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Abstract

Video snapshot compressive imaging (SCI) uses a two-
dimensional detector to capture consecutive video frames
during a single exposure time. Following this, an effi-
cient reconstruction algorithm needs to be designed to re-
construct the desired video frames. Although recent deep
learning-based state-of-the-art (SOTA) reconstruction al-
gorithms have achieved good results in most tasks, they
still face the following challenges due to excessive model
complexity and GPU memory limitations: 1) these models
need high computational cost, and 2) they are usually un-
able to reconstruct large-scale video frames at high com-
pression ratios. To address these issues, we develop an ef-
ficient network for video SCI by using dense connections
and space-time factorization mechanism within a single
residual block, dubbed EfficientSCI. The EfficientSCI net-
work can well establish spatial-temporal correlation by us-
ing convolution in the spatial domain and Transformer in
the temporal domain, respectively. We are the first time to
show that an UHD color video with high compression ra-
tio can be reconstructed from a snapshot 2D measurement
using a single end-to-end deep learning model with PSNR
above 32 dB. Extensive results on both simulation and real
data show that our method significantly outperforms all pre-
vious SOTA algorithms with better real-time performance.
The code is at https://github.com/ucaswangls/
EfficientSCI.git.

1. Introduction
Traditional high-speed camera imaging methods usually

suffer from high hardware and storage transmission cost.
Inspired by compressed sensing (CS) [5, 9], video snapshot
compressive imaging (SCI) [45] provides an elegant solu-
tion. As shown in Fig. 2, video SCI consists of a hardware
encoder and a software decoder. In the encoder part, multi-
ple raw video frames are modulated by different masks and
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Figure 1. Comparison of reconstruction quality (average PSNR in
dB on 6 benchmark grayscale datasets) and testing time of several
SOTA deep learning based algorithms. Our proposed EfficientSCI
achieves higher reconstruction quality with fewer parameters and
shorter testing time.

then integrated by the camera to get a compressed measure-
ment, giving low-speed cameras the ability to capture high-
speed scenes. For the decoding part, the desired high-speed
video is retrieved by the reconstruction algorithm using the
captured measurement and masks.

So far, many mature SCI imaging systems [14, 24, 31]
have been built, but for the decoding part, there are still
many challenges. In particular, although the model-based
methods [21, 43, 44] have good flexibility and can recon-
struct videos with different resolutions and compression
rates, they require long reconstruction time and can only
achieve poor reconstruction quality. In order to improve the
reconstruction quality and running speed, PnP-FFDNet [46]
and PnP-FastDVDnet [47] integrate the pre-trained denois-
ing network into an iterative optimization algorithm. How-
ever, they still need a long reconstruction time on large-
scale datasets, e.g., PnP-FastDVDNet takes hours to recon-
struct a UHD video from a single measurement.

By contrast, deep learning based methods [28,30,35,40]
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Figure 2. Schematic diagram of grayscale and color video SCI.

have better real-time performance and higher reconstruction
quality. For example, BIRNAT [8] uses bidirectional recur-
rent neural network and generative adversarial method to
surpass model-based method DeSCI [21] for the first time.
MetaSCI [39] has made some explorations for the model
to adapt to different masks, which reduces the model train-
ing time. DUN-3DUnet [40] and ELP-Unfolding [42] com-
bine iterative optimization ideas with deep learning mod-
els to further improve reconstruction quality. However, due
to the high model complexity and insufficient GPU mem-
ory, most existing deep learning algorithms cannot train
the models required for reconstructing HD or large-scale
videos. RevSCI [7] uses a reversible mechanism [2] to re-
duce the memory used for model training, and can recon-
struct HD video with a compression rate up to 24, but the
model training time increases exponentially. In addition, the
current reconstruction algorithms generally use convolution
to establish spatial-temporal correlation. Due to the local
connection of convolution, long-term dependencies cannot
be well established, and the model cannot reconstruct data
with high compression rates.

In summary, model-based methods usually require long
reconstruction time and can only achieve poor reconstruc-
tion quality. Learning-based methods have high model
complexity but cannot be well applied to large-scale color
video reconstruction. To address these challenges, we de-
velop an efficient network for video SCI by using dense
connections and space-time factorization mechanism. As
shown in Fig. 1, our proposed method dramatically outper-
forms all previous deep learning based reconstruction algo-
rithms in terms of reconstruction quality and running speed
with fewer parameters. Our main contributions can be sum-
marized as follows:

• An efficient end-to-end network, dubbed EfficientSCI,
is proposed for reconstructing high quality video
frames from a snapshot SCI measurement.

• By building hierarchical dense connections within a
single residual block, we devise a novel ResDNet
block to effectively reduces model computational com-
plexity but enhance the learning ability of the model.

• Based on the space-time factorization mechanism, a
Convolution and Transformer hybrid block (CFormer)
is built, which can efficiently establish space-time cor-
relation by using convolution in the spatial domain and
Transformer in the temporal domain, respectively.

• Experimental results on a large number of simu-
lated and real datasets demonstrate that our proposed
method achieves state-of-the-art (SOTA) results and
better real-time performance.

2. Related Work
CNN and Variants: In the past ten years, models
with convolutional neural networks (CNN) as the backbone
[13,15,20] have achieved excellent results on multiple com-
puter vision tasks [20, 25, 32]. Among them, ResNeXt [41]
and Res2Net [11] effectively increases model capacity with-
out increasing model complexity by using grouped convo-
lutions inside residual blocks. DenseNet [15] and CSP-
Net [34] achieve feature reuse by taking all previous fea-
ture maps as input. In video-related tasks, 3D convolu-
tion can establish good spatial-temporal correlation and has
been widely used in action recognition [18], video super-
resolution [26], video inpainting [6] and so on. In previ-
ous video SCI reconstruction, RevSCI and DUN-3DUnet
greatly improve the reconstruction quality of benchmark
grayscale datasets by integrating 3D convolution into the
network. However, in complex high-speed scenarios (e.g.,
crash), since they cannot effectively establish long-term
temporal dependencies, the reconstruction quality is still
lower than 30 dB. In addition, the excessive use of 3D con-
volution increases the amount of model parameters, which
is not conducive to the application of large-scale and high
compression ratio data.
Vision Transformers: Most recently, Vision Transformer
(ViT) [10] and its variants [4,12,37,50] have achieved com-
petitive results in computer vision. However, the high com-
putational complexity limits its application in video-related
tasks. TimeSformer [3] performs self-attention calculations
in time and space respectively, which reduces model com-
plexity and improves model accuracy, but the computational
complexity still increases quadratically with the image size.
The Video Swin Transformer [23] limits self-attention cal-
culations to local windows but cannot effectively estab-
lish long-term temporal dependencies. In addition, a large
number of experimental results show that Transformer has
higher memory consumption than CNN, and using Trans-
former in space is not conducive to large-scale video SCI
reconstruction. Therefore, through space-time factorization
mechanism, using Transformer only in time domain can not
only effectively utilize its ability to establish long-term time
series dependencies, but also reduce model complexity and
memory consumption.
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Figure 3. Architecture of the proposed EfficientSCI network and the overall process of color or grayscale video reconstruction. The mea-
surement (Y) and masks (M) are pre-processed by the estimation module to obtain an estimated Xe, and then feed Xe into EfficientSCI
network to get the desired reconstruction result. (a) ResDNet module with N residual style units. (b) ResDNet block. Inside a resid-
ual block, the input features are divided into S parts by the channel split. Each part uses CFormer to efficiently extract spatial-temporal
correlation, and employs dense connections to further improve model capacity. For convenience, only the case of S = 4 is shown here.

3. Mathematical Model of Video SCI
Fig. 2 briefly describes the flow chart of video SCI.

For grayscale video SCI system, the original B-frame
(grayscale) input video {Xm}Bm=1 ∈ Rnx×ny is modu-
lated by pre-defined masks {M}Bm=1 ∈ Rnx×ny . Then, by
compressing across time, the camera sensor captures a com-
pressed measurement Y ∈ Rnx×ny . The whole process can
be expressed as:

Y =
∑B

m=1 Xm �Mm + Z, (1)

where � denotes the Hadamard (element-wise) multipli-
cation, and Z ∈ Rnx×ny denotes the measurement noise.
Eq. (1) can also be represented by a vectorized formu-
lation. Firstly, we vectorize y = vec(Y) ∈ Rnxny ,
z = vec(Z) ∈ Rnxny , x =

[
x>1 , . . . ,x

>
B

]> ∈ RnxnyB ,
where xm = vec(Xm). Then, sensing matrix generated by
masks can be defined as:

H = [D1, . . . ,DB ] ∈ Rnxny×nxnyB , (2)

where Dm = Diag(vec(M)) ∈ Rnxny×nxny is a diago-
nal matrix and its diagonal elements is filled by vec(M).
Finally, the vectorized expression of Eq. (1) is

y = Hx+ z. (3)

For color video SCI system, we use the Bayer pattern
filter sensor, where each pixel captures only red (R), blue
(B) or green (G) channel of the raw data in a spatial layout
such as ‘RGGB’. Since adjacent pixels are different color
components, we divide the original measurement Y into
four sub-measurements {Yr,Yg1,Yg2,Yb} ∈ R

nx
2 ×

ny
2

according to the Bayer filter pattern. For color video recon-
struction, most of the previous algorithms [46, 48] recon-
struct each sub-measurement independently, and then use
off-the-shelf demosaic algorithms to get the final RGB color

videos. These methods are usually inefficient and have poor
reconstruction quality. In this paper, we feed the four sub-
measurements simultaneously into the reconstruction net-
work to directly obtain the final desired color video.

4. The Proposed Network
As shown in Fig. 3, in the pre-processing stage of Effi-

cientSCI, inspired by [7, 8], we use the estimation module
to pre-process measurement (Y) and masks (M) as follows:

Y = Y �
∑B

m=1 Mm, Xe = Y �M+Y, (4)

where � represents Hadamard (element-wise) division,
Y ∈ Rnx×ny is the normalized measurement, which pre-
serves a certain background and motion trajectory informa-
tion, and Xe ∈ Rnx×ny×B represents the coarse estimate
of the desired video. We then take Xe as the input of the
EfficientSCI network to get the final reconstruction result.

EfficientSCI network is mainly composed of three parts:
i) feature extraction module, ii) ResDNet module and iii)
video reconstruction module. The feature extraction mod-
ule is mainly composed of three 3D convolutional layers
with kernel sizes of 3× 7× 7, 3× 3× 3 and 3× 3× 3 re-
spectively. Among them, each 3D convolution is followed
by a LeakyReLU activation function [27], and the spatial
stride step size of the final 3D convolution is 2. The spa-
tial resolution of the final output feature map is reduced to
half of the input. The feature extraction module effectively
maps the input image space to the high-dimensional fea-
ture space. The ResDNet module is composed of N ResD-
Net block (described in Sec. 4.1), which can efficiently ex-
plore spatial-temporal correlation. The video reconstruction
module is composed of pixelshuffle [33] (mainly restore
spatial resolution to input network input size) and three 3D
convolution layers (kernel sizes are 3× 3× 3, 1× 1× 1 and
3 × 3 × 3 respectively), and conducts video reconstruction
on the features output by the ResDNet blocks.



4.1. ResDNet Block

Dense connection is an effective way to increase model
capacity. Unlike DenseNet, which spans multiple layers,
we build a more efficient dense connection within a single
residual block. As shown in Fig. 3(b), the input features
of the ResDNet block are first divided into S parts along
the feature channel dimension. Then, for each part i =
1, · · · , S, we use CFormer (described in Section 4.2) to ef-
ficiently establish the spatial-temporal correlation. Specif-
ically, for the input of the ith CFormer, we concatenate all
the CFormer output features before the ith part with the
input features of the ith part and then use a 1 × 1 × 1
convolution to reduce the dimension of the feature chan-
nel, which can further reduce the computational complexity.
Next, we concatenate all CFormer output features along the
feature channel dimension and use a 1× 1× 1 convolution
to better fuse each part of the information. Given an input
Xr ∈ RT×H×W×C , ResDNet block can be expressed as:

X1, · · · ,XS = Split(Xr),

Y1 = CFormer1(X1),

Y2 = CFormer2(Conv1(Concat([Y1,X2]))),

...
YS = CFormerS(Conv1(Concat([Y1, · · · ,YS−1,XS ]))),

Ŷr = Concat([Y1, · · · ,YS ]),

X̂r = Conv1(Ŷr) +Xr, (5)

where ‘Split’ represents division along the channel,
‘Conv1’ represents a 1×1×1 convolution operation, ‘Con-
cat’ represents concatenate along the channel and X̂r ∈
RT×H×W×C represents the output of the ResDNet block.
This design has two advantages: i) the features of different
levels are aggregated at a more granular level, which im-
proves the representation ability of the model; ii) the model
complexity is reduced (shown in Table 6).

4.2. CFormer Block

As shown in Fig. 4, the CFormer block includes three
parts: Spatial Convolution Branch (SCB), Temporal Self-
Attention Branch (TSAB) and Feed Forward Network
(FFN). Based on the space-time factorization mechanism,
SCB is used to extract spatial local information, TSAB is
used to calculate temporal attention of the feature points at
the same spatial position in each frame. After that, FFN is
used to further integrate spatial-temporal information.

It is worth noting that in order to make the model flexible
to different compression ratios, we introduce zero padding
position encoding [17] into CFormer block, instead of the
absolute position encoding [10] or relative position encod-
ing [22]. Specifically, we modified the first linear transfor-
mation layer in the traditional FFN to a 3×3×3 convolution
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Figure 4. The CFormer block is composed of Spatial Convolution
Branch (SCB), Temporal Self-Attention Branch (TSAB) and Feed
Forward Network (FFN). For ease of presentation, only the head
N = 1 scenario is described in the TSAB.

with padding size of 1.
Spatial Convolution Branch: 2D convolution can well ex-
ploit spatial local correlation and reconstructs more detailed
information, and it also enjoys efficient memory consump-
tion and higher operating efficiency, which is suitable for
large-scale video reconstruction. Therefore, We only use
two 3 × 3 2D convolutions to reconstruct spatial local de-
tails in SCB as shown in Fig. 4.
Temporal Self-attention Branch: The local receptive
field of convolution makes it difficult to establish long-term
dependencies. The global perception ability of Transformer
can mitigate this issue. However, the time and memory
complexity of traditional Transformers increase quadrati-
cally with the image size. To alleviate this problem, fol-
lowing [3, 35], we propose TSAB (shown in Fig. 4), which
restricts the self-attention computation to the temporal do-
main, and its complexity only increase linearly with the im-
age/video size.

In particular, we first reshape the input Xst ∈
RT×H×W×C

S to Xt ∈ RHW×T×C
S , and then obtain

query (Q ∈ RHW×T× C
2S ), key (K ∈ RHW×T× C

2S ) and
value (V ∈ RHW×T× C

2S ) by linearly mapping Xt:

Q = XtW
Q, K = XtW

K , V = XtW
V , (6)

where {WQ,WK ,WV } ∈ RC
S×

C
2S are projection matri-

ces.
It is worth noting that the output dimension of the projec-

tion matrix is reduced to half of the input dimension, further
decreasing the computational complexity of TSAB. Then,
we respectively divide Q, K, V intoN heads along the fea-
ture channel: Q = {Qj}N1 , K = {Kj}N1 , V = {Vj}N1 ∈
RHW×T× C

2SN . For each head j = 1, · · · , N , the attention
can be calculated as:

headj = Aj ∗Vj , (7)

where Aj = softmax(QjK
T
j /
√
d) ∈ RHW×T×T repre-



sents an attention map, KT
j represents the transposed matrix

of Kj and d = C
2SN is a scaling parameter. Then, we con-

catenate the outputs of N heads along the feature channel
dimension and perform a linear mapping to obtain the final
output X̂t ∈ RT×H×W×C

S of TSAB:

X̂t = R(WP (Concat[head1, · · · , headN ])), (8)

where WP ∈ R C
2S×

C
S represents projection matrices, and

R is the reshape operator.

Table 1. Computational complexity of several SOTA methods.

Method Computational Complexity

SCB3D 1
2HWTK3C2

G-MSA HWTC2 + (HWT )2C
TS-MSA 2HWTC2 + T (HW )2C +HWT 2C

SCB 1
2HWTK2C2

TSAB 1
2HWTC2 + 1

2HWT 2C

We further analyze the computational complexity of
SCB and TSAB, and compare them with 3D convolution
and several classic Multi-head Self-Attention (MSA) mech-
anisms. The results are shown in Table 1, where ‘SCB3D’
represents the replacement of 2D convolution in SCB with
3D convolution and K represents the kernel size , ‘G-MSA’
represents the original global MSA [10], and ‘TS-MSA’
represents the MSA in TimeSformer [3]. It can be observed
that the computational complexity of our proposed SCB and
TSAB grows linearly with the spatial size HW , the com-
putational cost is much less than ‘TS-MSA’ and ‘G-MSA’
(grow quadratically with HW ). Compared with 3D con-
volution, since T is generally smaller than C, ‘SCB’ and
‘TSAB’ still need less computational cost.
Feed Forward Network: The feed forward network of
traditional Transformer usually uses two linear layers and
a nonlinear activation function to learn more abstract fea-
ture representations. However, in the whole FFN, there is
no interaction between the feature points. In order to better
integrate the spatial-temporal information and position cod-
ing information, we replace the first linear transformation
layer in the traditional FFN with a 3× 3× 3 convolution.

Given Xf ∈ RT×H×W×C
2 , FFN can be expressed as:

X̂f = Xf +W1(φ(W2(Xf ))), (9)

where W1,W2 represent 1 × 1 × 1 convolution and
3 × 3 × 3 convolution operations respectively, φ de-
notes the LeakyReLU non-linearity activation, and X̂f ∈
RT×H×W×C

2 is the output of the FFN.
It should be noted that in the whole CFormer block, we

do not use any regularization layers, such as Layer Normal-
ization [1] and Batch Normalization [16]. The experimental
results show that removing the regularization layer will not
reduce the quality of model reconstruction and can further
improve the efficiency of the model.

Table 2. Reconstruction quality and test time (s) using Effi-
cientSCI with different number of channels and blocks.

Model Channel Block PSNR SSIM Test time(s)

EfficientSCI-T 64 8 34.22 0.961 0.07
EfficientSCI-S 128 8 35.51 0.970 0.15
EfficientSCI-B 256 8 36.48 0.975 0.31
EfficientSCI-L 256 12 36.92 0.977 0.45

Table 3. Computational complexity and reconstruction quality of
several SOTA algorithms on 6 grayscale benchmark datasets.

Method Params (M) FLOPs (G) PSNR SSIM

BIRNAT 4.13 390.56 33.31 0.951
RevSCI 5.66 766.95 33.92 0.956

DUN-3DUnet 61.91 3975.83 35.26 0.968
ELP-Unfolding 565.73 4634.94 35.41 0.969

EfficientSCI-T 0.95 142.18 34.22 0.961
EfficientSCI-S 3.78 563.87 35.51 0.970
EfficientSCI-B 8.82 1426.38 36.48 0.975
EfficientSCI-L 12.39 1893.72 36.92 0.977

Network Variants: To balance speed and performance
of the proposed network, we introduce four different ver-
sions of EfficientSCI network, dubbed as EfficientSCI-T,
EfficientSCI-S, EfficientSCI-B and EfficientSCI-L standing
for Tiny, Small, Base and Large networks, re-
spectively. The network hyper-parameters are shown in Ta-
ble 2, in which we mainly changed the the number of ResD-
Net blocks and the number of channels. As shown in Table
3, we also compare model parameters and computational
complexity (FLOPs) with several advanced methods. The
complexity of our proposed EfficientSCI-T is smaller than
that of BIRNAT and RevSCI, and EfficientSCI-L is smaller
than that of DUN-3DUnet and ELP-Unfolding.

5. Experiment Results
5.1. Datasets

Following BIRNAT [8], we use DAVIS2017 [29] with
resolution 480 × 894 (480p) as the model training dataset.
To verify model performance, we first test the EfficientSCI
network on several simulated datasets, including six bench-
mark grayscale datasets (Kobe, Traffic, Runner,
Drop, Crash and Aerial with a size of 256 × 256 ×
8), six benchmark mid-scale color datasets (Beauty,
Bosphorus, Jockey, Runner, ShakeNDry and
Traffic with a size of 512×512×3×8), and four large-
scale datasets (Messi, Hummingbird, Swinger and
Football with different sizes and compression ratios).
Then we test our model on some real data (including
Domino, Water Balloon) captured by a real SCI sys-
tem [30].

5.2. Implementation Details

We use PyTorch framework with 4 NVIDIA RTX 3090
GPUs for training with random cropping, random scal-
ing, and random flipping for data augmentation, and use



Table 4. The average PSNR in dB (left entry) and SSIM (right entry) and running time per measurement of different algorithms on 6
benchmark grayscale datasets. The best results are shown in bold and the second-best results are underlined.

Method Kobe Traffic Runner Drop Crash Aerial Average Test time(s)

GAP-TV 26.46, 0.885 20.89, 0.715 28.52, 0.909 34.63, 0.970 24.82, 0.838 25.05, 0.828 26.73, 0.858 4.2 (CPU)
PnP-FFDNet 30.50, 0.926 24.18, 0.828 32.15, 0.933 40.70, 0.989 25.42, 0.849 25.27, 0.829 29.70, 0.892 3.0 (GPU)

PnP-FastDVDnet 32.73, 0.947 27.95, 0.932 36.29, 0.962 41.82, 0.989 27.32, 0.925 27.98, 0.897 32.35, 0.942 6.0 (GPU)
DeSCI 33.25, 0.952 28.71, 0.925 38.48, 0.969 43.10, 0.993 27.04, 0.909 25.33, 0.860 32.65, 0.935 6180 (CPU)

BIRNAT 32.71, 0.950 29.33, 0.942 38.70, 0.976 42.28, 0.992 27.84, 0.927 28.99, 0.917 33.31, 0.951 0.10 (GPU)
RevSCI 33.72, 0.957 30.02, 0.949 39.40, 0.977 42.93, 0.992 28.12, 0.937 29.35, 0.924 33.92, 0.956 0.19 (GPU)

GAP-CCoT 32.58, 0.949 29.03, 0.938 39.12, 0.980 42.54, 0.992 28.52, 0.941 29.40, 0.923 33.53, 0.958 0.08 (GPU)
DUN-3DUnet 35.00, 0.969 31.76, 0.966 40.03, 0.980 44.96, 0.995 29.33, 0.956 30.46, 0.943 35.26, 0.968 0.58 (GPU)

ELP-Unfolding 34.41, 0.966 31.58, 0.962 41,16, 0.986 44.99, 0.995 29.65, 0.959 30.68, 0.944 35.41, 0.969 0.34 (GPU)

EfficientSCI-T 33.45, 0.960 29.20, 0.942 39.51, 0.981 43.56, 0.993 29.27, 0.954 30.32, 0.937 34.22, 0.961 0.07 (GPU)
EfficientSCI-S 34.79, 0.968 31.21, 0.961 41.34, 0.986 44.61, 0.994 30.34, 0.965 30.78, 0.945 35.51, 0.970 0.15 (GPU)
EfficientSCI-B 35.76, 0.974 32.30, 0.968 43.05, 0.988 45.18, 0.995 31.13, 0.971 31.50, 0.953 36.48, 0.975 0.31 (GPU)
EfficientSCI-L 36.27, 0.976 32.83, 0.971 43.79, 0.991 45.46, 0.995 31.52, 0.974 31.64, 0.955 36.92, 0.977 0.45 (GPU)

Ground Truth DUN-3DUnetPnP-FastDVDnet RevSCI EfficientSCI-B

Kobe #30

Crash #13

Traffic #48

Aerial #3

Figure 5. Selected reconstruction frames of simulated grayscale
data. Zoom in for better view.

Adam [19] to optimize the model with the initial learning
rate 0.0001. After iterating for 300 epochs, we adjusted
the learning rate to 0.00001 and continued to iterate for 40
epochs to get the final model parameters. The peak-signal-
to-noise-ratio (PSNR) and structured similarity index met-
rics (SSIM) [38] are used as the performance indicators of
reconstruction quality.

5.3. Results on Simulation Datasets

5.3.1 Grayscale Simulation Video

We compare our method with SOTA model-based meth-
ods (GAP-TV [44], PnP-FFDNet [46], PnP-FastDVDnet
[47], DeSCI [21]) and deep learning-based methods (BIR-
NAT [8], RevSCI [7], GAP-CCoT [36], DUN-3DUnet [40],
ELP-Unfolding [42]) on simulated grayscale datasets. Ta-
ble 4 shows the quantitative comparison results, it can be
observed that our proposed EfficientSCI-L can achieve the
highest reconstruction quality and has good real-time per-
formance. In particular, the PSNR value of our method
surpasses the existing best method ELP-Unfolding by 1.46

dB on average. In addition, our proposed EfficientSCI-
T achieves high reconstruction quality while achieving the
best real-time performance. It is worth noting that, for a fair
comparison, we uniformly test the running time of all deep
learning based methods on the same NVIDIA RTX 3090
GPU. Fig. 5 shows the visual reconstruction results of some
data. By zooming in some local areas, we can observe that
our method can recover sharper edges and more detailed in-
formation compared to previous SOTA methods. The mid-
scale color results are shown in the SM due to space limi-
tation and our method outperforms previous SOTA by 2.02
dB in PSNR on the benchmark dataset [47].

5.3.2 Large-scale Color Simulation Video

Most deep learning based methods, such as BIRNAT [8],
DUN-3DUnet [40], cannot be applied to large-scale data
reconstruction due to excessive model complexity and GPU
memory constraints. RevSCI [7] uses a reversible mech-
anism and can reconstruct a 24 frames RGB color video
with size of 1080 × 1920 × 3, but training the model is
extremely slow. GAP-CCoT [36] and ELP-Unfolding [42]
only use 2D convolution for reconstruction and thus can-
not handle color video data well. Therefore, we only
compare with several SOTA model-based methods (GAP-
TV [44], PnP-FFDNet-color [46], PnP-FastDVDnet-color
[47]) on large-scale color data. Table 5 shows the com-
parisons between our proposed method and several model-
based methods on PSNR, SSIM and test time (in min-
utes). It can be observed that model-based methods either
have long reconstruction time (PnP-FFDNet-color, PnP-
FastDVDnet-color) or low reconstruction quality (GAP-
TV). Our proposed EfficientSCI-S can achieve higher re-
construction quality and running speed. Especially on UHD
color video football (1644× 3840× 3× 40), the PSNR
value of our method is 2.5 dB higher than PnP-FastDVDnet-
color, and the reconstruction time is only 0.5% of it. Fig.
6 shows some visual reconstruction results. By zooming



Table 5. The average PSNR in dB (left entry) and SSIM (middle entry) and test time (minutes) per measurement (right entry) of different
algorithms on 4 benchmark large-scale datasets. Best results are in bold.

Dataset Pixel resolution GAP-TV PnP-FFDNet-color PnP-FastDVDnet-color EfficientSCI-S

Messi 1080× 1920× 3× 8 25.20, 0.874, 0.66 34.28, 0.968, 14.93 34.34, 0.970, 15.94 34.41, 0.973, 0.09
Hummingbird 1080× 1920× 3× 30 25.10, 0.750, 20.3 28.79, 0.665, 61.20 31.17, 0.916, 54.00 35.56, 0.952, 0.39

Swinger 2160× 3840× 3× 15 22.68, 0.769, 39.2 29.30, 0.934, 138.8 30.57, 0.949, 138.4 31.05, 0.951, 0.62
Football 1644× 3840× 3× 40 26.19, 0.858, 83.0 32.70, 0.951, 308.8 32.31, 0.947, 298.1 34.81, 0.964, 1.52

Messi #8

Football #33

Swinger #48

Hummingbird #3

Ground Truth PnP-FFDNet-color PnP-FastDVDnet-color EfficientSCI-S

Figure 6. Comparison of reconstruction results of different algorithms on several benchmark large-scale color video simulation datasets.
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Figure 7. Reconstruction quality (PSNR in dB, higher is better)
of different reconstruction algorithms, with varying compression
rates B from 8 to 48.

in local areas, we can observe that the reconstruction re-
sults of our method are closer to the real value. In addi-
tion, our proposed model enjoys high flexibility for differ-
ent compression ratios, that is, the model trained on low
compression ratio data can be directly used for high com-

pression ratio video reconstruction task. To verify this, we
test hummingbird data with different compression ratios
B = 8, 16, 24, 32, 40, 48, and the reconstruction results are
shown in Fig. 7. We can observe that our method can be ap-
plied to video data with different compression ratios, even
when the compression ratio B grows to 48, the PSNR value
of EfficientSCI-T model can still reach more than 32 dB.
Moreover, our proposed approach surpasses other recon-
struction algorithms at all compression ratios.

5.3.3 Ablation Study

To verify the performance of the proposed ResDNet block
and CFormer block on the impact of the reconstruction
quality, we conduct some ablation experiments. The results
are shown in Table 6 and Table 7, we not only compare the
reconstruction quality of different models, but also analyze
the model parameters and FLOPs. All experiments are con-
ducted on the 6 grayscale benchmark datasets.



Table 6. Ablation study on the ResDNet block without dense con-
nections (left entry) and with dense connections (right entry).

GN Params FLOPs PSNR SSIM

1 27.40, 27.40 3860.94, 3860.94 35.17, 35.17 0.967, 0.967
2 14.82, 15.08 2211.77, 2246.39 35.09, 36.02 0.966, 0.974
4 8.53, 8.82 1387.33, 1426.38 35.02, 36.48 0.966, 0.975
8 5.38, 5.65 975.39, 1013.45 34.31, 35.68 0.961, 0.971

Table 7. Ablation study on the CFormer block.

SCB TSAB Swin S2-3D Params (M) FLOPs (G) PSNR SSIM

X X 2.88 471.03 34.99 0.967
X 6.93 999.31 34.93 0.966

X X 3.78 563.87 35.51 0.970

ResDNet Block: We verify the effect of different group
numbers (GN) (corresponding to S in Eq. 5) and dense
connections on the reconstruction quality. As shown in Ta-
ble 6, the model complexity decreases gradually with the
increase of GN, but the reconstruction quality greatly de-
creases when there are no dense connections in the ResDNet
block. By introducing dense connections in the ResDNet
block, the reconstruction quality of our proposed method is
greatly improved, and a gain of 1.46 dB can be obtained
when GN is 4.
CFormer Block: In the CFormer block, we first replace
SCB with Swin Transformer (Swin) to verify its effective-
ness. Then, we replace SCB and TSAB with two stacked 3D
convolutions (S2-3D) to verify the effectiveness of TSAB.
As shown in Table 7, compared with Swin Transformer,
SCB can bring a 0.52 dB gain. Although the number of
parameters and FLOPs have increased, the experimental re-
sults show that SCB takes up less memory than the Swin
Transformer, which is very important for large-scale and
high compression ratio data. Please refer to more detailed
analysis in SM. Compared with SCB and TSAB, S2-3D not
only increases model parameters and FLOPs by 83% and
77% respectively, but also reduces the PSNR value by 0.58
dB, which verifies the necessity of using space-time factor-
ization and TSAB.
Number of Channels and Blocks: Table 2 shows that the
quality of model reconstruction increases with the number
of channels and blocks. However, the amount of parame-
ters and FLOPs also increase (see Table 3), resulting in a
degradation in the real-time performance of the model.

5.4. Results on Real Video SCI Data

We further test our method on real data. Fig. 8 and
Fig. 9 show the reconstruction results of multiple algo-
rithms on two public data (Domino, Water Balloon),
we can see that our method can reconstruct clearer details
and edges. Specifically, we can clearly recognize the let-
ters on the Domino. Even with a high compression ratio
(B = 50), our proposed method can still reconstruct clear
foreground and background information (shown in Fig. 9).

GAP-TV

DeSCI

PnP-FFDNet

BIRNAT

EfficientSCI

#2 #4 #6 #8 #10

Measurement

Figure 8. Reconstruction results of different algorithms on
Domino real data with compression rate B = 10.

GAP-TV

DeSCI

PnP-FFDNet

EfficientSCI

Measurement

#10 #30#20 #40 #50

Figure 9. Reconstruction results of different algorithms on Water
Balloon real data with compression rate B = 50.

6. Conclusions and Future Work

This paper proposes an efficient end-to-end video SCI re-
construction network, dubbed EfficientSCI, which achieves
the state-of-the-art performance on simulated data and real
data, significantly surpassing the previous best reconstruc-
tion algorithms with high real-time performance. In addi-
tion, we show for the first time that an UHD color video
with high compression rate can be reconstructed using a
deep learning based method. For future work, we consider
applying EfficientSCI Network to more SCI reconstruction
tasks, such as spectral SCI [4, 49].
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