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“in the forest” “on the moon” The Starry Night”

“a black cat with a red
sweater and a blue jeans”

“an astronaut”
“a horse”

“a black horse”
“a red full moon”

“in an empty room” “on a snowy day” “at the beach”

“a canvas with a painting
of a Corgi dog”

“a metallic yellow robot”

“a mouse”
“boxing gloves”

“a black punching bag”

“a lion”
“a book”

Figure 1. Samples of generated images from input text and our proposed spatio-textual representations. Each pair consists of an (i)
input global text (top left, black), a spatio-textual representation describing each segment using free-form text prompts (left, colored text
and sketches), and (ii) the corresponding generated image (right). As can be seen, SpaText is able to generate high-quality images that
correspond to both the global text and spatio-textual representation content. (The colors are for illustration purposes only, and do not affect
the actual inputs.)

Abstract

Recent text-to-image diffusion models are able to gener-
ate convincing results of unprecedented quality. However,
it is nearly impossible to control the shapes of different re-
gions/objects or their layout in a fine-grained fashion. Pre-
vious attempts to provide such controls were hindered by
their reliance on a fixed set of labels. To this end, we present
SpaText — a new method for text-to-image generation using
open-vocabulary scene control. In addition to a global text
prompt that describes the entire scene, the user provides a
segmentation map where each region of interest is anno-
tated by a free-form natural language description. Due to
lack of large-scale datasets that have a detailed textual de-
scription for each region in the image, we choose to lever-
age the current large-scale text-to-image datasets and base
our approach on a novel CLIP-based spatio-textual repre-
sentation, and show its effectiveness on two state-of-the-art
diffusion models: pixel-based and latent-based. In addi-

tion, we show how to extend the classifier-free guidance
method in diffusion models to the multi-conditional case
and present an alternative accelerated inference algorithm.
Finally, we offer several automatic evaluation metrics and
use them, in addition to FID scores and a user study, to
evaluate our method and show that it achieves state-of-the-
art results on image generation with free-form textual scene
control.

1. Introduction
Imagine you could generate an image by dipping your

digital paintbrush (so to speak) in a “black horse” paint,
then sketching the specific position and posture of the horse,
afterwards, dipping it again in a “red full moon” paint and
sketching it the desired area. Finally, you want the entire
image to be in the style of The Starry Night. Current state-
of-the-art text-to-image models [68, 76, 92] leave much to
be desired in achieving this vision.

Project page is available at: https://omriavrahami.com/spatext
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The text-to-image interface is extremely powerful — a
single prompt is able to represent an infinite number of pos-
sible images. However, it has its cost — on the one hand,
it enables a novice user to explore an endless number of
ideas, but, on the other hand, it limits controllability: if the
user has a mental image that they wish to generate, with
a specific layout of objects or regions in the image and
their shapes, it is practically impossible to convey this in-
formation with text alone, as demonstrated in Figure 2. In
addition, inferring spatial relations [92] from a single text
prompt is one of the current limitations of SoTA models.

Make-A-Scene [27] proposed to tackle this problem by
adding an additional (optional) input to text-to-image mod-
els, a dense segmentation map with fixed labels. The user
can provide two inputs: a text prompt that describes the en-
tire scene and an elaborate segmentation map that includes a
label for each segment in the image. This way, the user can
easily control the layout of the image. However, it suffers
from the following drawbacks: (1) training the model with
a fixed set of labels limits the quality for objects that are not
in that set at inference time, (2) providing a dense segmenta-
tion can be cumbersome for users and undesirable in some
cases, e.g., when the user prefers to provide a sketch for
only a few main objects they care about, letting the model
infer the rest of the layout; and (3) lack of fine-grained con-
trol over the specific characteristic of each instance. For ex-
ample, even if the label set contains the label “dog”, it is not
clear how to generate several instances of dogs of different
breeds in a single scene.

In order to tackle these drawbacks, we propose a differ-
ent approach: (1) rather than using a fixed set of labels to
represent each pixel in the segmentation map, we propose
to represent it using spatial free-form text, and (2) rather
than providing a dense segmentation map accounting for
each pixel, we propose to use a sparse map, that describes
only the objects that a user specifies (using spatial free-
form text), while the rest of the scene remains unspecified.
To summarize, we propose a new problem setting: given
a global text prompt that describes the entire image, and
a spatio-textual scene that specifies for segments of inter-
est their local text description as well as their position and
shape, a corresponding image is generated, as illustrated in
Figure 1. These changes extend expressivity by providing
the user with more control over the regions they care about,
leaving the rest for the machine to figure out.

Acquiring a large-scale dataset that contains free-form
textual descriptions for each segment in an image is pro-
hibitively expensive, and such large-scale datasets do not
exist to the best of our knowledge. Hence, we opt to extract
the relevant information from existing image-text datasets.
To this end, we propose a novel CLIP-based [66] spatio-
textual representation that enables a user to specify for each
segment its description using free-form text and its posi-

“at the beach” SpaText Stable Diffusion DALL·E 2

“a white Labrador” “a white Labrador at the beach puts its
“a blue ball” right arm above a blue ball without

touching, while sitting in the bottom
right corner of the frame”

Figure 2. Lack of fine-grained spatial control: A user with a
specific mental image of a Labrador dog holding its paw above a
blue ball without touching, can easily generate it with a SpaText
representation (left) but will struggle to do so with traditional text-
to-image models (right) [69, 73].

tion and shape. During training, we extract local regions
using a pre-trained panoptic segmentation model [89], and
use them as input to a CLIP image encoder to create our
representation. Then, at inference time, we use the text de-
scriptions provided by the user, embed them using a CLIP
text encoder, and translate them to the CLIP image embed-
ding space using a prior model [68].

In order to assess the effectiveness of our proposed rep-
resentation SpaText, we implement it on two state-of-the-
art types of text-to-image diffusion models: a pixel-based
model (DALL·E 2 [68]) and a latent-based model (Stable
Diffusion [73]). Both of these text-to-image models em-
ploy classifier-free guidance [38] at inference time, which
supports a single conditioning input (text prompt). In order
to adapt them to our multi-conditional input (global text as
well as the spatio-textual representation), we demonstrate
how classifier-free guidance can be extended to any multi-
conditional case. To the best of our knowledge, we are the
first to demonstrate this. Furthermore, we propose an ad-
ditional, faster variant of this extension that trades-off con-
trollability for inference time.

Finally, we propose several automatic evaluation metrics
for our problem setting and use them along with the FID
score to evaluate our method against its baselines. In addi-
tion, we conduct a user-study and show that our method is
also preferred by human evaluators.

In summary, our contributions are: (1) we address a new
scenario of image generation with free-form textual scene
control, (2) we propose a novel spatio-textual representa-
tion that for each segment represents its semantic proper-
ties and structure, and demonstrate its effectiveness on two
state-of-the-art diffusion models — pixel-based and latent-
based, (3) we extend the classifier-free guidance in diffusion
models to the multi-conditional case and present an alter-
native accelerated inference algorithm, and (4) we propose
several automatic evaluation metrics and use them to com-
pare against baselines we adapted from existing methods.
We also evaluate via a user study. We find that our method
achieves state-of-the-art results.



2. Related Work

Text-to-image generation. Recently, we have witnessed
great advances in the field of text-to-image generation. The
seminal works based on RNNs [15, 39] and GANs [30]
produced promising low-resolution results [71, 91, 93, 94]
in constrained domains (e.g., flowers [58] and birds [87]).
Later, zero-shot open-domain models were achieved using
transformer-based [86] approaches: DALL·E 1 [69] and
VQ-GAN [24] propose a two-stage approach by first train-
ing a discrete VAE [45,70,85] to find a rich semantic space,
then, at the second stage, they learn to model the joint distri-
bution of text and image tokens autoregressively. CogView
[21, 22] and Parti [92] also utilized a transformer model for
this task. In parallel, diffusion based [18, 20, 37, 57, 77]
text-to-image models were introduced: Latent Diffusion
Models (LDMs) [73] performed the diffusion process on a
lower-dimensional latent space instead on the pixel space.
DALL·E 2 [68] proposed to perform the diffusion process
on the CLIPimg space. Finally, Imagen [76] proposed to
utilize a pre-trained T5 language model [67] for condition-
ing a pixel-based text-to-image diffusion model. Recently,
retrieval-based models [4, 10, 14, 74] proposed to augment
the text-to-image models using an external database of im-
ages. All these methods do not tackle the problem of image
generation with free-form textual scene control.

Scene-based text-to-image generation. Image gen-
eration with scene control has been studied in the past
[26, 35, 36, 40, 49, 65, 72, 80–82, 95], but not with gen-
eral masks and free-form text control. No Token Left Be-
hind [61] proposed to leverage explainability-based method
[12, 13] for image generation with spatial conditioning us-
ing VQGAN-CLIP [19] optimization. In addition, Make-
A-Scene [27] proposed to add a dense segmentation map
using a fixed set of labels to allow better controllability. We
adapted these two approaches to our problem setting and
compared our method against them.

Local text-driven image editing. Recently, various
text-driven image editing methods were proposed [1, 4, 8,
9, 11, 17, 28, 29, 33, 43, 47, 48, 64, 75, 84] that allow edit-
ing an existing image. Some of the methods support local-
ized image editing: GLIDE [56] and DALL·E 2 [68] train
a designated inpainting model, whereas Blended Diffusion
[5, 6] leverages a pretrained text-to-image model. Com-
bining these localized methods with a text-to-image model
may enable scene-based image generation. We compare our
method against this approach in the supplementary.

3. Method

We aim to provide the user with more fine-grained con-
trol over the generated image. In addition to a single global
text prompt, the user will also provide a segmentation map,
where the content of each segment of interest is described

using a local free-form text prompt.
Formally, the input consists of a global text prompt tglobal

that describes the scene in general, and a H×W raw spatio-
textual matrix RST , where each entry RST [i, j] contains
the text description of the desired content in pixel [i, j], or ∅
if the user does not wish to specify the content of this pixel
in advance. Our goal is to synthesize an H×W image I that
complies with both the global text description tglobal and the
raw spatio-textual scene matrix RST .

In Section 3.1 we present our novel spatio-textual rep-
resentation, which we use to tackle the problem of text-
to-image generation with sparse scene control. Later, in
Section 3.2 we explain how to incorporate this represen-
tation into two state-of-the-art text-to-image diffusion mod-
els. Finally, in Section 3.3 we present two ways for adapting
classifier-free guidance to our multi-conditional problem.

3.1. CLIP-based Spatio-Textual Representation

Over the recent years, large-scale text-to-image datasets
were curated by the community, fueling the tremendous
progress in this field. Nevertheless, these datasets cannot
be naı̈vely used for our task, because they do not contain lo-
cal text descriptions for each segment in the images. Hence,
we need to develop a way to extract the objects in the image
along with their textual description. To this end, we opt to
use a pre-trained panoptic segmentation model [89] along
with a CLIP [66] model.

CLIP was trained to embed images and text prompts into
a rich shared latent space by contrastive learning on 400
million image-text pairs. We utilize this shared latent space
for our task in the following way: during training we use
the image encoder CLIPimg to extract the local embeddings
using the pixels of the objects that we want to generate (be-
cause the local text descriptions are not available), whereas
during inference we use the CLIP text encoder CLIPtxt to
extract the local embeddings using the text descriptions pro-
vided by the user.

Hence, we build our spatio-textual representation, as de-
picted in Figure 3: for each training image x we first extract
its panoptic segments {Si ∈ [C]}i=N

i=1 where C is the num-
ber of panoptic segmentation classes and N is the number of
segments for the current image. Next, we randomly choose
K disjoint segments {Si ∈ [C]}i=K

i=1 . For each segment Si,
we crop a tight square around it, black-out the pixels in the
square that are not in the segment (to avoid confusing the
CLIP model with other content that might fall in the same
square), resize it to the CLIP input size, and get the CLIP
image embedding of that segment CLIPimg(Si).

Now, for the training image x we define the spatio-
textual representation STx of shape (H,W, dCLIP) to be:

STx[j, k] =

{
CLIPimg(Si) if [i, k] ∈ Si
#»
0 otherwise

(1)



CLIPimg

CLIPimg
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"a round 
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vase"

CLIPtxt
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Figure 3. Spatio-textual representation: During training (left) — given a training image x, we extract K random segments, pre-process
them and extract their CLIP image embeddings. Then we stack these embeddings in the same shapes of the segments to form the spatio-
textual representation ST . During inference (right) — we embed the local prompts into the CLIP text embedding space, then convert them
using the prior model P to the CLIP image embeddings space, lastly, we stack them in the same shapes of the inputs masks to form the
spatio-textual representation ST .

where dCLIP is the dimension of the CLIP shared latent
space and

#»
0 is the zero vector of dimension dCLIP.

During inference time, to form the raw spatio-textual
matrix RST , we embed the local prompts using CLIPtxt
to the CLIP text embedding space. Next, in order to mit-
igate the domain gap between train and inference times,
we convert these embeddings to CLIPimg using a designated
prior model P . The prior model P was trained separately to
convert CLIP text embeddings to CLIP image embeddings
using an image-text paired dataset following DALL·E 2.
Finally, as depicted in Figure 3 (right), we construct the
spatio-textual representation ST using these embeddings at
pixels indicated by the user-supplied spatial map. For more
implementation details, please refer to the supplementary.

3.2. Incorporating Spatio-Textual Representation
into SoTA Diffusion Models

The current diffusion-based SoTA text-to-image mod-
els are DALL·E 2 [68], Imagen [76] and Stable Diffu-
sion [73]. At the time of writing this paper, DALL·E 2
[68] model architecture and weights are unavailable,
hence we start by reimplementing DALL·E 2-like text-to-
image model that consists of three diffusion-based mod-
els: (1) a prior model P trained to translate the tuples
(CLIPtxt(y),BytePairEncoding(y)) into CLIPimg(x) where
(x, y) is an image-text pair, (2) a decoder model D that
translates CLIPimg(x) into a low-resolution version of the
image x64×64, and (3) a super-resolution model SR that up-
samples x64×64 into a higher resolution of x256×256. Con-
catenating the above three models yields a text-to-image
model SR ◦D ◦ P .

Now, in order to utilize the vast knowledge it has gath-
ered during the training process, we opt to fine-tune a pre-
trained text-to-image model in order to enable localized tex-
tual scene control by adapting its decoder component D.
At each diffusion step, the decoder performs a single de-
noising step xt = D(xt−1,CLIPimg(x), t) to get a less

noisy version of xt−1. In order to keep the spatial cor-
respondence between the spatio-textual representation ST
and the noisy image xt at each stage, we choose to con-
catenate xt and ST along the RGB channels dimensions,
to get a total input of shape (H,W, 3 + dCLIP). Now, we
extend each kernel of the first convolutional layer from
shape (Cin,KH ,KW ) to (Cin + dCLIP,KH ,KW ) by con-
catenating a tensor of dimension dCLIP that we initialize
with He initialization [32]. Next, we fine-tuned the de-
coder using the standard simple loss variant of Ho et al.
[37] Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt,CLIPimg(x0), ST, t)||2

]
where ϵθ is a UNet [53] model that predicts the added noise
at each time step t, xt is the noisy image at time step t and
ST is our spatio-textual representation. To this loss, we
added the standard variational lower bound (VLB) loss [57].

Next, we move to handle the second family of SoTA
diffusion-based text-to-image models: latent-based models.
More specifically, we opt to adapt Stable Diffusion [73], a
recent open-source text-to-image model. This model con-
sist of two parts: (1) an autoencoder (Enc(x), Dec(z)) that
embeds the image x into a lower-dimensional latent space z,
and, (2) a diffusion model A that performs the following de-
noising steps on the latent space zt−1 = A(zt,CLIPtxt(t)).
The final denoised latent is fed to the decoder to get the final
prediction Dec(z0).

We leverage the fact that the autoencoder
(Enc(x), Dec(z)) is fully-convolutional, hence, the
latent space z corresponds spatially to the generated
image x, which means that we can concatenate the
spatio-textual representation ST the same way we did
on the pixel-based model: concatenate the noisy latent
zt and ST along the channels dimensions, to get a total
input of shape (H,W, dim(zt) + dCLIP) where dim(zt)
is the number of feature channels. We initialize the
newly-added channels in the kernels of the first convo-
lutional layer using the same method we utilized for the
pixel-based variant. Next, we fine-tune the denosing model



“a sunny day at the beach” (1) (2) (3) (4) (5)

“a brown horse” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0

Figure 4. Multi-scale control: Using the multi-scale inference (Equation (3)) allows fine-grained control over the input conditions. Given
the same inputs (left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the
generated image contains a horse with the correct color and posture, but not at the beach. Conversely, if we place all the weight on the
global text (5), we get an image of a beach with no horse in it. The in-between results correspond to a mix of conditions — in (4) we get a
gray donkey, in (2) the beach contains no water, and in (3) we get a brown horse at the beach on a sunny day.

by LLDM = Et,y,z0,ϵ

[
||ϵ− ϵθ(zt,CLIPtxt(y), ST, t)||2

]
where zt is the noisy latent code at time step t and y is
the corresponding text prompt. For more implementation
details of both models, please read the supplementary.

3.3. Multi-Conditional Classifier-Free Guidance

Classifier-free guidance [38] is an inference method
for conditional diffusion models which enables trading-off
mode coverage and sample fidelity. It involves training a
conditional and unconditional models simultaneously, and
combining their predictions during inference. Formally,
given a conditional diffusion model ϵθ(xt|c) where c is the
condition (e.g., a class label or a text prompt) and xt is the
noisy sample, the condition c is replaced by the null condi-
tion ∅ with a fixed probability during training. Then, during
inference, we extrapolate towards the direction of the con-
dition ϵθ(xt|c) and away from ϵθ(xt|∅):

ϵ̂θ(xt|c) = ϵθ(xt|∅) + s · (ϵθ(xt|c)− ϵθ(xt|∅)) (2)

where s ≥ 1 is the guidance scale.
In order to adapt classifier-free guidance to our setting,

we need to extend it to support multiple conditions. Given a
conditional diffusion model ϵθ(xt|{ci}i=N

i=1 ) where {ci}i=N
i=1

are N condition inputs, during training, we independently
replace each condition ci with the null condition ∅. Then,
during inference, we calculate the direction of each condi-
tion ∆t

i = ϵθ(xt|ci)−ϵθ(xt|∅) separately, and linearly com-
bine them using N guidance scales si by extending Eq. (2):

ϵ̂θ(xt|{ci}i=N
i=1 ) = ϵθ(xt|∅) +

i=N∑
i=1

si∆
t
i (3)

Using the above formulation, we are able to control each of
the conditions separately during inference, as demonstrated
in Figure 4. To the best of our knowledge, we are the first
to demonstrate this effect in the multi-conditional case.

The main limitation of the above formulation is that
its execution time grows linearly with the number of con-
ditions, i.e., each denoising step requires (N + 1) feed-
forward executions: one for the null condition and N for

the other conditions. As a remedy, we propose a fast variant
of the multi-conditional classifier-free guidance that trades-
off the fine-grained controllability of the model with the
inference speed: the training regime is identical to the
previous variant, but during inference, we calculate only
the direction of the joint probability of all the conditions
∆t

joint = ϵθ(xt|{ci}i=N
i=1 ) − ϵθ(xt|∅), and extrapolate along

this single direction:

ϵ̂θ(xt|{ci}i=N
i=1 ) = ϵθ(xt|∅) + s ·∆t

joint (4)

where s ≥ 1 is the single guidance scale. This formulation
requires only two feed-forward executions at each denois-
ing step, however, we can no longer control the magnitude
of each direction separately.

We would like to stress that the training regime is identi-
cal for both of these formulations. Practically, it means that
the user can train the model once, and only during inference
decide which variant to choose, based on the preference at
the moment. Through the rest of this paper, we used the
fast variant with fixed s = 3. See the ablation study in Sec-
tion 4.4 for a comparison between these variants.

In addition, we noticed that the texts in the image-text
pairs dataset contain elaborate descriptions of the entire
scene, whereas we aim to ease the use for the end-user and
remove the need to provide an elaborate global prompt in
addition to the local ones, i.e., to not require the user to re-
peat the same information twice. Hence, in order to reduce
the domain gap between the training data and the input at
inference time, we perform the following simple trick: we
concatenate the local prompts to the global prompt at infer-
ence time separated by commas.

4. Experiments
For both the pixel-based and latent-based variants,

we fine-tuned pre-trained text-to-image models with 35M
image-text pairs, following Make-A-Scene [27], while fil-
tering out image-text pairs containing people.

In Section 4.1 we compare our method against the base-
lines both qualitatively and quantitatively. Next, in Sec-



Automatic Metrics User Study Performance

Method Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local Inference ↓
distance distance IOU quality match match time (sec)

NTLB [61] 0.7547 0.7814 0.1914 36.004 91.4% 85.54% 79.29% 326
MAS [27] 0.7591 0.7835 0.2984 21.367 81.25% 70.61% 57.81% 76

SpaText (pixel) 0.7661 0.7862 0.2029 23.128 87.11% 80.96% 71.09% 52
SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - - 7

Table 1. Metrics comparison: We evaluated our method against
the baselines using automatic metrics (left) and human ratings
(middle). The results for the human ratings (middle) are reported
as the percentage of the majority vote raters that preferred our
latent-based variant of our method over the baseline, i.e., any value
above 50% means our method was favored. The inference time re-
ported (right) are for a single image.

tion 4.2 we describe the user study we conducted. Then,
in Section 4.3 we discuss the sensitivity of our method to
details in the mask. Finally, in Section 4.4 we report the
ablation study results.

4.1. Quantitative & Qualitative Comparison

We compare our method against the following baselines:
(1) No Token Left Behind (NTLB) [61] proposes a method
that conditions a text-to-image model on spatial locations
using an optimization approach. We adapt their method to
our problem setting as follows: the global text prompt tglobal
is converted to a full mask (that contains all the pixels in
the image), and the raw spatio-textual matrix RST is con-
verted to separate masks. (2) Make-A-Scene (MAS) [27]
proposes a method that conditions a text-to-image model
on a global text tglobal and a dense segmentation map with
fixed labels. We adapt MAS to support sparse segmentation
maps of general local prompts by concatenating the local
texts of the raw spatio-textual matrix RST into the global
text prompt tglobal as described in Section 3.3 and provide a
label for each segment (if there is no exact label in the fixed
list, the user should provide the closest one). Instead of a
dense segmentation map, we provided a sparse segmenta-
tion map, where the background pixels are marked with an
“unassigned” label.

In order to evaluate our method effectively, we need an
automatic way to generate a large number of coherent inputs
(global prompts tglobal as well as a raw spatio-textual matrix
RST ) for comparison. Naı̈vely taking random inputs is un-
desirable, because such inputs will typically not represent
a meaningful scene and may be impossible to generate. In-
stead, we propose to derive random inputs from real images,
thus guaranteeing that there is in fact a possible natural im-
age corresponding to each input. We use 30,000 samples
from COCO [50] validation set that contain global text cap-
tions as well as a dense segmentation map for each sample.
We convert the segmentation map labels by simply provid-
ing the text “a {label}” for each segment. Then, we ran-
domly choose a subset of those segments to form the sparse
input. Notice that for MAS, we additionally provided the

ground-truth label for each segment. For more details and
generated input examples, see the supplementary document.

In order to evaluate the performance of our method nu-
merically we propose to use the following metrics that test
different aspects of the model: (1) FID score [34] to assess
the overall quality of the results, (2) Global distance to as-
sess how well the model’s results comply with the global
text prompt tglobal — we use CLIP to calculate the cosine
distance between CLIPtxt(tglobal) and CLIPimg(I), (3) Local
distance to assess the compliance between the result and
the raw spatio-textual matrix RST — again, using CLIP for
each of the segments in RST separately, by cropping a tight
area around each segment c, feeding it to CLIPimg and calcu-
lating the cosine distance with CLIPtxt(tlocal), (4) Local IOU
to assess the shape matching between the raw spatio-textual
matrix RST and the generated image — for each segment
in RST , we calculate the IOU between it and the segmen-
tation prediction of a pre-trained segmentation model [90].
As we can see in Table 1(left) our latent-based model out-
performs the baselines in all the metrics, except the local
IOU, which is better in MAS because our method is some-
what insensitive to the given mask shape (Section 4.3) —
we view this as an advantage. In addition, we can see that
our latent-based variant outperforms the pixel-based variant
in all the metrics, which may be caused by insufficient re-
implementation of the DALL·E 2 model. Nevertheless, we
noticed that this pixel-based model is also able to take into
account both the global text and spatio-textual representa-
tion. The rightmost column in Table 1 reports the inference
times for a single image across the different models com-
puted on a single V100 NVIDIA GPU. The results indicate
that our method (especially the latent-based one) outper-
forms the baselines significantly. For more details, please
read the supplementary.

In addition, Figure 5 shows a qualitative comparison be-
tween the two variants of our method and the baselines. For
MAS, we manually choose the closest label from the fixed
labels set. As we can see, the SpaText (latent) outperforms
the baselines in terms of compliance with both the global
and local prompts, and in overall image quality.

4.2. User Study

In addition, we conducted a user study on Amazon Me-
chanical Turk (AMT) [2] to assess the visual quality, as well
as compliance with global and local prompts. For each task,
the raters were asked to choose between two images gener-
ated by different models along the following dimensions:
(1) overall image quality, (2) text-matching to the global
prompt tglobal and (3) text-matching to the local prompts of
the raw spatio-textual matrix RST . For more details, please
read the supplementary.

In Table 1 (middle) we present the evaluation results
against the baselines, as the percentage of majority rates that
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Figure 5. Qualitative comparison: Given the inputs (top row), we generate images using the baselines (adapted to our task as described
in Section 4.1) and the two variants of our method. As we can see, SpaText (latent) outperforms the baselines in terms of compliance with
both the global and local texts, and in overall image quality.

preferred our method (based on the latent model) over the
baseline. As we can see, our method is preferred by hu-
man evaluators in all these aspects vs. all the baselines. In
addition, NTLB [61] achieved overoptimistic scores in the
CLIP-based automatic metrics — it achieved lower human
evaluation ratings than Make-A-Scene [27] in the global
and local text-matching aspects, even though it got better
scores in the corresponding automatic metrics. This might
be because NTLB is an optimization-based solution that
uses CLIP for generation, hence is susceptible to adversarial
attacks [31, 83].

4.3. Mask Sensitivity

During our experiments, we noticed that the model gen-
erates images that correspond to the implicit masks in the
spatio-textual representation ST , but not perfectly. This is

also evident in the local IOU scores in Table 1. Neverthe-
less, we argue that this characteristic can be beneficial, espe-
cially when the input mask is not realistic. As demonstrated
in Figure 6, given an inaccurate, hand drawn, general ani-
mal shape (left) the model is able to generate different ob-
jects guided by the local text prompt, even when it does not
perfectly match the mask. For example, the model is able to
add ears (in the cat and dog examples) and horns (in the goat
example), which are not presented in the input mask, or to
change the body type (as in the tortoise example). However,
all the results share the same pose as the input mask. One
reason for this behavior might be the downsampling of the
input mask, so during training some fine-grained details are
lost, hence the model is incentivized to fill in the missing
gaps according to the prompts.



“on a pile of dry leaves” (1) (2) (3) (4) (5) (6)

“a white cat” “a Shiba Inu dog” “a goat” “a tortoise” “a pig” “an avocado”

Figure 6. Mask insensitivity: We found that the model is relatively insensitive to errors in the input mask. Given a general animal shape
mask (left), the model is able to generate a diverse set of results driven by the different local prompts. It can add ears/horns, as in the cat,
dog and goat examples or change the body type, as in the tortoise example. However, all the results share the same pose as the input mask.

Automatic Metrics User Study

Scenario Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local
distance distance IOU quality text-match text-match

(1) Binary 0.7457 0.7797 0.2973 7.6085 53.13% 50.3% 54.98%
(2) CLIPtxt 0.7447 0.7795 0.3092 7.025 58.6% 56.74% 48.53%
(3) Multiscale 0.7566 0.7794 0.2767 10.5896 53.61% 58.59% 55.57%

SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - -

Table 2. Ablation study: The baseline method that we used in this
paper achieves better FID score and visual quality than the ablated
cases. It is outperformed in terms of local IOU in (1) and (2),
and in terms of local text-match in (2). The results for the human
ratings (right) are reported as the percentage of the majority vote
raters that preferred our SpaText (latent).

4.4. Ablation Study

We conducted an ablation study for the following cases:
(1) Binary representation — in Section 3.1 we used the
CLIP model for the spatio-textual representation ST . Alter-
natively, we could use a simpler binary representation that
converts the raw spatio-textual matrix RST into a binary
mask B of shape (H,W ) by:

B[j, k] =

{
1 if RST [j, k] ̸= ∅
0 otherwise

(5)

and concatenate the local text prompts into the global
prompt. (2) CLIP text embedding — as described in Sec-
tion 3.2, we mitigate the domain gap between CLIPimg and
CLIPtxt we employing a prior model P . Alternatively, we
could use the CLIPtxt directly by removing the prior model.
(3) Multi-scale inference — as described in Section 3.3 we
used the single scale variant (Equation (4)). Alternatively,
we could use the multi-scale variant (Equation (3)).

As can be seen in Table 2 our method outperforms the ab-
lated cases in terms of FID score, human visual quality and
human global text-match. When compared to the simple
representation (1) our method is able to achieve better local
text-match determined by the user study but smaller local
IOU, one possible reason is that it is easier for the model to
fit the shape of a simple mask (as in the binary case), but
associating the relevant portion of the global text prompt
to the corresponding segment is harder. When compared
to the version with CLIP text embedding (2) our model

achieves slightly less local IOU score and human local text-
match while achieving better FID and overall visual qual-
ity. Lastly, the single scale manages to achieve better results
than the multi-scale one (3) while only slightly less in the
local CLIP distance.

5. Limitations and Conclusions

“a room with
sunlight” “on the grass”

“a wooden table”
“a blue bowl”
“a picture on

the wall”
“a clock”

“golden coins”

Figure 7. Limitations: In some cases, characteristics propagate
to adjacent segments, e.g. (left), instead of a blue bowl the model
generated a vase with a wooden color. In addition, the model tends
to ignore tiny masks (right).

We found that in some cases, especially when there are
more than a few segments, the model might miss some of
the segments or propagate their characteristics. For exam-
ple, instead of generating a blue bowl in Figure 7(left), the
model generates a beige vase, matching the appearance of
the table. Improving the accuracy of the model in these
cases is an appealing research direction.

In addition, the model struggles to handle tiny segments.
For example, as demonstrated in Figure 7(right), the model
ignores the golden coin masks altogether. This might be
caused by our fine-tuning procedure: when we fine-tune
the model, we choose a random number of segments that
are above a size threshold because CLIP embeddings are
meaningless for very low-resolution images. For additional
examples, please read the supplementary.

In conclusion, in this paper we addressed the scenario of
text-to-image generation with sparse scene control. We be-
lieve that our method has the potential to accelerate the de-
mocratization of content creation by enabling greater con-
trol over the content generation process, supporting profes-
sional artists and novices alike.
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A. Additional Examples
In Figures 8, 9, 10, 11 and 12 we provide additional re-

sults from our model. In Figures 13 and 14 we provide ad-
ditional examples for the mask insensitivity of our method.
In Figures 15 and 16 we show the fine-grained control that
is achievable via the multi-scale version of our method. In
Figure 17 we provide additional limitations of our method.

B. Implementation Details
In the following section, we describe the implementa-

tion details that were omitted from the main paper. In Ap-
pendix B.1 we start by describing the diffusion models im-
plementation details. Then, in Appendix B.2 we describe
the implementation details of our spatio-textual representa-
tion. Later, in Appendix B.3 we describe the implementa-
tion details of the baselines and how we adapt them to our
problem setting. Afterwards, in Appendix B.4 we describe
the implementation details of the automatic input creation
process that we used to compute our automatic metrics. Fi-
nally, in Appendix B.5 we describe the details of the user
study.

B.1. Diffusion Models Implementation Details

We based our approach on two state-of-the-art diffusion-
based text-to-image models: DALL·E 2 [68] and Stable
Diffusion [73]. We trained these models on a custom-
made dataset of 35M image-text pairs, following Make-A-
Scene [27].

B.1.1 DALL·E 2 Implementation Details

Since the implementation of DALL·E 2 is not available to
the public, we re-implemented it following the details in-
cluded in their paper [68]. This model consists of the fol-
lowing submodules, given an (x, y) image-text pair:

• A decoder model D: that is trained to translate
CLIPimg(x) into a 64× 64 resolution image x.

• A super-resolution model SR: that is trained to up-
sample the 64× 64 resolution image x into 256× 256.

• A prior model P: that is trained to translate the tuples
(CLIPtxt(y),BytePairEncoding(y)) into CLIPimg(x).

Concatenating the above three models yields a text-to-
image model SR ◦D ◦ P .

In order to adapt the model to the task of text-to-image
generation with sparse scene control, we chose to fine-tune
the decoder D. For the fine-tuning we used the standard
simple loss variant of Ho et al. [37]:

Lsimple = Et,x0,ϵ

[
||ϵ− ϵθ(xt,CLIPimg(x0), ST, t)||2

]
(6)

where ϵθ is a UNet [53] model that predicts the added noise
at each time step t, xt is the noisy image at time step t and
ST is our spatio-textual representation. To this loss, we
added the same variational lower bound (VLB) loss as in
[57] to get the total loss of:

Lhybrid = Lsimple + λLV LB (7)

we set λ = 0.001 in our experiments. We used Adam op-
timizer [44] with β1 = 0.9 and β2 = 0.999 with learning
rate 6× 10−5 for 64,000 iterations.

During inference, we utilize composition of the CLIP
text encoder CLIPtxt and the prior model P to infer the CLIP
image embedding for both the spatio-textural representation
ST and for the global text prompt P ◦ CLIPtxt(tglobal). We
used the DDIM [78] inference method with a different num-
ber of inference steps for each component: 50 steps for the
prior model, 250 for the decoder, and 100 for the super res-
olution model.

B.1.2 Stable Diffusion Implementation Details

For Stable Diffusion [73] we used the official implemen-
tation [16] and the official pre-trained v1.3 weights from
Hugging Face [25].

We followed the same training procedure as the original
implementation, and adapted the latent denosing model to
get as an additional input the spatio-textual representation
ST with the following training loss:

LLDM = Et,y,z0,ϵ

[
||ϵ− ϵθ(zt,CLIPtxt(y), ST, t)||2

]
(8)

where zt is the noisy latent code at time step t and y is
the corresponding text prompt. We fine-tuned only the de-
noising model while keeping the autoencoder and CLIPtxt
frozen. We used Adam optimizer [44] with β1 = 0.9 and
β2 = 0.999 with learning rate 1 × 10−4 for 100,000 itera-
tions.

During inference, we used the DDIM [78] inference
method with 50 sampling steps.

B.2. Spatio-Textual Representation Details

In order to create the spatio-textual CLIP-based repre-
sentation, we used the following models:

• A pre-trained ViT-L/14 [23] variant of CLIP [66]
model released by OpenAI [59].



“an oil painting” “in the snow”

“a black horse”
“a white horse”

“a white horse”
“a brown horse”

“a photo taken during
the golden hour” “a sunny day at the beach”

“a snowy mountain”
“a black cat”

“a colorful beach umbrella”
“a ginger cat”

“near some ruins” “at the desert”

“a colorful parrot”
“a straw hat”

“a green parrot”
“a red hat”

Figure 8. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

• A pre-trained panoptic segmentation model R101-FPN
from Detectron2 [89].

During the training phase, we extracted candidate seg-
ments using R101-FPN model from the Detectron2 [89]
codebase model and filtered the small segments that ac-
counted for less than 5% of the image area because their
CLIP image embeddings are less meaningful for low-res
images. Then, we randomly used 1 ≤ K ≤ 3 segments
for the formation of the spatio-textual representation.

In addition, in order to enable multi-conditional
classifier-free guidance, as explained in Section 3.3, we
dropped each of the input conditions (the global text and
the spatio-textual representation) during training 10% of
the time (i.e., the model was trained totally unconditionally
about 1% of the time).



“sitting on a wooden floor” “in the street”

“a gray teddy bear”
“a brown teddy bear”

“a brown teddy bear”
“a gray teddy bear”

“a night with the city “in a sunny day near
in the background” near the forest”

“a white car”
“a big full moon”

“a blue car”
“a red balloon”

“in an empty room” “day outdoors”

“a canvas with a painting
of a Corgi dog”

“a metallic yellow robot”

“a canvas with
math equations”

“a wooden robot”

Figure 9. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual representation
describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated image (right).
As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual representation
content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

B.3. Baselines Implementation Details

For the No Token Left Behind (NTLB) baseline [61]
we used the official PyTorch [63] implementation [3]. The
original model did not support global text and was mainly
demonstrated on rectangular masks. In order to adapt it to
our problem setting, we added a degenerate mask of all ones
for the global text. Then, we used the rest of the segmenta-

tion maps as-is, along with their corresponding text prompt.
For Make-A-Scene (MAS) [27], we followed the exact im-
plementation details from the paper.

In addition, we used the official DALL·E 2 and Stable
Diffusion online demos [60, 79] to generate the assets for
some of the figures in this paper: Figure 2 and Figure 19
below.



“on a wooden table outdoors” “on a concrete floor”

“a brown hat” “an elephant”

“next to a wooden house” “indoors”

“a chimpanzee”
“a red wooden stick”

“a glass tea pot”
“a golden straw”

“a black and white photo
“on the grass” in the desert”

“an Amanita mushroom” “a nuclear explosion”

Figure 10. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual rep-
resentation describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated
image (right). As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual
representation content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

B.4. Evaluation Dataset Details

As explained in Section 4.1, we proposed to evaluate our
method automatically by generating a large number of co-
herent inputs based on natural images. To this end, we used
the COCO [50] validation set that contains global text cap-
tions as well as a dense segmentation map for each image.
We convert the segmentation map labels by simply provid-
ing the text “a {label}” for each segment. Then, we ran-
domly choose a subset of size 1 ≤ K ≤ 3 segments to form

the sparse input. This way, we generated 30, 000 input sam-
ples for comparison. Figure 18 (top row) shows a random
number of generated input samples.

In addition, we provide in Figure 18 an additional qual-
itative comparison of our method against the baselines. As
we can see, the latent-based variant of our method outper-
forms the baselines in terms of compliance with both the
global and local texts, and in terms of overall image quality.



“a portrait photo” “a portrait photo”

“a rabbit” “a duck”

“under the sun” “inside a lake”

“a blue butterfly” “an elephant”

“on a snowy day” “a sunny day at the street”

“a mouse”
“boxing gloves”

“a black punching bag”

“a lemur”
“oranges”

“a soda can”

Figure 11. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual rep-
resentation describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated
image (right). As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual
representation content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

B.5. User Study

As explained in Section 4.2, we conducted a user study
using the Amazon Mechanical Turk (AMT) platform. In
each question the evaluators were asked to choose between
two images in terms of (1) overall image quality, (2) text-
matching to the global prompt tglobal and (3) text-matching
to the local prompts of the raw spatio-textual representation
RST . For each one of those metrics, we created 512 coher-
ent inputs automatically from COCO validation set [50] as

described in Section 4.1 and presented a pair of generated
results to five raters, yielding a total of 2,560 ratings per
task. For each question, the raters were asked to choose the
better result of the two (according to the given criterion).
We reported the majority vote percentage per question. In
addition, the raters were also given the option to indicate
that both models are equal, in a case which the majority
vote indicated equal, or in a tie case, we divided the points
equally between the evaluated models.



“a sunny day near
the Eiffel tower” “room with sunlight”

“a white Labrador”
“a blue ball”

“a wooden table”
“a red bowl”

“a picture on the wall”

Figure 12. Additional examples of our method: Each pair consists of an (i) input global text (top left, black), a spatio-textual rep-
resentation describing each segment using free-form text prompts (left, colored text and sketches), and (ii) the corresponding generated
image (right). As can be seen, SpaText is able to generate high-quality images that correspond to both the global text and spatio-textual
representation content. Please note that the colors are for illustration purposes only, and do not affect the actual inputs.

The questions we asked per comparison are:

• For the overall quality test — “Which image has a bet-
ter visual quality?”

• For the global text correspondence test — “Which im-
age best matches the text: {GLOBAL TEXT}”, where
{GLOBAL TEXT} is tglobal.

• For the local text correspondence test — we provided
in addition one mask from the raw spatio-textual repre-
sentation RST and asked “Which image best matches
the text and the shape of the mask?”

B.6. Inference Time and Parameters Comparison

In Table 3 we compare the number of parameters and the
inference time of the baselines and the different variants of
our method. For each method, we describe its submodules
and their corresponding number of parameters and infer-
ence times for a single image. As we can see, our latent-
based variant is significantly faster than the rest of the base-
lines. In addition, it has fewer parameters than Make-A-
Scene [27] and the pixel-based variant of our method.

C. Additional Experiments

In this section, we provide additional experiments that
we have conducted. In Appendix C.1 we describe manual
baselines that may be used to generate images with free-
form textual scene control. Then, in Appendix C.2 we
present a general variant for Make-A-Scene and compare
it against our method. Finally, in Appendix C.3 we describe
and demonstrate the local prompts concatenation trick.

C.1. Manual Baselines

In order to generate an image with free-form textual
scene control, one may try to operate existing methods in
various manual ways. For example, as demonstrated in Sec-
tion 1, trying to achieve this task using an elaborated text
prompt is overly optimistic. We provided additional exam-
ples in Figure 19.

Another possible option to achieve this goal it to com-
bine a text-to-image models with a local text-driven edit-
ing method [5, 6, 68] in a multi-stage approach: at the first
stage, the user can utilize a text-to-image model to gen-
erate the background of the scene, e.g. Stable Diffusion
or DALL·E 2. Then, the user can sequentially mask the
desired areas and provide the local prompts using a local
text-driven editing method, e.g. Blended Latent Diffusion
or DALL·E 2. Figures 20 and 21 demonstrate that even
though these approaches may place the object in the desired
location, the composition of the entire scene looks less nat-
ural, because the model does not take into account the en-
tire scene at the first stage, so the generated image of the
background may not be easily edited for the desired com-
position. In addition, the objects correspond less to the lo-
cal masks, especially in the DALL·E 2 case. Furthermore,
the multi-stage approach is more cumbersome from the user
point of view, because of its iterative nature.

Lastly, another approach is to utilize a sketch-to-image
generation, as demonstrated in SDEdit [54]: the user can
provide a dense color sketch of the scene, then noise it to
a certain noise level, and denoise it iteratively using a text-
to-image diffusion model. However, this user interface is
different from our interface in the following aspects: (1) the
user need to provide a color for each pixel, whereas in our
method the user may provide a local prompt that describe



“a sunny day outdoors”

“a white cat” “a Shiba Inu dog” “a goat”

“a pig” “a black rabbit” “a gray donkey” “a panda bear”

“a gorilla” “a toad” “a cow” “The Statue of Liberty”

“a golden calf” “a shark” “a cactus” “a tortoise”

Figure 13. Mask insensitivity: We found that the model is relatively insensitive to inaccuracies in the input mask. Given a general animal
shape mask (top left), the model is able to generate a diverse set of results driven by the different local prompts. It changes the body type
according to the local prompt, while leaving the overall posture of the character intact.



“a painting”

“a bat” “a colorful butterfly” “a moth”

“two birds facing away “a dragon” “mythical creatures” “two dogs”
from each other”

“a crab” “an evil pig” “a flying angel” “an owl”

“a bee” “an avocado” “two flamingos” “two clowns”

Figure 14. Mask insensitivity: We found that the model is relatively insensitive to inaccuracies in the input mask. Given a general
Rorschach [46] mask (top left), the model is able to generate a diverse set of results driven by the different local prompts. It changes
fine-details according to the local prompt, while leaving the overall general shape intact.



“at the desert” (1) (2) (3) (4) (5)

“a white cat” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0

Figure 15. Multi-scale control: Using the multi-scale inference allows fine-grained control over the input conditions. Given the same
inputs (left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the generated
image contains a cat with the correct color and posture, but not at the desert. Conversely, if we place all the weight on the global text (5),
we get an image of a desert with no cat in it. The in-between results correspond to a mix of conditions — in (4) we get a gray cat with
slightly different posture, in (2) the cat sits on dirt, but not in the desert, and in (3) we get a white cat at the desert.

“at the park” (1) (2) (3) (4) (5)

“a black Labrador dog” sglobal = 0; slocal = 3 sglobal = 1.5; slocal = 3 sglobal = 3; slocal = 3 sglobal = 3; slocal = 1.5 sglobal = 3; slocal = 0
“a purple ball”

Figure 16. Multi-scale control: Using the multi-scale inference allows fine-grained control over the input conditions. Given the same
inputs (left), we can use different scales for each condition. In this example, if we put all the weight on the local scene (1), the generated
image contains a Labrador dog and a purple ball with the correct color and posture, but not at the park. Conversely, if we place all the
weight on the global text (5), we get an image of a park with no dog or ball in it. The in-between results correspond to a mix of conditions
— in (4) we get a gray brick instead of a purple ball, in (2) the dog is outside but not in the park, and in (3) we get a black Labrador dog
and a purple ball in the park.

other aspects that are not color-related only. In addition, (2)
in this approach, the user needs to construct a dense seg-
mentation map of the entire scene in advance, whereas in
our method the user can provide only some of the areas and
let the machine infer the rest. It is not clear how this can be
done in the sketch-based approach.

C.2. Random Label Make-A-Scene Variant

In Section 4.1, we presented a way to adapt Make-A-
Scene (MAS) [27] to our problem setting. The original
Make-A-Scene work proposed a method that conditions a
text-to-image model on a global text tglobal and a dense seg-
mentation map with fixed labels. Hence, we converted it to
our problem setting of sparse segmentation map with open-
vocabulary local prompts by concatenating the local texts
of the raw spatio-textual representation RST into the global
text prompt tglobal.

However, the above version requires the user to provide
an additional label for each segment, which is more than
needed by our method and NTLB [61] baseline. Hence,
we experimented with a more general version of Make-A-
Scene we termed MAS (rand-label) that assigns a random
label for each segment, instead of asking the user to provide

an additional label. In Figure 22 we can see that this method
is able to match the local prompts even with random labels.
We also evaluated this method numerically using the same
automatic metrics and user study protocol described in Sec-
tion 4. As can be seen in Table 4, this method achieves in-
ferior results compared to the version that uses the ground-
truth labels in both the automatic evaluation and the user
study.

C.3. Local Prompts Concatenation Trick

As described in Section 3.3, we noticed that the texts in
the image-text pairs dataset contain elaborate descriptions
of the entire scene, whereas we aim to ease the use for the
end-user and remove the need to provide an elaborate global
prompt in addition to the local ones, i.e., to not require the
user to repeat the same information twice. Hence, in or-
der to reduce the domain gap between the training data and
the input at inference time, we perform the following simple
trick: we concatenate the local prompts to the global prompt
at inference time separated by commas. Figure 23 demon-
strates that this concatenation yields images that correspond
to the local prompts better.



“on an asphalt road” “on a blue table”

(1
)

(2
)

“a red ball”
“a green ball”
“a blue ball”

“a red mug”
“a white plate”

“a chocolate cake”

“in the forest” “above the desert”

(3
)

(4
)

“a red panda”
“a big rock”
“a sunrise”

“hot air balloons”

Figure 17. Limitations: In some cases there is a “characteristics leakage” between segments, as in example (1) where instead of a blue
ball we get another red ball, or a leakage between the global text and some segments, as in example (2) where the mug is generated in a
blue color originated in the global text. In other cases, the model ignores some of the objects, as the sun in example (3) and the smallest
hot air balloon in example (4).

Method Consisting submodules # Parameters (B) Inference time (sec)

No Token Left Behind [61] CLIP (ViT-B/32) + model 0.15B + 0.08B = 0.23B 326 sec
Make-A-Scene [27] VAE + model 0.002B + 4B = 4.002B 76 sec

SpaText (pixel) w/o prior CLIP + model + upsample 0.43B + 3.5B + 1B = 4.93B 50 sec
SpaText (pixel) w prior CLIP + prior + model + upsample 0.43B + 1.3B + 3.5B + 1B = 6.23B 52 sec
SpaText (latent) w/o prior CLIP + model 0.43B + 0.87B = 1.3B 5 sec
SpaText (latent) w prior CLIP + prior + model 0.43B + 1.3B + 0.87B = 2.6B 7 sec

Table 3. Inference time and parameters: we compare the number of parameters and the inference time across the baselines and the
different variants (including ablations) of our method. As we can see, SpaText (latent) is significantly faster than the rest of the baselines.
In addition, it has fewer parameters than Make-A-Scene [27] and the SpaText (pixel) variant of our method. The inference times reported
were computed for a single image on a single V100 NVIDIA GPU.

D. Additional Related Work

Image-to-image translation: Pix2Pix [42,88] utilized a
conditional GAN [30, 55] to generate images from a paired
image-segmentation dataset, which was later extended to
the unpaired cased in CycleGAN [96]. UNIT [51] pro-
posed to translate between domains using a shared latent

space, which was extended to the multimodal [41] and few-
shot [52] cases. SPADE [62] introduced spatially-adaptive
normalization to achieve better results in segmentation-to-
image task. However, all of these works, do not enable edit-
ing with a free-form text description.

Layout-to-image generation: The seminal paper of
Reed et al. [72] generated images conditioned on location



Automatic Metrics User Study

Method Global ↓ Local ↓ Local ↑ FID ↓ Visual Global Local
distance distance IOU quality match match

MAS [27] 0.7591 0.7835 0.2984 21.367 81.25% 70.61% 57.81%
MAS (rand-label) [27] 0.7796 0.7861 0.1544 29.593 82.81% 81.44% 76.85%

SpaText (latent) 0.7436 0.7795 0.2842 6.7721 - - -

Table 4. Metrics comparison: We evaluated our method against the baselines using automatic metrics (left) and human ratings (right).
The results for the human ratings (right) are reported as the percentage of the majority vote raters that preferred our latent-based variant of
our method over the baseline. As we can see, MAS (rand-label) achieves inferior results compared to the standard version of MAS, in both
the automatic metrics and the user study.

and attributes and managed to show controllability over
single-instance images, but generating complex scenes was
not demonstrated. Later works extended it to an entire lay-
out [80–82, 95]. However, these methods do not support
fine-grained control using free-form text prompts. Other
methods [35, 36, 40, 49] proposed to condition the layout
also on a global text, but they do not propose a fine-grained
free-form control for each instance in the scene. In [65] an
additional segmentation mask was introduced to control the
shape of the instances in the scene, but they do not enable
fine-grained free-form control for each instance separately.
Recently [26] proposed to condition a GAN model on free-
form captions and location bounding boxes, and showed
promising results on synthetic datasets’ generation, in con-
trast, we focus on fine-grained segmentation masks to con-
trol the shape (instead of coarse bounding boxes), and on
generating natural images instead of synthetic ones.

Concurrently to our work, eDiff-I [7] presented a new
text-to-image model that consists of an ensemble of expert
denoising networks, each specializing in a specific noise in-
terval. More related to our work, they proposed a training-
free method, named paint-with-words, that enables users to
specify the spatial locations of objects, by manipulating the
cross-attention maps that correspond to the input tokens that
they want to generate. Their method supports only rough
segmentation maps, whereas our method focuses on the fine
segmentation maps input case.
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Figure 18. Qualitative comparison on automatically generated inputs: in order to create realistic inputs comparison, we utilized a
segmentation dataset [50] to create inputs (second row) that are based on real images (top row). Given those inputs, we generate images
using the baselines and the two variants of our method. As we can see, our latent-based variant of our method outperforms the baselines in
terms of compliance with both the global and local texts, and in overall image quality.
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Figure 19. Lack of fine-grained spatial control: A user with a specific mental image (left) can easily generate it with a SpaText represen-
tation but will struggle to do so with traditional text-to-image models (right) [69, 73].
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Figure 20. Interactive editing baseline: An alternative way to achieve image generation with free-form textual scene control as in our
method (first row) is by iterative editing: at the first stage, the user can utilize a text-to-image model to generate the background of the
scene, e.g. Stable Diffusion (second row) or DALL·E 2 (third row). Then, the user can sequentially mask the desired areas and provide the
local prompts using a local text-driven editing method, e.g. Blended Latent Diffusion (second row) or DALL·E 2 (third row).
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Figure 21. Interactive editing baseline: An alternative way to achieve image generation with free-form textual scene control as in our
method (first row) is by iterative editing: at the first stage, the user can utilize a text-to-image model to generate the background of the
scene, e.g. Stable Diffusion (second row) or DALL·E 2 (third row). Then, the user can sequentially mask the desired areas and provide the
local prompts using a local text-driven editing method, e.g. Blended Latent Diffusion (second row) or DALL·E 2 (third row).
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Figure 22. Qualitative comparison of Make-A-Scene variants: Given the inputs (top row), we generate images using the two variants
of Make-A-Scene (adapted to our task as described in Appendix C.2) and our latent-based method. As we can see, SpaText (latent)
outperforms these baselines in terms of compliance with both the global and local texts, and in overall image quality.
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Figure 23. Local prompts concatenation: concatenating the local text prompts to the global prompt during inference mitigates the
train-inference gap and enables better alignment between the generated images and the local prompts.
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