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Abstract

We present a simple yet effective self-supervised pre-
training method for image harmonization which can lever-
age large-scale unannotated image datasets. To achieve
this goal, we first generate pre-training data online with
our Label-Efficient Masked Region Transform (LEMaRT)
pipeline. Given an image, LEMaRT generates a foreground
mask and then applies a set of transformations to perturb
various visual attributes, e.g., defocus blur, contrast, satu-
ration, of the region specified by the generated mask. We
then pre-train image harmonization models by recovering
the original image from the perturbed image. Secondly, we
introduce an image harmonization model, namely SwinlH,
by retrofitting the Swin Transformer [27] with a combina-
tion of local and global self-attention mechanisms. Pre-
training SwinlH with LEMaRT results in a new state of
the art for image harmonization, while being label-efficient,
i.e., consuming less annotated data for fine-tuning than ex-
isting methods. Notably, on iHarmony4 dataset [S], SwinlH
outperforms the state of the art, i.e., SCS-Co [16] by a mar-
gin of 0.4 dB when it is fine-tuned on only 50% of the train-
ing data, and by 1.0 dB when it is trained on the full training
dataset.

1. Introduction

The goal of image harmonization is to synthesize photo-
realistic images by extracting and transferring foreground
regions from an image to another (background) image. The
main challenge is the appearance mismatch between the
foreground and the surrounding background, due to dif-
ferences in camera and lens settings, capturing conditions,
such as illumination, and post-capture image processing.
Image harmonization aims to resolve this mismatch by ad-
justing the appearance of the foreground in a composite im-
age to make it compatible with the background. Research
in image harmonization has relevant applications in photo-
realistic image editing and enhancement [42,44], video syn-
thesis [23,37] and data augmentation for various computer
vision tasks [11,12,35].
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Figure 1. Top: given an image, LEMaRT applies a set of transfor-
mations, e.g., brightness, hue adjustment, to obtain a transformed
image. The transformed image is then combined with the original
image to form a composite image, which is used to pre-train our
SwinlH image harmonization model. As shown in the right-hand
column, SwinlH is capable of reconstructing photo-realistic out-
put images after pre-training and fine-tuning. Bottom: using our
LEMaRT pre-training scheme, our image harmonization model
(SwinlH) surpasses state of the art (SOTA) counterparts with less
than 40% of the training data from iHarmony4 for fine-tuning.

Traditional image harmonization approaches perform
color transforms to match the low-level color statistics of
the foreground to the background with the aim to achieve
photorealism [22,31,33,39]. However, the generalization



ability of these methods is questionable because the eval-
uation was only conducted at a small scale, mainly using
human judgement. More recent works [8] have constructed
real image harmonization datasets with tens to thousands
of images to train learning-based methods. However, due
to the bottleneck of manual editing, these datasets do not
match the scale often required to train large-scale neural
networks. Rendered image datasets [3, 15] are more scal-
able but they suffer from the domain gap between synthetic
and real images. As a result, the performance of image har-
monization models is constrained by the limited size of a
few existing datasets [8,20] on which they can be trained.

Inspired by the impressive performance leap achieved by
pre-trained models [17, 29] on various downstream tasks,
e.g., image classification, object detection, image caption-
ing, in this work, we introduce a novel self-supervised pre-
training method to boost the performance of image harmo-
nization models while being label-efficient, i.e., consum-
ing small amounts of fine-tuning data. The novelty of our
technique lies in the use of foreground masking strategies
and the perturbation of foreground visual attributes to self-
generate training data without annotations. Hence, we name
our pre-training method as Label-Efficient Masked Region
Transform (LEMaRT). In the first step, LEMaRT proposes
pseudo foreground regions in an image. Subsequently, it ap-
plies a set of transformations to perturb visual attributes of
the foreground, including contrast, sharpness, blur and satu-
ration. These transformations aim to mimic the appearance
discrepancy between the foreground and the background.
Using the transformed image, i.e., image with the perturbed
foreground, as the input, LEMaRT pre-trains image harmo-
nization models to reconstruct the original image, as shown
in the top half of Figure 1.

Subsequently, we design an image harmonization model
based on Swin Transformer [27], namely SwinlH, which is
short for Swin Image Harmonization. We build our model
upon Swin Transformer instead of the ViT model [10]
mainly due to the efficiency gain offered by its local shifted
window (Swin) attention. Similar to the design of the
original Swin Transformer, we keep the local self-attention
mechanism in all the Transformer blocks up except the last
one, where we employ global self-attention. We introduce
global self-attention into SwinIH to alleviate block bound-
ary artifacts produced by the Swin Transformer model when
it is directly trained for image harmonization.

We verify that LEMaRT consistently improves the per-
formance of models with a range of vision Transformer and
CNN architectures compared to training only on the target
dataset, e.g., iHarmony4. When we pre-train our SwinlH
model on MS-COCO dataset with LEMaRT and then fine-
tune it on iHarmony4 [8], it outperforms the state of the
art [16] by 0.4 dB while using only 50% of the samples
from iHarmony4 for fine-tuning, and by 1.0 dB when using

all the samples (see the plot in the bottom half of Figure 1).

The key contributions of our work are summarized below.

e We introduce Label-Efficient Masked Region Transform
(LEMaRT), a novel pre-training method for image harmo-
nization, which is able to leverage large-scale unannotated
image datasets.

o We design SwinlH, an image harmonization model based
on the Swin Transformer architecture [27].

e LEMaRT (SwinlH) establishes new state of the art
on iHarmony4 dataset, while consuming significantly less
amount of training data. LEMaRT also boosts the perfor-
mance of models with various network architectures.

2. Related Work

a. Image Harmonization: Most early works extract
and match low-level color statistics of the foreground and
its surrounding background. These works rely on color
histograms [39], multi-level pyramid representations [33],
color clusters [22], etc. The limited representation power of
low-level features negatively affects their performance.

More recent works [8, 20] have constructed datasets at a
reasonable scale to advance learning-based methods. Nu-
merous supervised deep learning-based image harmoniza-
tion models have been trained on these datasets [9, 14, 15,
26]. Tsai et al. [34] combine image harmonization and se-
mantic segmentation under a multi-task setting. S2AM [9]
proposes to predict a foreground mask and to adjust the
appearance of foreground with spatial-separated attention.
RainNet [26] transfers statistics of instance normalization
layers from the background to the foreground. In addition,
generative models have also been trained for image harmo-
nization [4, 8,45].

Some state of the art (SOTA) methods formulate image
harmonization as a style transfer problem. These meth-
ods learn a domain representation of the foreground and
background with contrastive learning [7] or by maximiz-
ing mutual information between the foreground and back-
ground [24]. More recently, Hang et al. [16] have ad-
vanced state of the art results by adding background and
foreground style consistency constraints and dynamically
sampling negative examples within a contrastive learning
paradigm. Using only a reconstruction loss during pre-
training and fine-tuning, our method is able to outperform
[16] with a much simpler training set up.

b. Transfer Learning: Transfer learning is a well-known
and effective technique for adapting a pre-trained model
to a downstream task, especially with limited training data
[5,6,18]. Recent advances in foundation models [1,19,29,
36,40,41,43] have resulted in models that can be adapted to
a wide range of downstream tasks. Sofiiuk et al. [30] pro-
pose an image harmonization model which takes visual fea-
tures extracted from a pre-trained segmentation model as an
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Figure 2. Our online data generation and pre-training pipeline (LEMaRT). LEMaRT generates the input composite image I.. for the pre-
training process via masked region transform. The goal of pre-training is to learn an image harmonization model fy(-), e.g. our SwinlH
model, that can reconstruct the original image I from the composite image I..

auxiliary input. Instead of leveraging a pre-trained segmen-
tation model for feature extraction, we specifically pre-train
a model for image harmonization. We opt for this direc-
tion based on the hypothesis that pre-training for the same
target task results in better performance than pre-training
for a different task. Inspired by [18], our LEMaRT method
is more suitable for image harmonization than [18] be-
cause LEMaRT creates training samples by applying trans-
formations to the foreground rather than masking the fore-
ground, which makes the pre-training task closer to image
harmonization. In addition, [18] introduces an asymmetric
encoder-decoder architecture, while our SwinlH model is
specifically designed for image harmonization and does not
have an explicit encoder or a decoder.

3. Method
3.1. Problem Formulation

The goal of image harmonization is to synthesize photo-
realistic images by extracting and transferring foreground
regions from an image I, specified by a binary mask M, to
another (background) image Io. LetI, = Mo I; @ (1 —
M) ® 1, be the composite image generated by a direct copy
and paste of the foreground region from I; on top of Is.
The operators ® and @ denote element-wise multiplication
and addition, respectively. Subsequently, an image harmo-
nization function f(-) transforms the composite image I.
into a harmonized image I = f(I.), such that the latter is
photo-realistic. Deep learning-based image harmonization
methods implement this function as a neural network fy(-)
with parameters denoted by 6. Our goal is to learn 6 via
self-supervised pre-training, so that the function fy(-) can
generate photo-realistic images.

3.2. Online Pre-training Data Generation

We first introduce our data generation and pre-training
pipeline, i.e., LEMaRT that generates the input and the

ground truth for the pre-training process without relying on
any manual annotations. As shown in Figure 2, LEMaRT
applies a set of random transformations such as hue, con-
trast, brightness adjustment and defocus blur to perturb the
original image I. The generated image is referred to as the
transformed image I;. The random transformations are de-
signed to mimic different kinds of visual mismatches be-
tween a foreground region and a background image. In
addition, LEMaRT employs a mask generation strategy to
propose a foreground mask M (please refer to § 3.3 for
more details). The mask and the set of transformations are
generated on the fly for each input image I. With these
ingredients, we generate a composite image I. from the
original image I and the transformed image I; as I. =
MOIL & (1 —M)eIL We note that the composite im-
age I. is generated and fed into the network in an online
fashion.

The goal of pre-training is to learn a harmonization func-
tion fp(-) to resolve the mismatch of visual appearance be-
tween the foreground and the background of the composite
image I... We formulate this task as the reconstruction of the
original image I from the composite image I.. The original
image I serves as the supervision signal for the pre-training
process under the assumption that visual elements of real
images are in harmony. This formulation is applicable to a
wide range of network architectures, e.g., SwinlH (see § 3.4
for details), ViT [10] and CNN models [23,32].

3.3. Mask Generation

We now present three foreground mask generation strate-
gies, which we refer to as random, grid and block.

e random: as shown in Figure 4, this strategy first partitions
an image into a regular pattern that consists of m x m even
patches (labelled by white pixels). It then generates a mask
by randomly selecting a subset of the image patches.

e grid: similar to random, this strategy first partitions an
image into regular pattern of m X m even patches. It then
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Figure 4. Sample masks generated by the three strategies, i.e.,
random, grid and block, introduced in § 3.3.

generates a fixed mask (same for all images) by selecting
image patches following the pattern shown in Figure 4.

e block: inspired by [2], we design a mask generation strat-
egy that attempts to mimic the shape of objects. It gener-
ates a mask in an iterative manner. Each iteration has two
steps, i.e., (1) generating a rectangular region; (2) applying
a random homography to the rectangular region to make the
boundary of the region be composed of slanted lines. If the
rectangular region is smaller than the size of the desired re-
gion to be masked, we generate a new region by executing
the two steps once more and merge the newly generated re-
gion with previously generated regions (please refer to the
supplementary materials for more details).

3.4. Network Architecture

Since the pre-training process is agnostic to network archi-
tecture, the only constraint for model design is that it needs
to generate an output image of the same size as the input.
To this end, we choose to implement our image harmo-
nization model based on a Transformer architecture, due to
the recent successes of vision transformer models in various
tasks, including image harmonization [13, 14].

We choose to build our SwinlH model upon Swin atten-
tion blocks [27] due to its improved performance and effi-
ciency over global attention layers used by ViT-style mod-
els [10, 13, 14]. Let H and W denote the height and width
of an input image I. and N denote the size of an image
patch. The length of the sequence of visual tokens is HNI;V
A global attention layer has a space and time complexity of

o jVZVQ ). On the contrary, the space and time complexity

of a Swin attention block is O(%QKQ), where the shifted
window size K is smaller than H and .
The architecture of our SwinlH model is shown in Figure

3. It takes a four-channel image (a channel-wise concatena-

tion of a composite image I. and a foreground mask M) as
input and generates an output image I. Our SwinIH model
is composed of three stages. The first two stages consist of
three Swin attention blocks. The third stage has five Swin
attention blocks and a global attention layer. We set the di-
mension of the patch embedding to 128 and double it at the
end of the first two stages with linear projections.

Unlike Swin Transformer [27] which processes its input
in a multi-scale manner', we choose to preserve the original
resolution of the input. As will be shown in § 4.4, such a
design choice is important as the information loss due to the
reduced resolution hurts model accuracy.

3.5. Objective Function

We adopt the mean squared error (MSE) between the net-
work’s output I and the original image I as the objective
function for pre-training. When we fine-tune the pre-trained
network, we follow [30] and use a foreground-normalized
MSE loss as the objective function.

4. Experiments

We evaluate our method by comparing its performance with
other state-of-the-art (SOTA) methods and provide insights
into our method through ablation studies. We adopt four
metrics, i.e., mean squared error (MSE), peak signal to
noise ratio (PSNR), foreground mean squared error (fMSE )
[8], and foreground peak signal to noise ratio (fPSNR) [8].

4.1. Datasets

Following previous works [7,8,15], we evaluate our method
on iHarmony4 dataset [8]. For completeness, we also eval-
uate our method on RealHM dataset [20]. Unless otherwise
stated, we pre-train our LEMaRT model on the set of 120K
unlabeled images from the MS COCO dataset [25] and fine-
tune on iHarmony4. There is no overlap between the images
used for pre-training and the images used for fine-tuning
and evaluation. Images in iHarmony4 either come from the
set of labeled images in MS COCO, which is disjoint from
the unlabeled images in MS COCO, or from other datasets.
Following [7, 8, 15, 30, 34], we resize the input images and
the ground truth images to 256 x 256.

'Swin Transformer [27] uses a Patch Merging layer to reduce the spa-
tial size of its input by a factor of two at the end of each stage.



composite DIH S2AM DoveNet BargNet IntrHarm RainNet iS2AM DHT+ SCS-Co LEMaRT

dataset | metric image [34] [9] [8] [7] [15] [26] 30] [13] [16] (SwinIH)
PSNRT| 339 347 355 358  37.0 37.2 371 392 392 399 41.0 1

HCOCO| \vsg| | 694 519 411 367 248 24.9 295 165 150 13.6 101 135
PSNRT| 282 323 338 343 353 352 362 381 372 383 3941

HAdobe | \isg| | 3455 927 634 523 399 430 434 219 368 210 18.8 >
~[PSNRT] 283 296 300 302 313 313 31.6 336 336 342 3531
HFlickr | \sg| | 2644 1634 1435 1331 973 1051 1106 697 679 558 40.7 115
PSNRT| 340 346 345 353 357 360 348 377 364 378 381 10>

HD2N | MSE| | 1097 823 766 520 510 555 574 406 497 418 423417
PSNR | 316 334 343 348 359 35.9 36.1 382 379 388 39.8 10

all | MSE| | 1725 768 597 523 378 38.7 403 244 279 213 168 15

Table 1. Our pre-trained image harmonization model, LEMaRT, outperforms state-of-the-art (SOTA) models on iHarmony4. The column
named composite image shows the result for the direct copy and paste of foreground regions on top of background images.

4.2. Implementation Details

We use an AdamW optimizer [28] both during pre-training
and fine-tuning. We set 81 = 0.9, B2 = 0.95, ¢ = le™®
and weight decay to 0.05. The window size and the patch
size of SwinlIH are set to 32 and 4, respectively. We pre-
train our model for 30 epochs with a batch size of 192 and
a learning rate of 2.7e~2. We then fine-tune the pre-trained
model for 120 epochs with a learning rate of 2.7¢73. A
cosine annealing scheduler controls the change of learning
rate. The minimum learning rate is set to 0.0. We adopt
the random mask generation strategy and set mask ratio to
50% during pre-training. This is the default setting for the
experiments.

4.3. Comparison with SOTA Methods

a. On iHarmony4 Dataset

In Table 1, we present a comparison between the perfor-
mance of our method, LEMaRT (SwinlH), and the per-
formance of existing methods on iHarmony4. Overall,
LEMaRT comprehensively outperforms existing methods
across the two metrics (PSNR and MSE). Most notably, our
method achieves a PSNR of 39.8 dB, which is 1.0 dB higher
than the previous best method. The MSE of our method is
16.8, which is 4.5 lower (21.1% relative improvement) than
the previous best method [16] 2.

We notice that our method, LEMaRT, consistently
achieves better performance than SOTA methods [7-9, 13,
15,16,26,30,34] on three of the four subsets, i.e., HCOCO,
HAdobe and HFlickr of iHarmony4. Meanwhile, on the
HD2N subset, the performance of our method is on par with
SOTA methods. While our method yields higher PSNR, the

2Qur method also outperforms SOTA methods across the iHarmony4
dataset in terms of fPSNR and fMSE. For brevity, we omit them in Table |
and include them in supplementary materials instead.

MSE of our method is higher. We hypothesize that the do-
main of MS COCO, the dataset which we use to pre-train
LEMaRT, is not closely aligned with that of HD2N. For ex-
ample, mountains and buildings are the salient objects in
most images in the HD2N subset. However, they do not
often appear as the main objects in MS COCO images.

In Figure 5, we compare the harmonized images gener-
ated by three SOTA methods, i.e., RainNet, iS?AM, DHT+,
and our method, ie., LEMaRT (SwinlH). We see that
LEMaRT can generate photo-realistic images. Compared
to other methods, LEMaRT is better at making color cor-
rections, thanks to the pre-training process during which
LEMaRT learns the distribution of photo-realistic images.

b. On RealHM Dataset

In Table 2, we compare the performance of our method,
LEMaRT, with multiple SOTA methods on RealHM
dataset. We pre-train our model on 120K images from
Open Images V6 [21] for 22 epochs and then fine-tune our
model on iHarmony4 for 1 epoch with a learning rate of
5.3¢73. We see that LEMaRT comfortably outperforms
DoveNet [8] and S2AM [9], and achieves comparable re-
sults to SSH [20]. A comparison of the harmonized images
generated by our LEMaRT method and existing methods
can be found in the supplementary materials.

method || DoveNet [5] | SAM [9] | SSH [20] | LEMaRT

MSE | 214.1 283.3 206.9 206.1

PSNR 1 274 26.8 27.9 27.6

Table 2. Comparison between our pre-trained model, LEMaRT,
and SOTA models on RealHM.

4.4. Ablation Studies

We conduct ablation studies to gain insights into various
aspects of our method. These aspects include the general-



SwinlH ViT [10] ResNet [38] HRNet [32] HT+ [13]
dataset | metric w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
PSNR?T 370  39.0 35.7 384 346  36.3 332 353 37.7 38.9
MSE| 35.5 20.9 482  24.1 644 442 78.5 48.4 314 223
all fPSNR1 24.5 26.6 23.1 25.9 21.9 23.4 206 227 25.1 26.3
fMSE| || 386.6 250.0 | 499.9 282.6 | 6453 459.9 | 811.9 510.6 | 342.6 266.5

Table 3. Effect of pre-training on different image harmonization models, i.e., our SwinlH, ViT [10], ResNet [38], HRNet [32] and HT+ [13].
We compare their performance when they are trained on iHarmony4 from scratch (w/o columns), and when they are fine-tuned after being
pre-trained with LEMaRT using the unlabeled images in MS COCO (w/ columns).

ization ability of our LEMaRT method across different net-
work architectures, its efficiency in terms of data and an-
notation consumption, the design choices of our SwinlH
model, and the sensitivity of its performance to the mask
generation strategy and the mask size.

a. Generalization Across Network Architectures

The goal of the first ablation study is to understand
the effectiveness of the proposed pre-training method,
i.e., LEMaRT, on various network architectures, includ-
ing vision Transformers and convolutional neural networks
(CNNSs). Specifically, we adopt five different networks, i.e.,
SwinlH, ViT [10], ResNet [38], HRNet [32] and HT+ [13].
SwinIH refers to our model introduced in § 3.4. ViT refers
to the vision Transformer model that adopts global atten-
tion. ResNet is a variant of the ResNet generator intro-
duced in pix2pixHD [38]. We remove the down sampling
operators to make it suitable for image harmonization. We
re-implement HT+ [13], a ViT-style Transformer model de-
signed for image harmonization. Our implementation has
comparable results (0.3 dB higher PSNR, and 0.9 higher
MSE) with those reported in [13]. We compare the perfor-
mance of the five networks when they are trained on iHar-
mony4 from scratch (w/o columns in Table 3), and when
they are fine-tuned after being pre-trained with LEMaRT
(w/ columns). We train (or fine-tune) SwinlH, ViT, ResNet
and HRNet on iHarmony4 for 30 epochs, and HT+ for 120
epochs to be consistent with the results reported in [13].
Other settings are kept the same as the default setting.

As shown in Table 3, pre-training on MS COCO with
LEMaRT significantly improves performance of the mod-
els under study over training from scratch on iHarmony4.
Specifically, the performance boost ranges from 1.2 to 2.7
dB in terms of PSNR and 1.2 to 2.8 dB in terms of fPSNR.
In particular, LEMaRT improves the PSNR of our SwinlH
model by 2.0 dB and its MSE by 14.6. Moreover, LEMaRT
is effective not only for models adapted from other vision
tasks, but also for those specifically designed for image har-
monization, such as HT+ [13].

b. Data Efficiency

Next, we evaluate the effectiveness of LEMaRT with re-
spect to the amount of fine-tuning data. As before, we

pre-train our SwinIlH model in two settings: training from
scratch on iHarmony4 only and pre-training followed by
fine-tuning. For both settings, we vary the amount of fine-
tuning data by uniformly sampling between 1% and 100%
of the iHarmony4 training set.

The results in Figure 6 are consistent with the previ-
ous section, in the sense that pre-training improves image
harmonization accuracy by a large margin (up to 2.4 dB
in terms of PSNR and 299.1 in terms of MSE) regardless
of the amount of fine-tuning data. More importantly, the
LEMaRT pre-training scheme is more beneficial to the low
data regime than the high data regime. For example, when
using no more than 10% of the fine-tuning data, the per-
formance boost attributed to pre-training ranges between
2.3 and 2.4 dB, whereas the improvement at 100% of fine-
tuning data declines to 1.4 dB. We observe a similar trend
in the MSE measure, where the MSE improvement drops
from around 300.0 at 1% of iHarmony4 training data to less
than 90.0 when using the full training set.

¢. Model Design Choices

In this experiment, we pay attention to two design choices
of our SwinIH model. The first choice is to maintain the in-
put resolution across all the transformer blocks or to adopt
a bottleneck layer similar to encoder-decoder models. The
second choice is whether to use efficient local attention, i.e.,
Swin attention, across all the blocks or to use global atten-
tion as well. This choice stems from a visual observation
that the Swin attention occasionally induces block-shaped
visual artifacts in harmonized images, as shown in Figure 7.
Therefore, it prompts the necessity to modify model archi-
tecture to maintain a balance between efficiency and visual
quality.

To gain insights into these aspects, we compare SwinlH,
its two variants, i.e., SwinlH-MS, SwinIH-Local, and Swin
Transformer (Swin-T) [27]. SwinIH is introduced in § 3.4.
SwinlH-MS differs from SwinIH in that it first reduces and
then enlarges the resolution of feature maps at deeper layers.
SwinlH-Local replaces the global attention layer of SwinlH
with a Swin attention block. As discussed in § 3.4, Swin-
T is composed of Swin attention blocks and uses a Patch
Merging layer to reduce the spatial size of feature maps.
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Figure 5. Qualitative comparison between our method, LEMaRT (SwinlH), and three SOTA methods (RainNet [26], iS?AM [30], DHT+
[13]) on the iHarmony4 dataset. Compared to other methods, LEMaRT is better at color correction, thanks to the pre-training process
during which LEMaRT learns the distribution of photo-realistic images.
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Figure 6. Performance of our SwinlH model when it is fine-tuned on a portion (1-50%) of the iHarmony4 dataset. One variant is trained
from scratch using the all training data from the iHarmony4 dataset (referred to as w/o LEMaRT). The other is pre-trained with LEMaRT
and then fine-tuned using the all training data from the iHarmony4 dataset (referred to as LEMaRT) .

We add a Patch Splitting layer (does the opposite of a Patch
Merging layer) to enlarge the size of feature maps to make
it suitable for image harmonization.

As shown in Table 4, SwinlH significantly outperforms
SwinlH-MS and Swin-T across all four metrics, e.g., by 0.7
dB and 0.9 dB in terms of PSNR, and by 5.8 and 11.5 in

terms of MSE, respectively. We hypothesize that the per-
formance drop is caused by the information loss when the
resolution of a feature map is reduced. The performance of
SwinlH-Local and that of SwinIH are comparable in terms
of PSNR and MSE. However, as shown in Figure 7, SwinlH
produces results that are of higher visual quality. As shown



SwinlH-Local SwinlH

zoom in view

I

Figure 7. Qualitative comparison between the results of SwinlH-
Local and SwinIH. SwinIH-Local occasionally generates images
with block-shaped visual artifacts, while SwinlH does not.

full image zoom in view full image

model

dataset | metric Swinl[H MS Local Swin-T

PSNRT || 37.0 363 37.0  36.1
MSE/ 355 413 351 470
all | fpSNRT || 245 237 245 232
fMSE| || 386.6 4545 3852 4993

Table 4. Performance comparison of SwinlH, its two variants, i.e.,
SwinlH-Local (denoted as Local), SwinI[H-MS (denoted as MS),
and Swin Transformer (denoted as Swin-T) [27] on iHarmony4.

in Figure 7, SwinIH-Local produces visible block bound-
aries. This is caused by the shifted window (Swin) atten-
tion, which prevents visual tokens at the border of each win-
dow to attend to its neighboring visual tokens in adjacent
windows. SwinlH is able to remove these block-shaped arti-
facts. This demonstrates the benefit of using a combination
of global and local attention. To maintain high computa-
tional and memory efficiency, we only employ it in the last
layer of our model.

d. Mask Generation Strategy

mask generation strategy
metric random grid  block

PSNRT || 39.0 37.1 38.6
MSE/ 209 335 232
all | fpSNRT || 26,6 245 26.1
fMSE| || 250.0 380.3 273.8

dataset

Table 5. Comparison of three mask generation strategies intro-
duced in § 3.3: random, grid, block, on iHarmony4.

Here we study the sensitivity of harmonization performance
with respect to the mask generation strategy. To this end,
we compare the three strategies discussed in § 3.3, i.e., ran-
dom, grid and block. We measure the performance of our
model after being pre-trained on MS COCO and fine-tuned
on iHarmony4 for 30 epochs.

As seen in Table 5, the performance of grid strategy
is worse that of the other two strategies. This result is
expected, as the grid strategy can only transform image
patches at specific locations. Therefore, it is not flexible
for cases where there are multiple foreground regions or
they cover an area larger than a grid cell. To our surprise,
the random strategy achieves comparable performance to
the block strategy, which is designed to mimic test cases.
This result confirms that there is no need for a special mask
generation algorithm that is tuned for the LEMaRT pre-
training scheme. In other words, this simplifies the design
and broadens the applicability of LEMaRT to new datasets.

e. Foreground Mask Size

mask ratio
metric 30% 50%  70%

PSNRT || 388 390 39.0
MSE| || 21.8 209 212
all | fpSNRT || 264 266 265
fMSE} || 255.0 250.0 250.5

dataset

Table 6. Image harmonization metrics corresponding to three dif-
ferent foreground mask ratios on iHarmony4.

We examine the sensitivity of image harmonization results
to the foreground mask size. Here, the foreground size is
measured by the ratio of the foreground mask size to the
image size. In this experiment, we fine-tune the pre-trained
models for 30 epochs. In Table 6, we show the quantita-
tive metrics at three different foreground mask ratios, 30%,
50% and 70%. We see that these metrics do not vary signifi-
cantly between the three ratios. For example, fPSNR varies
within a range with 0.2 dB width and fMSE varies within a
range whose width is smaller than 5.0. This indicates that
the size of generated foreground masks does not have sig-
nificant impact on performance of pre-trained models.

5. Conclusion

In this work, we introduced Label-Efficient Masked Region
Transform (LEMaRT), an effective technique of online data
generation for self-supervised pre-training of image harmo-
nization models. LEMaRT provides a simple, yet effec-
tive way to leverage large-scale unannotated datasets. In
addition, we derived a Swin Transformer-based model that
is more efficient than ViT-style Transformer networks for
image harmonization. Extensive experiments on the iHar-
mony4 dataset validate the effectiveness of both our pre-
training method and our model. We set a new state of the
art for image harmonization, while showing that our pre-
training method is much more label-efficient than the exist-
ing methods and is consistently applicable to a wide range
of network architectures for image harmonization.
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1. Qualitative Examples

We present additional qualitative examples of the output of
our method (LEMaRT [SwinIH]) and three SOTA methods
(RainNet [10], iS2AM [12], DHT+ [5]) on the iHarmony4
dataset in Figure 3 and Figure 4. Similar to what we ob-
serve in Figure 5 of the main paper, our method is better
at color correction. The images generated by our method
have more natural colors and are closer to the ground truth
images. We also provide qualitative examples of the out-
put of our method (LEMaRT [SwinIH]), iS2AM [12] and
DHT+ [5] on the RealHM dataset in Figure 5. We see from
the first five examples that our method better harmonizes
composite images. We show a controversial example in the
last row. Different people may have different opinions re-
garding which harmonized image looks more natural.

2. Details of Data Generation Pipeline

The data generation pipeline of LEMaRT uses ten differ-
ent transformations to generate the data for pre-training.
The transformations include adjustments to brightness, con-
trast, hue, saturation and sharpness as well as blurring, de-
blurring, auto contrast, equalization and posterization. The
first five transformations adjust the brightness, contrast,
hue, saturation and sharpness of an image by a factor of
¢, respectively, ¢ € [0.2,1.8] for brightness adjustment;
¢ € [0.3,1.7] for contrast adjustment; ¢ € [0.7,1.3] for
hue adjustment; ¢ € [0.5,1.5] for saturation adjustment;
¢ € [0.0,2.0] for sharpness adjustment. We sample ¢ uni-
formly. For blurring, Gaussian blur with kernel size (k1, k2)
(k1 € [3,9], k2 € [5,11]) is applied. For deblurring, we ap-
ply Gaussian blur to an image. The blurred image is treated
as the original image and the unblurred image is treated as
the transformed image. Auto contrast maximizes the con-
trast of an image by remapping its pixel values so that the
lowest value becomes 0 and the highest value becomes 255.
Equalization adjusts the histogram of an image so that the
histogram of the output image has a uniform grayscale dis-
tribution. Posterization reduces the number of bits for each
color channel of an image to n bits. n is uniformly sampled

from {1,2,3,4,5,6}.

transformation diversity
dataset | metric standard less
PSNR1 39.0 38.2
MSE] 20.9 26.0
all | fpSNRT || 26.6 25.7
fMSE| 250.0 301.2

Table 1. Comparison of the performance of our method pre-trained
using different transformations.

In Figure 2, we present additional examples that show
data generated for pre-training, i.e., the transformed im-
ages, the masks and the composite images, and the output
of a pre-trained LEMaRT model given the generated data
(please refer to Figure 2 of the main paper for an illustra-
tion of the data generation pipeline of LEMaRT). The seven
different transformations used to perturb the original im-
ages are attached to the transformed images. We can see
that, after being pre-trained, our LEMaRT model can har-
monize the composite images that are generated using a va-
riety of transformations, e.g., brightness adjustment, pos-
terization, blurring. The results show that the our LEMaRT
model learns to handle different factors that cause appear-
ance mismatch between the foreground and the surrounding
background.

To understand the impact of the diversity of transforma-
tions to the performance of our model (LEMaRT [SwinIH]),
in Table 1, we compare the performance of our model pre-
trained with the set of transformations introduced above
(denoted as standard) and a set of transformations with less
diversity (denoted as less). Specifically, we halve the range
of the factor c that controls the diversity of the five trans-
formations which adjust the brightness, contrast, hue, sat-
uration and sharpness of an image, i.e., ¢ € [0.6,1.4] for
brightness adjustment; ¢ € [0.65, 1.35] for contrast adjust-
ment; ¢ € [0.85,1.15] for hue adjustment; ¢ € [0.75, 1.25]
for saturation adjustment; ¢ € [0.5,1.0] for sharpness ad-
justment. We sample c uniformly. For blurring, Gaussian
blur with kernel size (k1,k2) (k1 € [2,5],k2 € [2,5]) is



applied. We do not use equalization. We see from Table |
that pre-training our model using transformations with less
diversity results in 0.8 dB drop in PSNR and 5.1 increase
in MSE. This indicates that the diversity of the transforma-
tions has direct influence on the performance of our model.
However, empirically, we find that increasing the diversity
of the transformations further does not lead to better perfor-
mance. A possible reason is that samples created by those
transformations are so unnatural that they seldom appear in
real world.

3. Comparison with SOTA Methods

We compare our method, LEMaRT [SwinIH], with SOTA
methods on iHarmony4. The results are shown Table 3. Ta-
ble 3 differs from the Table 1 of the main paper only in
that it shows all four metrics, i.e., PSNR, MSE, fPSNR,
fMSE (due to space constraints, the Table 1 of the main
paper does not show fPSNR and fMSE). Similar to what
we observe from the Table 1 of the main paper, our method
consistently outperforms other methods across the two ad-
ditional metrics (fPSNR and fMSE) on all subsets of iHar-
mony4. Our method achieves a fPSNR of 27.2 dB, which
is 1.3 dB higher than the previous best method. The fMSE
of our method is 213.3, which is 35.6 lower (14.3% relative
improvement) than the previous best method [7].

In Table 4, we further compare our method with four ad-
ditional image harmonization methods [2, 8,9, 11] for com-
pleteness. [8,9] are published in ECCV’22. [11] is an arXiv
paper and [2] is a CVPR’22 paper. These four methods un-
derperform SCS-Co [7] with which we compare our method
in Table 1 of the main paper. We only present PSNR and
MSE as all four methods do not report fPSNR and three
of them, i.e., [2,9, 11], do not report fMSE. We see that our
method outperforms all four methods. Our method achieves
a PSNR of 39.8 dB which is 1.6 dB higher than [11], i.e.,
the best of the four methods. The MSE of our method is
7.2 lower (30.0% relative improvement) than [11]. Har-
monizer also adopts a perturbation-reconstruction strategy
for training data generation. While Harmonizer [8] applies
transformations to perturb the manually labeled foreground,
LEMaRT perturbs regions specified by automatically gener-
ated masks. LEMaRT generates training data automatically
using the plentiful supply of unlabeled data. We see that the
MSE of our method is 8.8 higher than that of Harmonizer.
It is likely that this is caused by a few images on which our
method performs poorly (largest MSE over 1200.0, more
than 27 times of the average). As PSNR is in log space,
the images on which our method performs poorly has less
influence to PSNR than MSE.

4. Cause of Block-shaped Artifacts

In Figure 7 of the main paper, we show that only using
shifted window (Swin) attention occasionally causes block-
shaped artifacts. We explain the reason why the block-
shaped artifacts appear. In Figure 1, we present an illus-
tration of the Swin attention. Visual tokens within the same
window (shown in the same color) can attend to each other,
but cannot attend to their neighboring tokens in other win-
dows. For example, the two tokens that contain circles can-
not attend to each other, even if they are next to each other.
This may cause the block-shaped artifacts, and motivates
our proposed use of global attention to address this chal-
lenge.

Figure 1. Illustration of the shifted window (Swin) attention
which performs self-attention within local windows (window size
is 4 x 4). Visual tokens within the same window (shown in the
same color) can attend to each other, but cannot attend to their
neighboring tokens in other windows. For example, the two to-
kens that contain circles cannot attend to each other even though
they are next to each other. Hence, only using Swin attention may
cause block-shaped artifacts (shown in Figure 7 of the main pa-
per).

5. Additional Ablation Studies

pre-training dataset
dataset metric COCO (0] COCO (50%)
PSNR? 39.0 38.9 38.5
MSE] 20.9 21.5 23.7
all | fpSNRT || 266 265 26.1
fMSE] 250.0 253.7 280.0

Table 2. Comparison of the performance of our method pre-trained
using three different datasets, i.e., COCO, Open Images V6 (de-
noted as OI) and 50% of COCO dataset.

We investigate the influence of the pre-training dataset to
the performance of our method. We present a comparison of
the performance of our method pre-trained using three dif-
ferent datasets, i.e., the unlabeled set from MS COCO (de-
noted as COCO), 120K images from Open Images V6 (de-



noted as OI) and 50% of the unlabeled set from MS COCO
(denoted as 50% COCO) in Table 2.

We see that pre-training SwinlH with our method
(LEMaRT) on a set of 120K randomly sampled images
from Open Images V6 (roughly of same size as the un-
labeled set of MS COCO). The results are comparable to
those of SwinIH pre-trained on MS COCO (only 0.1 dB
lower PSNR and 0.7 higher MSE on iHarmony4). This in-
dicates that common images from the Internet can be used
for LEMaRT pre-training. We see that training our model
on 50% of COCO results in 0.4 dB drop in PSNR relative
to pre-training on 100% of COCO. This shows the benefit
of using a larger pre-training dataset.

6. Training Time and GPU Requirement

Pre-training our model (SwinlH) does not require addi-
tional hardware and pre-training time scales linearly with
dataset size. For example, pre-training SwinlH on COCO
takes 54% of the time required to train/fine-tune SwinlH
on iHarmony4 dataset. Compared to another Transformer-
based harmonization model DHT+ [5], SwinIH uses 18%
less time and 12% less GPU memory, underscoring the ef-
ficiency of our architecture.

7. User Study

We conducted a limited user study of our model compared
to DHT+ [5] using real data to complement our quantitative
results in the main paper. We randomly sampled 50 real
composite images from RealHM. Using the method in [7],
we had 7 participants who rated 1050 image pairs. The nor-
malized B-T score for LEMaRT was 51.31, and 48.7 for
DHTH+, indicating our better qualitative performance. In our
future work, we will conduct a more comprehensive user
study with more participants and a larger number of images.
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composite  DIH S2AM DoveNet BargNet IntrHarm RainNet iS?AM DHT+ SCS-Co LEMaRT

dataset | metric | image  [13]  [4] [3] [1] [6] [10] 121 [51 [71 [SwinIH]
1.1

13.5

HCOCO| fpsNRt| 199 207 225 225 - 240 224 - 258 - 26.9 111
fMSE| | 996.6 799.0 542.1 551.0 3979 4164 5012 2662 274.6 2455 209.4 .

1.1

MSE|] 3 122
HAdobe | jpgNR|| 175 224 243  25.1 - 259 250 - 271 - 29.2 10
fMSE| | 2051.6 593.0 404.6 3804 2797 2842  317.6 1740 2426 1655 147.3 15>

1.1

L15.1

HFlickr | (pgNRt| 181 193 209 208 ; 216 210 - 235 - 25.0 115
fMSE| | 1574.4 1099.1 7857 827.0 6984  716.6 6884 4437 471.1 3937 342.7 510

10.3

117

HD2N | ipsNRT | 19.1 19.7 205 206 - 217 202 - 217 - 228111
fMSE| | 1410.0 11294 989.1 1075.7 8356 797.0 9165 5910 736.6 606.8 580.5 105

1.0

145

all  |gpsNRT| 190 210 228  23.0 - 242 230 - 259 - 27.2 415
fMSE| | 13764 7732 5947 532.6 4052 4003  469.6 2650 2956 2489 2133 356

Table 3. Our image harmonization method, LEMaRT [SwinIH], outperforms state-of-the-art (SOTA) methods on iHarmony4 across all
four metrics including fPSNR and fMSE (due to space constraints, fPSNR and fMSE are omitted in Table 1 of the main paper). PSNR
, as they have been shown in the Table 1 of the main paper. We repeat them for the readers’ convenience. The
column named composite image shows the results for the direct copy and paste of foreground regions on top of background images.

and MSE are shown in

FRIH CDTNet S2CRNet Harmonizer = LEMaRT

dataset metric [11] [2] [9] [8] [SwinIH]
PSNRT | 39.4 39.2 385 38.8 41.0 116

HCOCO | nMsgp | 151 16.3 232 17.3 10.1 50
PSNRT | 377 382 36.4 376 39.4 1>

HAdobe | \sg| | 236 20.6 34.9 21.9 18.8 |15
' PSNRT | 335 336 325 33.6 35317
HFlickr | \sg| | 68.9 68.6 98.7 64.8 40.7 70
PSNRT | 379 38.0 36.8 376 38.1 0.

HD2N | \sg| | 428 36.7 51.7 33.1 42.3 158
PSNR | 382 382 372 37.8 39.8 116

all MSE| | 240 24.7 35.6 243 16.8 17>

Table 4. Comparison between our LEMaRT [SwinIH] model and four additional image harmonization models [11], [2], [9], [8] on
iHarmony4. We include these models for completeness, although they underperform the state-of-the-art (SOTA) method [7] presented in
the main paper.
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Figure 2. Qualitative examples that show data generated for pre-training and the output of a pre-trained LEMaRT model given the generated
data. We apply brightness adjustment (row 1), hue adjustment (row 2), contrast adjustment (row 3), equalization (row 4), posterization
(row 5), blurring (row 6), deblurring (row 7) to generate the transformed images shown in the second column.



Figure 3. Qualitative comparison between our method (LEMaRT [SwinIH]) and three SOTA methods (RainNet [10], iS2AM [12], DHT+
[5]) on iHarmony4. Compared to other methods, LEMaRT is better at color correction, thanks to the pre-training process during which
LEMaRT learns the distribution of photo-realistic images.



composite

"

Figure 4. Qualitative comparison between our method, LEMaRT [SwinIH], and three SOTA methods (RainNet [10], iS2AM [12], DHT+
[5]) on iHarmony4. We provide zoom-in views of regions in yellow rectangles. In the first example, the color of the horse in our image is
more natural and closer to that of the horse in the ground truth image than other images. We see from the second example that the texture
and the color of the leaf in our image are in harmony with those of the background. In the third example, the color of the mountain and its
reflection are better aligned in our image than other images. We see from the forth example that our method can better harmonize subtle
structures, i.e., small leaves and thin branches, than other methods.



composite image (input) iS2AM LEMaRT (SwinlH) ground truth

Figure 5. Qualitative comparison between our method, LEMaRT [SwinIH], and two SOTA methods (iS?AM [12], DHT+ [5]) on RealHM.
We see from the first five rows that our method can better harmonize a composite image than other methods. We show a controversial
example in the last row. Different people may have different opinions regarding which harmonized image looks more natural.
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