As a result, existing meth-
ods either cannot modify certain factors such as eye gaze or
expression, or can only change them altogether, or have dif-
ficulties providing precise control over individual factors.

In this paper, we propose Progressive Disentangled
Fine-Grained Controllable Talking Head (PD-FGC) for
one-shot talking head generation with disentangled con-
trol over lip motion, head pose, eye gaze&blink, and emo-
tional expression1, where the control signal of lip motion
comes from audios, and all other motions can be individu-
ally driven by different videos. To this end, our intuition is
to learn disentangled latent representation for each motion
factor, and leverage an image generator to synthesize talk-
ing heads taking these latent representations as input. How-
ever, it is very challenging to disentangle all these factors
given only in-the-wild video data for training. Therefore,
we propose to fully utilize the inherent properties of each
motion within the video data with little help of existing prior
models. We design a progressive disentangled representa-
tion learning strategy to separate each factor control in a
coarse-to-fine manner based on their individual properties.
It consists of three stages:

1) Appearance and Motion Disentanglement. We first
learn appearance and motion disentanglement via data aug-
mentation and self-driving [6,77] to obtain a unified motion
feature that records all motions of the driving frame mean-
while excludes appearance information. It serves as a strong
starting point for further fine-grained disentanglement.

1We define the emotional expression as the facial expression that ex-
cludes speech-related mouth movement and eye gaze&blink.

2) Fine-Grained Motion Disentanglement. Given the
unified motion feature, we learn individual motion repre-
sentation for lip motion, eye gaze&blink, and head pose,
via a carefully designed motion-specific contrastive learn-
ing scheme as well as the guidance of a 3D pose estima-
tor [15]. Intuitively, speech-only lip motion can be well
separated via learning shared information between the uni-
fied motion feature and the corresponding audio signal [77];
eye motions can be disentangled by region-level contrastive
learning that focuses on eye region only, and head pose can
be well defined by 3D rigid transformation.

3) Expression Disentanglement. Finally, we turn to the
challenging expression separation as the emotional expres-
sion is often highly tangled with other motions such as
mouth movement. We achieve expression disentanglement
via decorrelating it with other motion factors on a feature
level, which we find works incredibly well. An image gen-
erator is simultaneously learned for self-reconstruction of
the driving signals to learn the semantically-meaningful ex-
pression representation in a complementary manner.

In summary, our contributions are as follows: 1) We pro-
pose a novel one-shot and fine-grained controllable talk-
ing head synthesis method that disentangles appearance,
lip motion, head pose, eye blink&gaze, and emotional ex-
pression, by leveraging a carefully designed progressive
disentangled representation learning strategy. 2) Motion-
specific contrastive learning and feature-level decorrelation
are introduced to achieve desired factor disentanglement.
3) Trained on unstructured video data with limited guid-
ance from prior models, our method can precisely control
diverse facial motions given different driving signals, which
can hardly be achieved by previous methods.

2. Related work
Audio-driven talking head synthesis. Audio-driven
talking head synthesis [3,4] aims to generate portrait images
with synchronized lip motions to the given speech audios.
The majority of works [9,39,46,54,56,79] focus on control-
ling only the mouth region and leave other parts unchanged.
Some recent works enable control over more facial proper-
ties such as eye blink and head pose [8, 57, 70, 74, 75, 78].
More recently, several methods [28, 29, 34, 59] try to intro-
duce emotional expression variations into the synthesis pro-
cess as it is a crucial property for vivid talking head gener-
ation. However, integrating expression control into talking-
head synthesis is very challenging due to the lack of ex-
pressive data. Some methods [28,29,60] build on manually
collected emotional talking head dataset [60], yet they can-
not well generalize to large-scale scenarios due to the lim-
ited data coverage. A recent work GC-AVT [34] leverages
in-the-wild data for expressive talking head synthesis. They
achieve disentangled control over expression by introducing
mouth-region data augmentation to separate lip motion and
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other facial expressions. Different from them, we leverage
a feature-level decorrelation to disentangle the two factors.
Moreover, our method can synthesize arbitrary talking head
with a disentangled control over lip motion, head pose, eye
gaze&blink, and expressions, while previous methods can-
not achieve individual control over all these factors.

Video-driven face reenactment. Video-driven face reen-
actment targets faithful facial motion transfer between a
driving video and a target image. The literature can be
mainly divided into warping-based methods [20, 23, 27, 42,
48, 52, 61, 62, 68, 73] and synthesis-based approaches [6,
32, 37, 47, 55, 58, 64, 66]. The warping-based methods pre-
dict warping flows between the source and target frames
to transform target images or their extracted features to
align with source motions. The synthesis-based methods
instead learn intermediate representations from input im-
ages and directly send them to a generator for image syn-
thesis. The representations can be landmarks [37, 55, 66],
3D face model parameters or meshes [7, 32, 48, 58], or la-
tent features extracted from images [2, 6, 62]. Some recent
methods [35, 71] also exploit prior knowledge from a pre-
trained 2D GAN [31] for animating face images. Our pro-
posed method also builds on a synthesis-based approach,
where we learn disentangled latent representations for mul-
tiple facial motions by our designed progressive disentan-
gled representation learning strategy. In addition, different
from video-driven approaches, we control the lip motion via
audio signals.

Disentangled representation learning on the face. Dis-
entangled representation learning for faces is a longstanding
task and has been widely explored in the literature. Plenty
of works [11, 12, 18, 26, 33, 36, 41, 63] focus on unsuper-
vised representation learning, where InfoGAN [12] and β-
VAE [26] are two representative works. However, these
unsupervised methods cannot guarantee meaningful latent
representations well aligned with human perceptions [38].
More recently, several methods [49–51, 65, 76, 80] explore
latent space editing of a pre-trained 2D GAN [31] with
the help of certain classifiers to achieve disentangled con-
trol over desired facial properties. Nevertheless, their con-
trollability is often confined by the linear classifiers and
the data distribution of the pre-trained generator. Some
methods [16, 19, 22, 47, 48, 67] leverage more powerful
prior knowledge such as 3D face model [45] or expression
model [47] to guide the representation learning, and de-
velop specific training schemes [19, 67] on structured data
to achieve desired factor disentanglement. We achieve dis-
entangled representation learning via a carefully designed
progressive training scheme on videos and introduce certain
prior models [15] to help with accurate factor control.

3. Method
Given an image of an arbitrary person, our goal is to syn-

thesize a talking-head video of it, where we can separately
control different facial motions in each frame, including lip
motion, head pose, eye gaze&blink, and emotional expres-
sion. We expect the lip motion to be derived from an au-
dio clip and other motions from different respective driving
videos. To this end, we propose to represent all control-
lable facial motions along with their appearance by disen-
tangling latent representations of the input visual and au-
dio signals and learning a corresponding image generator to
synthesize desired talking heads from them. We introduce
a progressive disentangled representation learning scheme
to learn the latent representations in a coarse-to-fine man-
ner, as shown in Fig. 2. We first disentangle the appear-
ance with the facial motions to obtain a unified motion rep-
resentation that records all motion information (Sec. 3.1).
Then, we isolate each fine-grained facial motion, except
the expression, from the unified motion feature via motion-
specific contrastive learning (Sec. 3.2). Finally, we separate
the expression from other motions via feature-level decor-
relation, and simultaneously learn the image generator for
fine-grained controllable talking head synthesis (Sec. 3.3).

3.1. Appearance and Motion Disentanglement

We argue that to achieve disentanglement over multiple
fine-grained motion factors, a primary thing to do is to learn
a unified motion representation that records all kinds of mo-
tion information meanwhile excludes appearance (i.e. iden-
tity) information. Such a unified motion feature serves as a
strong starting point for further fine-grained factor disentan-
glement from it. To this end, we follow [6] to disentangle
appearance and facial motions.

Specifically, an appearance encoder Eapp and a motion
encoder Emot are introduced to extract corresponding fea-
tures from an appearance image and a driving frame, re-
spectively. An extra generator G0 is applied to synthesize
a face image with the identity of the appearance image and
the facial motion of the driving frame. Self-driving and re-
construction are applied to learn the whole pipeline, where
data augmentation is introduced to the motion branch to
force the motion encoder to neglect appearance variations
and only focus on motion extraction. To further improve the
accuracy of extracted motion feature, we introduce a motion
reconstruction loss on top of the training losses in [6]:

Lmot = ‖φ(I0)− φ(Ig)‖2 + ‖ψ(I0)−ψ(Ig)‖2, (1)

where φ(·) and ψ(·) are features extracted by the 3D face
reconstruction network and the emotion network of [15], I0
is the image synthesized by G0 given appearance and mo-
tion features, and Ig is the ground truth image. The above
training scheme helps us to learn a unified motion feature
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Figure 2. The overview of our method. We achieve factor disentanglement for different facial motions via a progressive disentangled
representation learning strategy. We first disentangle appearance with all facial motions to obtain a unified motion feature for further
fine-grained disentanglement. Then, we separate each fine-grained motion feature from the unified motion feature via motion-specific
contrastive learning and the help of a 3D prior model. Finally, we disentangle expression with other motions by feature-level decorrelation
and simultaneously learn an image generator for controllable talking head synthesis.

that faithfully represents all facial movements, which fur-
ther helps us to achieve fine-grained motion disentangle-
ment to be described in the following sections.

3.2. Fine-Grained Motion Disentanglement

Based on the unified motion feature from the previous
stage, we introduce three extra encoders to further extract
fine-grained motion features from it, including lip motion
feature, eye gaze&blink feature, and head pose feature. The
key intuition is to design motion-specific contrastive learn-
ing based on the unique property of each individual motion
or to leverage the guidance of a prior model if a motion can
be well described by it. We do not separate expression in
this stage as it can be highly tangled with other factors. We
leave its disentanglement in the final stage (Sec. 3.3) where
all other factors are effectively separated.

Lip motion contrastive learning. Lip motions can be
well separated from other motions by exploring shared in-
formation between the unified motion feature and the corre-
sponding speech audio, as shown by previous method [77].
Therefore, we follow [77] to learn the lip motion feature
with audio-visual contrastive learning. Given a set of video
frames {vi} and their corresponding audio signals {ai},
we introduce a lip motion encoder Elip and an audio en-
coder Eaud, and extract lip motion features {fvi } = {Elip ◦
Emot(vi)} and audio features {fai } = {Eaud(ai)} via the
two networks, where Emot is the pre-trained motion en-
coder from the previous stage. We then construct a posi-
tive audio-video pair (fai , f

v
i ) and K negative audio-video

pairs (fai , f
v
k ), k 6= i for each sampled audio feature fai ,

and vice versa. We enforce the InfoNCE loss [43] follow-
ing [77] to maximize the similarity between positive pairs

and minimize the similarity between negative pairs:

La2v = −log[
exp(S(fa

i ,fv
i ))

exp(S(fa
i ,fv

i ))+
∑K

k=1 exp(S(fa
i ,fv

k ))
], (2)

Lv2a = −log[
exp(S(fv

i ,fa
i ))

exp(S(fv
i ,fa

i ))+
∑K

k=1 exp(S(fv
i ,fa

k ))
], (3)

where S(·, ·) is the cosine similarity. This loss ensures that
lip motion features predicted by Elip and Eaud are close to
each other for corresponding video frames and audio. Since
the audio signal merely contains lip motion information, it
helps with better factor disentanglement. Moreover, we can
leverage the audio encoder for audio-driven lip motion syn-
thesis for our controllable talking head.

Eye motion contrastive learning. Eye motions, includ-
ing eye gaze and blink, are local movements and have lim-
ited influence on other facial regions. Therefore, if we sub-
stitute the eye region of a person with that of another person
to composite a new image, the extracted eye motion feature
from it should be identical to that of the latter person. Based
on this observation, we design a dedicated contrastive learn-
ing scheme to disentangle the eye motions.

Specifically, given two driving frames, namely v1 and v2,
we construct an anchor frame va by compositing the eye re-
gion2 of v1 and other regions of v2, as shown in Fig. 2.
We introduce an extra encoder Eeye to extract eye motion
features f1, f2, and fa from the corresponding unified mo-
tion feature of the above frames, and construct a positive
pair (f1, fa) and a negative pair (f2, fa). We then enforce a

2We use an off-the-shelf method [72] to detect eye landmarks, and warp
the eye region of v1 to align with that of v2.
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similar InfoNCE loss between these pairs to learn Eeye:

Leye = −log[
exp(S(f1, fa))

exp(S(f1, fa)) + exp(S(f2, fa))
]. (4)

It helps the eye motion encoder to only focus on eye region
motions and neglect the variance of other regions.

Head pose learning. Since head pose can be well defined
by a 6D parameter consisting of three Euler angles (i.e.
pitch, yaw, roll) and 3D translations, we propose to directly
regress them via a head pose encoder Epose with the guid-
ance of a 3D face prior model:

Lpose = |Ppred − Pgt|1, (5)

where Ppred is the predicted pose parameter by Epose, and
Pgt is the ground truth pose parameter obtained by the off-
the-shelf 3D face reconstruction model [15].

3.3. Expression Disentanglement

The challenge for expression disentanglement is two-
fold. On one hand, the emotional expression can be highly
tangled with other motions (e.g. mouth movements can
be different under different emotions even if the speech
contents are identical), which makes it difficult to design
motion-specific contrastive learning as done previously. On
the other hand, existing expression estimators [15, 17, 40]
usually include other motion information in their expression
representation, which cannot provide accurate guidance for
the expression disentanglement in our scenario. To tackle
these challenges, we propose a feature-level decorrelation
strategy to disentangle the expression with other motions,
along with a self-reconstruction of the driving frame to learn
precise expression representation in a complementary man-
ner. The hypothesis behind this is that if an extracted ex-
pression feature is independent of the features of other mo-
tions, meanwhile its combination with the others can still
faithfully reconstruct all facial motions in the driving sig-
nal, then it is a precise latent representation of the ground
truth expression. We describe the learning strategies in de-
tail below.

In-window decorrelation. We observe that the expres-
sion variation in a video sequence is usually less frequent
than the changes in other motions. Therefore, if we take
the average expression feature within a time window, the
other motion information stored in certain dimension of
the expression feature should be averaged out, leading to
a clean expression feature uncorrelated with other motions.
Therefore, given a driving frame, we define a window of
size K around it and augment the frames within the win-
dow with random rotation, scaling, and color jittering. We
then extract the expression features from their correspond-
ing unified motion features via an expression encoder Eexp,

and calculate their average feature as the expression feature
for the center driving frame. The average feature will be
then sent into a generator G for image synthesis and self-
reconstruction described in the following paragraph3.

Lip-motion decorrelation. We further introduce a lip
motion decorrelation loss to achieve better expression dis-
entanglement by forcing independence between the expres-
sion feature and the lip motion feature (i.e. audio feature):

Ldecor =
1

D

∑
B,D

cor(F̄ e, F a)2, (6)

where F̄ e ∈ RB×D is a matrix consisting of average ex-
pression features within a batch of size B, F a ∈ RB×D

is the corresponding audio feature matrix, D is the feature
dimension, and cor(·, ·) calculates the feature dimension
correlation between the two matrices. In practice, comput-
ing the correlation between two variables requires a large
batchsize to reach enough accuracy. However, it is diffi-
cult to maintain such a large batchsize during training due
to memory limitation. To tackle this problem, we maintain
two memory banks for the expression feature and the audio
feature to compute the correlation, instead of using only the
current batch of features. The memory bank always keeps
M latest features inside to compute Eq. (6) during training,
whereM is much larger than the batchsize of each iteration.
The gradient will only back-propagate through the current
batch of features to update the network weights.

Complementary learning via self-reconstruction. The
above two decorrelation strategies ensure feature indepen-
dence between expression and other motions, yet the ex-
tracted expression feature still lacks semantic meaning.
Therefore, we leverage an image generatorG to take the ex-
pression feature along with the features of appearance and
other motions as input, and synthesize an image with de-
sired facial motions via self-reconstruction of the driving
frame, as shown in Fig. 2. In order to faithfully reconstruct
the driving frame, the expression encoder is forced to learn
complementary information that is not included in all other
motion features, which is exactly the expression informa-
tion. We enforce multiple losses to learn the expression en-
coder Eexp and the image generator G:

Lvgg =

N∑
i=1

‖V GGi(If )− V GGi(Ig)‖1, (7)

where V GGi(·) is the feature map of the i′s layer in a pre-
trained VGG19 [53] network. We also adopt the adversar-
ial loss and the discriminator feature matching loss follow-
ing [6] to improve the synthesized image quality.

3During inference, we use the expression feature of each frame instead
of the average one, as we find the expression encoder learned following
our training strategy can well disentangle expression with other motions.
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In addition, to ensure that the synthesized image well
follows all facial motions of the driving frame, we further
introduce a motion-level consistency loss:

Lcon = exp(−S(V lip(If ), Eaud(ag)))

+ ‖G(If ),G(Ig)‖1 + Lmot,
(8)

where Eaud is our audio encoder learned in the previous
stage, V lip is a pre-trained encoder to extract lip motion fea-
tures from images, G(I) is a gaze estimator [1], and S(·, ·)
is the cosine similarity; If , Ig and ag are our synthesized
image, ground truth image, and audio, respectively; Lmot is
the motion reconstruction loss defined in Eq. (1).

The above self-reconstruction process, together with the
feature-level decorrelation strategy, helps to disentangle the
expression feature from the unified motion feature. More-
over, the image generator G learned in this step naturally
achieves disentangled and controllable talking head synthe-
sis with all disentangled motion features and the appearance
feature as input. We, therefore, take G as our final image
generator for talking head synthesis.

4. Experiments
Implementation details. We train our model on Vox-
Celeb2 [13] dataset and evaluate it on both VoxCeleb2 and
Mead [60] dataset. All video frames are aligned follow-
ing the official annotations [13] and resized to 224 × 224.
Corresponding audios are extracted from the original videos
and converted to Mel-sectrograms. Our appearance encoder
Eapp is implemented as a ResNet50 [24], and the motion
encoder Emot takes the same structure as [5]. The audio
encoder Eaud adopts a ResNetSE34 [30] structure. The en-
coder for each fine-grained motion factor, including lip mo-
tion, head pose, eye gaze&blink, and expression, is imple-
mented as an MLP with ReLU activations. The image gen-
erator G0 in the first stage and the final image generator G
are both based on StyleGAN2 [31]. The dimensions of the
appearance feature and the unified motion feature are set to
2, 048 and 512, respectively. The dimensions of each fine-
grained motion features are 500, 6, 6, and 30 for lip motion
(audio), head pose, eye gaze&blink, and expression, respec-
tively. We implement our framework using PyTorch [44],
and train it on 8 Tesla V100 GPUs with 32GB memory, us-
ing a batchsize of 16 for 50 epochs. See the supplementary
materials for more details.

Baselines. We compare our method with existing talking
head synthesis methods: Wav2Lip [46] that allows only
mouth region control; MakeItTalk [78] that further intro-
duces random eye blinks and audio-aware head poses; PC-
AVS [77] with controllable head pose and lip motion; and
EAMM [28] with disentangled control over lip motion,
head pose, and expression. A recent GC-AVT [34] also

achieves expressive talking head synthesis. We do not com-
pare with it since its code is unavailable yet.

4.1. Quantitative Evaluation

We evaluate the image generation quality as well as fac-
tor control accuracy of different methods on a self-driving
setting, where we use the first frame in a test video to pro-
vide appearance and use the following audio and video
frames to provide lip motion and other motions, respec-
tively. We use the Fréchet Inception Distances (FID) [25]
between the synthesized images and the ground truth driv-
ing frames to evaluate the image quality. For the accuracy
of motion control, we leverage several metrics. We first
calculate the facial landmark distance (LMD) [10] between
the synthesized images and the ground truth to evaluate the
overall motion control accuracy. We further calculate the
mouth region landmark distance (LMDm) to evaluate the
accuracy of lip motion control. We also adopt the Lip Sync
Error Confidence (LSE-C, also known as Syncconf ) [46]
to evaluate the lip motion synchronization with the driv-
ing audio. Nevertheless, the LSE-C value of a method is
strongly correlated with its training data, which makes it
unfair when comparing methods trained on different data.
A recent method [69] also indicates that the LSE-C differ-
ence between synthesized images of a method and its train-
ing data, rather than the absolute value, better reveals lip
motion synchronization. Therefore, we propose a normal-
ized confidence score NLSE-C for a fair comparison:

NLSE-C =
LSE-Cgen − LSE-Cgt

LSE-Cgt , (9)

where LSE-Cgen is the LSE-C score of generated images,
and LSE-Cgt is the corresponding score of the training data.
The new NLSE-C measures the relative difference between
the generated images and their training data, which better
reveals if the synthesized lip motions are reasonable (i.e.
close to the training data distribution) or not. We find that
this new metric better aligns with human perception.

The quantitative results are shown in Tab. 1. Our method
yields the best motion control accuracy in terms of NLSE-
C, LMD, and LMDm. We also show competitive image
generation quality with other methods. Since Wav2Lip only
generates mouth region and copies other regions from input
images, we do not evaluate its FID and LMD which can be
unfair to other methods.

We further compare our method with the others on ex-
pression and head pose control accuracy. For the head
pose evaluation, we follow the same self-driving setting as
described above, and use a 3D face reconstructor [17] to
extract head pose parameters from the synthesized images
and calculate their difference (MSE) with the ground truth.
For the expression evaluation, we find the self-driving set-
ting cannot well evaluate expression controllability as the
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Table 1. Quantitative comparison for audio-driven talking head synthesis on VoxCeleb2 [13] and Mead [60]. †: The LSE-C value for the
training data of each method is shown in the bracket as a reference.

Method
VoxCeleb2 Mead

FID↓ LSE-C↑ NLSE-C† ↓ LMDm ↓ LMD↓ FID↓ LSE-C↑ NLSE-C† ↓ LMDm ↓ LMD↓
GT - 7.35 0 0 0 - 1.76 0 0 0

Wav2Lip [46] - 9.23 0.183(7.80) 2.54 - - 9.17 0.176(7.80) 2.54 -
MakeItTalk [78] 19.47 2.03 0.724(7.35) 2.82 6.39 68.35 3.50 0.524(7.35) 2.68 2.56
PC-AVS [77] 14.36 8.21 0.117(7.35) 1.59 2.52 62.85 8.04 0.094(7.35) 2.28 1.92
EAMM Neutral [28] 26.06 4.75 1.699(1.76) 2.29 4.18 50.36 5.34 2.03(1.76) 2.32 2.25
EAMM Emo [28] 27.20 4.55 1.585(1.76) 2.29 4.29 50.49 5.23 1.972(1.76) 2.28 2.27

PD-FGC (Ours) 12.99 7.26 0.012(7.35) 1.15 1.93 73.80 7.24 0.015(7.35) 1.65 1.84

Table 2. Comparison for expression and pose control accuracy.

Method
Expression↓ Pose↓

VoxCeleb2 Mead VoxCeleb2
PC-AVS [77] 0.202 0.245 0.0038
EAMM emo [28] 0.196 0.245 0.0196
EAMM neutral [28] 0.192 0.248 0.0203

PD-FGC (Ours) 0.156 0.188 0.0016

Table 3. User study on talking head synthesis.

Method
Lip Sync
Quality↑

Expression
Quality↑

Facial Motion
Driving Naturalness↑

Wav2Lip [46] 3.50 1.36 1.88
MakeItTalk [78] 1.81 1.89 2.65
PC-AVS [77] 4.46 3.04 3.72
Eamm [28] 1.92 1.77 1.56

PD-FGC (Ours) 4.44 4.38 4.27

appearance reference usually contains similar expressions
with the driving frames if they come from the same video
clip. Therefore, we conduct a cross-video setting where we
use appearance reference and driving frames from different
video clips for image synthesis (the driving audio is still
from the video clip of the appearance reference). We use
a 3D face reconstructor [17] to extract expression param-
eters in the synthesized images, and compare their differ-
ence (MSE) with those of the driving frames to evaluate the
control accuracy. As shown in Tab. 2, we achieve the low-
est expression and pose control error largely outperforming
previous methods. More details are in the supplementary
materials.

4.2. Qualitative Evaluation

Fine-grained controllable talking head synthesis. An
example of our fine-grained control over synthesized talk-
ing head is in Fig. 1. For a given appearance reference,
we can control its lip motion, head pose, eye motion, and
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Figure 3. Illustration of our factor disentanglement. Top: Con-
trolling one factor while leaving the others unchanged. bottom:
Controlling one factor and setting the others to zeros.

expression, via different respective audio signals and driv-
ing frames, and composite all motions to synthesize a vivid
talking head. Our method largely improves the controllabil-
ity of talking head synthesis upon previous methods, where
they cannot achieve separate control over all these factors.
More visual results are in the supplementary materials.

Disentangled controllability. We demonstrate factor dis-
entanglement of our method by changing one motion fac-
tor at a time given different driving signals in Fig. 3. Our
method can independently control the motion of each prop-
erty to mimic the driving source, and leave all other prop-
erties unchanged. Moreover, we can also set all motions to
their canonical positions (i.e. set features to zero) except the
motion to be controlled. These enable our method for di-
verse downstream applications with different requirements.

Comparison with prior art. We show visual compar-
isons between our method, PC-AVS [77] and EAMM [28]
in Fig. 4. For eye motion and head pose, we adopt the same
self-driving setting as in Sec. 4.1. For expression, we use
the cross-video setting. We leave the lip motion compari-
son in the supplementary materials. As shown, our method
can well mimic different motions in the driving frames com-
pared to the other methods. PC-AVS [77] can only con-
trol head pose besides lip motion, so their synthesized faces
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Figure 4. Visual comparison with other methods. The first three
columns show the self-driving results. The last column shows
the cross-video results. The captions above show the factors that
should be focused on in each column.

have different eye motions or expressions compared to the
driving frames. It also shows inferior results in head pose
control as depicted by the second right column in Fig. 4,
due to using an implicit head pose representation instead of
the explicit 3D rotation and translation. EAMM [28] can-
not well control head pose and eye motions. Moreover, al-
though it can control the expression of a synthesized face,
its produced expression is different from the driving source
as shown in the last column in Fig. 4.

4.3. User Study

We further conduct user studies for a more comprehen-
sive evaluation. We ask the participants to score from 1 to
5 for the quality of different properties in the synthesized
images (5 is the best). The results are in Tab. 3. Our method
achieves the best result in expression control quality and fa-
cial motion naturalness. And we achieve the second-best
result on lip motion synchronization and get very close to
the best one (i.e. PC-AVS). More details and a user study of
factor disentanglement are in the supplementary materials.

4.4. Ablation Study

We conduct an ablation study to validate the efficacy of
our proposed feature-level decorrelation in the expression
disentanglement stage. We conduct a similar self-driving
experiment as in Sec. 4.1, except that we use the first frame

Table 4. Ablation study on expression disentanglement.

Method
Voxceleb2 Voxceleb2 Mead

LSE-C↑ NLSE-C↓ LMDm ↓ Exp↓ Exp↓

No dis 3.78 0.486 1.81 0.151 0.178
+ In-win 7.60 0.034 1.76 0.159 0.178
+ Decorr 7.02 0.045 1.66 0.157 0.173

All 7.30 0.007 1.27 0.163 0.179

Table 5. Ablation study on window size of the in-window decor-
relation strategy.

Size
Voxceleb2 Voxceleb2 Mead

LSE-C↑ NLSE-C↓ LMDm ↓ Exp↓ Exp↓
7 7.01 0.046 1.81 0.163 0.179
13 7.30 0.007 1.27 0.163 0.179
25 7.23 0.016 1.32 0.164 0.178

in a driving video clip as the expression driving signal in-
stead of using the expression of each frame. The corre-
sponding frames and the audio in the same driving video
clip are still used as ground truth to calculate the metrics.
In theory, if the expression is well disentangled with other
motions, fixing the expression source instead of using the
expression in each frame will not influence the lip motion
accuracy and should maintain low NLSE-C and LMDm. As
shown in Tab. 4, introducing the two decorrelation strategies
significantly lowers the quantitative metrics, which indi-
cates better factor disentanglement. And leveraging both of
them leads to the best result. We further conduct the cross-
video driving experiment similar to Sec. 4.1 to evaluate the
expression control accuracy of different alternatives. Our
final solution only slightly decreases the expression control
accuracy but leads to a large improvement in expression and
lip motion disentanglement.

We also study the influence of the window size of the in-
window decorrelation in Tab. 5. A window size of 13 yields
the best result which is used as our final solution.

5. Conclusion
We presented a fine-grained controllable talking head

synthesis method. The core idea is to represent different
facial motions via disentangled latent representations. A
progressive disentangled representation learning strategy is
introduced to separate individual motion factors in a coarse-
to-fine manner, by exploring the inherent properties of each
factor in unstructured video data. Experiments demon-
strated the efficacy of our method on disentangled and fine-
grained control of diverse facial motions.

Limitations. Our method mainly focuses on disentangled
motion control. The synthesized images may lack fine de-
tails and we leave their improvement as future works.
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Supplementary Material

A. More Implementation Details

A.1. Data Preparation

We train our method on all available videos in the train-
ing split of VoxCeleb2 [13] dataset. For evaluation, we use
the test split of both VoxCeleb2 and Mead [60] dataset. We
randomly sample 500 test video clips from VoxCeleb2, and
460 test clips from the Mead following the official setting.

All video frames are aligned following the official anno-
tations [13], and then resized and center-cropped to 224 ×
224. Corresponding audios are extracted from the original
videos by ffmpeg, and then processed with a sample rate
of 16, 000 and converted to Mel-spectrograms via FFT. The
window size, hop size, and the number of Mel bands are set
to 1, 280, 160 and 80, respectively.

A.2. More Training Details

Appearance and motion disentanglement. We fol-
low [6] to learn the appearance encoder Eapp, motion en-
coder Emot, and the extra image generator G0. Different
from [6], for the appearance encoder, we send a single ap-
pearance reference as input to obtain the appearance latent
feature during training, instead of taking the average latent
feature of multiple appearance frames in a video clip. Apart
from the original training losses proposed in [6], we fur-
ther introduce a motion reconstruction loss as described in
Sec. 3.1 in the main paper (i.e. Eq. (1)). We set the initial
learning rates for Eapp, Emot to 5e−5. The initial learn-
ing rates for G0 and an extra discriminator for computing
the adversarial loss in [6] are set to 5e−5 and 5e−6, respec-
tively. The learning rates of all networks are decayed by
a rate of 0.5 for every 80, 000 iterations. We trained the
whole pipeline with a batchsize of 24 for 50 epochs on 8
Tesla V100 GPUs with 32GB memory, which took around
2 weeks.

Lip motion disentanglement. We adopt the audio-visual
contrastive learning scheme [77] to learn the lip motion en-
coderElip and the audio encoderEaud. The two models are
trained on audio-video pairs with the InfoNCE loss [43] as
described in the main paper (i.e. Eq. (2) and (3)). The orig-
inal training scheme in [77] utilizes frames from the videos
different from those deriving the audio signals to construct
the negative pairs, which we found can learn non-lip motion
information in the obtained lip motion features. Therefore,
we only use the unsynchronized frames and audio from the
same video clip as the negative pairs during training. We
set the initial learning rates of Elip and Eaud to 1e−5, with
a decay rate of 0.93 by every 200, 000 iterations. We train

Figure I. Our observation on disentangled eye motion control in
the face-reenactment setting in our appearance and motion disen-
tanglement stage. The first column is the appearance reference,
the second column is the reenactment result, the third column is
the driving source where the eye region comes from the images in
the last column. As shown in the figure, the eye motion can be
controlled independently without affecting the lip motion in this
scenario, which inspires us to design the eye-motion contrastive
learning.

the two networks with a batchsize of 32 for 30 epochs. Each
item in a batch contains 1 positive pairs and 8 negative pairs.
The training took 2 days on 4 Tesla V100 GPUs.

Eye motion disentanglement. The eye motion encoder
Eeye is learned using our proposed eye-motion contrastive
learning described in Sec. 3.2 in the main paper. We de-
scribe more details about the motivation behind. Specifi-
cally, since our first stage is based on the face reenactment
method of [6], we can already synthesize a talking face with
the unified motion feature of a driving frame and a given
appearance feature via the image generator G0. We find
that by simply replacing the eye region of the driving frame
with a new one bearing different eye blink and gaze, we
can achieve a disentangled control of eyes in the synthe-
sized face without affecting other facial motions, as shown
in Fig. I. Inspired by this, we formulate the eye-motion con-
trastive loss in the main paper.

We set the initial learning rate for Eeye to 1e−5, decayed
by a rate of 0.5 for every 80, 000 iterations. The network is
trained with a batchsize of 128 for 30 epochs. The training
took 2 days on 4 Tesla V100 GPUs.

Head pose disentanglement. The head pose encoder
Epose is learned by regressing the pseudo pose labels as de-
picted in Sec. 3.2 in the main paper. The learning rate of
Epose is also set to 1e−5 with a decay rate of 0.5 by every
80, 000 iterations. The network is trained with a batchsize
of 128 for 30 epochs similar to the eye motion encoder. The
training took 2 days on 4 Tesla V100 GPUs.
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Expression disentanglement. The expression encoder
Eexp and our final image generator G are learned via
our proposed feature-level decorrelation and complemen-
tary self-reconstruction in Sec. 3.3 in the main paper. Dur-
ing this stage, all other networks are fixed, including Eapp,
Emot, Elip, Eaud, Eeye, and Epose. For the in-window
decorrelation, we set the window size to 13. For the lip-
motion decorrelation, we set the memory bank size to 512
for an accurate estimation of the feature correlation. We
set the initial learning rates to 1e−5 and 2e−5 for Eexp and
G, respectively. The learning rate for an extra discrimina-
tor to compute the adversarial loss is set to 3.5e−6. The
expression encoder is trained during the first 40, 000 itera-
tions and frozen for the following steps. The learning rates
for the generator and the discriminator are decayed with a
rate of 0.5 by every 80, 000 iterations. We use a batchsize
of 16 and train all networks for 50 epochs. It took 2 weeks
on 8 Tesla V100 GPUs.

A.3. Quantitative Evaluation Details

In Sec. 4.1 in the main paper, we conducted multi-
ple experiments for quantitative metrics calculation (i.e.
Tab. 1 and 2 in the main paper) under two different settings,
namely the self-driving setting and the cross-video setting.

In the self-driving setting, we use all test clips described
in Appendix A.1 for evaluation. We set the first frame in
each video as the appearance reference, and drive it us-
ing the video frames and the corresponding audio from the
same video clip. The audio signals are used to drive the lip
motion and the video frames for other motions. Since the
source and the target are from the same video, we can eas-
ily use the driving frames as the ground truth to evaluate the
performance of each method.

In the cross-video setting, we use the first frame from
100 randomly sampled test video clips as an appearance ref-
erence and use the first frame from another 100 random test
video clip as the driving frame to control all non-lip mo-
tions. We still use the audio signals from the video clip
of the corresponding appearance frame to control the lip
motion. The cross-video setting is designed to evaluate
the expression control performance, where we extract the
expression parameters of the synthesized videos and their
corresponding driving frames using a 3D face reconstruc-
tor [15], and compare the expression parameter difference.
This helps us to evaluate if a method can precisely transfer
the expression from a source to a target. By contrast, in the
self-driving setting, since the source and the target are from
the same video clip, their expressions are usually the same.
Under this circumstance, if a method well mimics the ex-
pression motion of the appearance reference, it is difficult
to judge whether it successfully transfers the source expres-
sion to the target or merely copies the expression from the
appearance reference.

A.4. User Study Details

We conduct two user studies to evaluate the motion con-
trol performance. In the first experiment, we ask partici-
pants to evaluate the accuracy of lip motion synchroniza-
tion and expression control, as well as the naturalness of all
facial motions. We generate 120 videos using 12 random
appearance references and 10 random driving clips and ran-
domly select 35 synthesized videos out of them for evalua-
tion. Fifteen participants are asked to score from 1 to 5 for
the quality of different properties in the synthesized videos
(5 is the best). The corresponding results are in Tab. 3 in the
main paper.

In the second experiment, we ask the same group of par-
ticipants to evaluate the disentanglement controllability of
our method. We generate 5 videos using an appearance ref-
erence and 3 randomly selected driving videos for the head
pose, expression, and eye motion, respectively. In each syn-
thesized video, only one motion factor is controlled by the
driving source and all other factors remain unchanged. The
participants are asked to score from 1 to 5 for the variation
level of each motion in the synthesized videos (5 indicates
the largest variation, and 1 means nearly unchanged). The
corresponding results are in Tab. VII and discussed in Ap-
pendix B.2.

B. More Results
B.1. Fine-Grained Controllable Talking Heads

Figure IV and V show more talking head synthesis re-
sults by our method. Our method well mimics the motions
from different driving sources and combines them to gener-
ate vivid talking heads. Animations can be found in the
accompanying video.

B.2. Disentangled Controllability

We quantitatively evaluate the disentangled controllabil-
ity of our method. To this end, we generate talking head
images by only varying one motion factor and setting other
factors to zeros (i.e. canonical positions). We then extract
corresponding motion features from the synthesized results
and compute the variance of each motion factor in a video
clip. Ideally, if different motions are perfectly disentangled,
the computed variances will be close to zero for all motions
except the one being controlled.

In practice, we use off-the-shelf models to extract each
motion feature from our synthesized images. For eye gaze
and blink, we use the model of [21]. For expression and
pose, we use a 3D face reconstruction model [17]. For lip
motion, we use the model of [14]. The variance of each
motion factor f is computed using the following equation:

var(f) =
1

N

N∑
i=1

1

Mi

Mi∑
j=1

‖fij − f̄i‖2, (I)
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Table VI. Quantitative evaluation on factor disentanglement of our method. In each row, we compute the variance of a motion feature
extracted from the synthesized videos when controlling different individual motion factors.

Variance
Control property

lip pose blink gaze exp

Speech lip motion 11.24 5.16 0.83 0.74 3.76
Head pose 0.0091 0.1597 0.0041 0.0045 0.0088
Eye blink 0.00038 0.00389 0.06657 0.00089 0.00225
Eye gaze 0.089 0.100 0.095 0.105 0.088
Expression 3.07 3.07 2.98 2.93 3.59

Table VII. User study on factor disentanglement of our method.

Variance
Control property

lip pose blink gaze exp
lip 4.7 1.1 1 1 1.1

pose 1.1 4.6 1 1.2 1.3
blink 1.1 1.1 4.1 1.5 1
gaze 1 1.1 1.4 4.4 1
exp 1.3 1.1 1 1 3.7

where fij is the corresponding extracted motion feature of
the j-th frame in the i-th video clip, f̄i is mean of fij , N
is the number of test videos, and Mi is the length of each
video clip.

Table VI shows the computed variance of each motion
factor. Each row shows the variance of a single motion
factor under different motion control. As shown, the vari-
ance of a factor reaches the maximum when the controlling
factor is the same with it, and largely decreases when con-
trolled under a different motion factor. This indicates that
our method can disentangle different motion controls so that
they have a minor influence on each other.

However, the computed variance can still be large in
some cases (e.g. the left four columns in the last row in
Tab. VI). This is due to that the off-the-shelf motion fea-
ture extractors are not perfect and can be influenced by vari-
ations of other motions when extracting a certain motion
feature. Therefore, we refer the readers to the accompa-
nying video to examine the disentanglement ability of our
method. We also conduct a user study to better evaluate
the factor disentanglement. The results are in Tab. VII (see
Appendix A.4 for detailed description). As shown, the vari-
ance score is close to 5 when the factor for variance calcu-
lation and the factor to be controlled are the same, and close
to 1 when they are different, which reveals the disentangled
controllability of our method.

B.3. Expression Interpolation

We further investigate the expressive ability of our
learned expression feature. We show expression interpola-
tion results by linearly interpolating two expression features

from different expression sources. As shown in Fig. II, our
method can smoothly transfer between two different expres-
sions. The synthesized images at interpolated points also
have natural expressions. This indicates that our method
learns a reasonable expression latent space that supports
continuous expression control.

B.4. Comparison with the prior methods

We show the lip motion synthesis comparison in Fig. III.
The images are synthesized under the self-driving setting.
As depicted, the lip motion generated by our method is nat-
ural and closer to the ground truth compare to the alterna-
tives. See the accompanying video for animations.

B.5. Ablation Study

Motion reconstruction loss. We further conduct an ab-
lation study to validate the efficacy of our motion recon-
struction loss proposed in Sec. 3.1 in the main paper. As
shown in Fig. VI, with the motion reconstruction loss, fa-
cial motions in the synthesized images contain more details
and are closer to the driving sources. By contrast, removing
the motion reconstruction loss leads to poor reenactment re-
sults for driving sources with rich expressions. As a result,
the motion reconstruction loss is important for obtaining an
informative unified motion feature to achieve accurate mo-
tion control.

C. Ethics Consideration
Our method enables precise and disentangled control

over multiple facial motions for vivid talking head gener-
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Figure II. Expression interpolation by our method.
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Figure III. Comparison on lip motion control. Images are synthe-
sized under the self-driving setting where the lip motion is driven
by the audio signal. Our method yields the best result.

ation. While the major goal of it is to synthesize virtual
avatar for applications like live streaming, it can be mis-
used to create deceptive and harmful content of real peo-
ple. Especially, one may use it to synthesize fake videos of
celebrities. We do not condone using our method for gener-
ating misleading information that could harm people’s rep-
utations. We also suggest investigating advanced forgery
detection methods to identify the synthesized fake images
and videos to prevent illegal usage.
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Figure IV. Fine-grained controllable talking heads synthesized by our method.
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Figure V. Fine-grained controllable talking heads synthesized by our method.
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Figure VI. Ablation study on the motion reconstruction loss in the appearance&motion disentanglement learning.
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