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Abstract

Modern data augmentation using a mixture-based tech-
nique can regularize the models from overfitting to the train-
ing data in various computer vision applications, but a
proper data augmentation technique tailored for the part-
based Visible-Infrared person Re-IDentification (VI-ReID)
models remains unexplored. In this paper, we present a
novel data augmentation technique, dubbed PartMix, that
synthesizes the augmented samples by mixing the part de-
scriptors across the modalities to improve the performance
of part-based VI-ReID models. Especially, we synthe-
size the positive and negative samples within the same
and across different identities and regularize the backbone
model through contrastive learning. In addition, we also
present an entropy-based mining strategy to weaken the ad-
verse impact of unreliable positive and negative samples.
When incorporated into existing part-based VI-ReID model,
PartMix consistently boosts the performance. We conduct
experiments to demonstrate the effectiveness of our Part-
Mix over the existing VI-ReID methods and provide abla-
tion studies.

1. Introduction

Person Re-IDentification (ReID), aiming to match per-
son images in a query set to ones in a gallery set cap-
tured by non-overlapping cameras, has recently received
substantial attention in numerous computer vision applica-
tions, including video surveillance, security, and persons
analysis [66, 78]. Many ReID approaches [1, 2, 25, 26, 32,
42, 61, 75, 81] formulate the task as a visible-modality re-
trieval problem, which may fail to achieve satisfactory re-
sults under poor illumination conditions. To address this,
most surveillance systems use an infrared camera that can
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Figure 1. Comparison of data augmentation methods for VI-
ReID. (a) MixUp [71] using a global image mixture and (b) Cut-
Mix [70] using a local image mixture can be used to regularize
a model for VI-ReID, but these methods provide limited perfor-
mances because they yield unnatural patterns or local patches with
only background or single human part. Unlike them, we present
(c) PartMix using a part descriptor mixing strategy, which boosts
the VI-ReID performance (Best viewed in color).

capture the scene even in low-light conditions. However,
directly matching these infrared images to visible ones for
ReID poses additional challenges due to an inter-modality
variation [62, 64, 67].

To alleviate these inherent challenges, Visible-Infrared
person Re-IDentification (VI-ReID) [5–7, 12, 24, 35, 50,
56, 62–64, 68] has been popularly proposed to handle the
large intra- and inter-modality variations between visible
images and their infrared counterparts. Formally, these ap-
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proaches first extract a person representation from whole
visible and infrared images, respectively, and then learn
a modality-invariant feature representation using feature
alignment techniques, e.g., triplet [5,7,24,62–64] or ranking
criterion [12, 68], so as to remove the inter-modality varia-
tion. However, these global feature representations solely
focus on the most discriminative part while ignoring the di-
verse parts which are helpful to distinguish the person iden-
tity [55, 65].

Recent approaches [55, 59, 65] attempted to further en-
hance the discriminative power of person representation for
VI-ReID by capturing diverse human body parts across dif-
ferent modalities. Typically, they first capture several hu-
man parts through, e.g., horizontal stripes [65], cluster-
ing [55], or attention mechanisms [59] from both visible
and infrared images, extract the features from these human
parts, and then reduce inter-modality variation in a part-
level feature representation. Although these methods re-
duce inter-modality variation through the final prediction
(e.g., identity probability), learning such part detector still
leads to overfitting to the specific part because the model
mainly focuses on the most discriminative part to classify
the identity, as demonstrated in [4, 15, 31, 54]. In addition,
these parts are different depending on the modality, it accu-
mulates errors in the subsequent inter-modality alignment
process, which hinders the generalization ability on unseen
identity in test set.

On the other hand, many data augmentation [19, 22, 39,
47, 70, 71] enlarge the training set through the image mix-
ture technique [71]. They typically exploit the samples that
linearly interpolate the global [39, 46, 71] or local [19, 70]
images and label pairs for training, allowing the model
to have smoother decision boundaries that reduce overfit-
ting to the training samples. This framework also can be
a promising solution to reduce inter-modality variation by
mixing the different modality samples to mitigate overfit-
ting to the specific modality, but directly applying these
techniques to part-based VI-ReID models is challenging in
that they inherit the limitation of global and local image
mixture methods (e.g., ambiguous and unnatural patterns,
and local patches with only background or single human
part). Therefore, the performance of part-based VI-ReID
with these existing augmentations would be degraded.

In this paper, we propose a novel data augmentation tech-
nique for VI-ReID task, called PartMix, that synthesizes
the part-aware augmented samples by mixing the part de-
scriptors. Based on the observation that learning with the
unseen combination of human parts may help better regu-
larize the VI-ReID model, we randomly mix the inter- and
intra-modality part descriptors to generate positive and neg-
ative samples within the same and across different identi-
ties, and regularize the model through the contrastive learn-
ing. In addition, we also present an entropy-based mining

strategy to weaken the adverse impact of unreliable posi-
tive and negative samples. We demonstrate the effective-
ness of our method on several benchmarks [33,57]. We also
provide an extensive ablation study to validate and analyze
components in our model.

2. Related work

Person ReID. Person Re-IDentification (ReID) aims to
search a target person from a large gallery set, where the
images are captured from non-overlapping visible camera
views. With the advent of deep convolutional neural net-
works (CNNs), to solve this task, existing works [1, 3, 48]
encourage the person representation within the same iden-
tity to be similar through feature-level constraint, including
triplet constraint [48], quadruplet constraint [3], or group
consistency constraint [1]. However, since these methods
learn features from the whole person image, they often suf-
fer from intra-modality variation caused by the human pose
variation and part occlusions [42]. Thus, there have been
many efforts to focus on extracting human body parts that
can provide fine-grained person image descriptions through
uniform partitions [8, 42, 44, 49, 77] or attention mecha-
nism [25, 28, 29, 61, 76, 79].

Visible-Infrared Person ReID. Most surveillance sys-
tems deploy infrared images to achieve satisfactory results
under poor illumination conditions [20, 57]. However, di-
rectly applying person re-id methods suffer from the dif-
ferent distribution between modalities, typically known as
modality discrepancy [62,64,67]. To alleviate this, Visible-
Infrared person re-id (VI-ReID) has been popularly studied
to match a person between visible and infrared images with
challenges posed by large intra-modality variation and inter-
modality variations. Wu et al. [57] first introduced a large-
scale VI-ReID dataset, named SYSU-MM01, and proposed
a deep zero-padding strategy to explore modality-specific
structure in a one-stream network. Recently, modality in-
variant feature learning based VI-ReID has been proposed
to project the features from different modalities into the
same feature space. Formally, these methods extract fea-
tures from visible and infrared person images and then re-
duce the inter-modality discrepancy by feature-level con-
straints, such as triplet constraint [7, 62–64], or ranking
constraint [12, 68]. However, these methods usually fo-
cus only on the most discriminative part rather than the di-
verse parts which are helpful to distinguish different per-
sons [55, 65]. Therefore, several methods have been pro-
posed to align inter-modality discrepancy in a fine-grained
manner, exploiting horizontal stripes [65], or inter-modality
nuances [55, 59]. However, the part detector can be easily
overfitted to the specific part. Moreover, these part maps
are not semantically consistent across modalities, showing
limited performance.
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Figure 2. Overview of our PartMix-based framework for VI-ReID. The visible and infrared images are fed into the embedding network
to extract features and obtain part descriptors through the global average pooling layer. The part descriptors from visible and infrared
modalities are fed into the part mixing module to synthesize the positive and negative samples. The reliable positive and negative samples
are selected through the positive and negative mining module for contrastive learning.

Data Augmentation. Data augmentation has been widely
explored in various computer vision tasks [13,21,40,46,60,
71] to prevent deep neural network from overfitting to the
training data. Specifically, mixture-based methods, includ-
ing global image mixture [39, 46, 71], e.g., MixUp, and lo-
cal image mixture [19, 70], e.g., CutMix, are dominant reg-
ularization strategies. These methods formally synthesize
the virtual training samples by linearly interpolating the im-
ages and the corresponding labels. It results in smoother
decision boundaries that reduce overfitting to the training
data. On the other hand, some methods [22, 39] lever-
aged the different image mixtures for contrastive-based un-
supervised learning. Recently, there exist several efforts to
adapt the global image mixture to VI-ReID tasks [16, 73],
but there still remains the problem of unnatural patterns,
which hinder the localization ability [45, 70] for part-based
VI-ReID. Unlike the methods above, we present for the
first time a part-level augmentation for part-based VI-ReID,
overcoming the limitations of existing data augmentation
methods [39, 46, 70, 71].

3. Proposed Method

3.1. Preliminaries and Problem Formulation

Let us denote visible and infrared image sets as X v =
{xvi }N

v

i=1 and X r = {xri }N
r

i=1, where xvi and xri are images,
and Nv and Nr are the number of visible and infrared im-
ages, and they are unpaired. For visible and infrared im-
age sets, the corresponding identity label sets are defined
such that Yv = {yvi }N

v

i=1 and Yr = {yri }N
r

i=1, whose la-
bel candidates are shared. The objective of VI-ReID is to

learn modality-invariant person descriptors, denoted by dv

and dr, for matching persons observed from visible and in-
frared cameras. For simplicity, we denote visible and in-
frared modalities as t ∈ {v, r} unless stated.

Most recent state-of-the-art methods are based on part-
based person representation [55, 59, 65] that aims to extract
discriminative human parts information and use them to en-
hance the robustness of person representation against hu-
man pose variation across the modality. These methods typ-
ically involve discovering diverse and discriminative human
parts in an attention mechanism, and generating the person
descriptor by assembling a global descriptor and part de-
scriptors for retrieving visible (or infrared) images accord-
ing to the given infrared (or visible) images.

Specifically, given visible and infrared images, the fea-
ture map for each modality is computed through an embed-
ding network E(·) such that f t = E(xt). The part detec-
tor D(·) then produces human parts, followed by sigmoid
function σ(·), to output part map probability, denoted by
{mt(k)}Mk=1 = σ(D(f t)), where M is the number of part
maps. The part descriptors are then formulated as follows:

pt = [pt(k)]Mk=1 = [GAP(mt(k)� f t)]Mk=1, (1)

where GAP(·) denotes a global average pooling, � is an
element-wise multiplication, and [·] is a concatenate opera-
tion. Note that they apply element-wise multiplication be-
tween mt(k) and each channel dimension in f t. They fi-
nally concatenate the global descriptor gt such that lt =
GAP(f t) and part descriptors pt to obtain person descrip-
tor dt for matching the persons observed from visible and

3
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Figure 3. Illustration of entropy-based mining strategy. It com-
putes the difference between the pairwise entropy for positive and
negative samples. These uncertainty value sets are sorted in as-
cending and descending order to select reliable positive and nega-
tive samples.

infrared cameras such that

dt = [gt, pt]. (2)

To train such a model, since only identity labels are avail-
able, they adopted a cross-entropy loss between the identity
probabilities and ground-truth identities. In addition, they
also adopted several loss functions, including knowledge
distillation [59] or metric learning [55, 59, 65] loss, to learn
modality invariance in a part-level feature representation.

While these losses let the network focus on human parts
across modalities and reduce inter-modality variations by
aligning person descriptors within the same identity, the
part detectors learned by these methods have been often
overfitted to the specific part, as exemplified in Fig. 4. In
addition, these learned parts may not be semantically con-
sistent across modalities [14, 17, 23]. Therefore, they fail to
localize discriminative and semantically-consistent human
parts across the visual and infrared modalities, thus show-
ing limited performance.

3.2. Overview

To overcome the limitations of previous part-based per-
son representation methods [55,59,65], our PartMix, which
we introduce in the remainder of this section, accounts
for the observation that learning with the part-aware aug-
mented samples across both inter- and intra-modality can
help better regularize the model. Unlike conventional meth-
ods [19,39,46,70,71] that exploit image mixture techniques
that yield unnatural patterns, and local patches with only
background or single human part, we present a novel part
mixing strategy to synthesize augmented samples by mix-
ing partial descriptors across the modalities, and use them
to synthesize positive and negative samples to maximize the
similarities of positive pairs and minimize the similarities of
negative pairs through the contrastive learning objective. It
helps to regularize the model and mitigate the overfitting to
the specific part and modality, improving the generalization

capability of the model. Furthermore, to eliminate the unre-
liable positive and negative samples, we present an entropy-
based mining strategy that can help guide a representation
to be more discriminative.

3.3. Part Mixing for Data Augmentation

One of the most straightforward ways of leveraging reg-
ularization to better learn part discovery may be to utilize
existing augmentation techniques, e.g., using global [39,
46, 71] or local [19, 70] image mixtures. These existing
strategies, however, are difficult to be directly applied to
part-based VI-ReID methods [55, 59, 65] due to the follow-
ing two respects. Firstly, directly applying the global im-
age mixture methods [39, 46, 71] suffers from the locally
ambiguous and unnatural pattern, and thus mixed sample
confuses the model, especially for localization as demon-
strated in [45, 70]. Secondly, mixing the local image re-
gion [19, 70] without part annotation may contain only a
background or single human part, and thus it may cause
performance degradation for part-based models which re-
quire diverse and discriminative discovery of human parts
for distinguishing the person identity.

To overcome these, we present a novel data augmenta-
tion technique tailored to part-based methods, called Part-
Mix, that mixes the part descriptors extracted from differ-
ent person images. By mixing the part descriptors rather
than the images, we can synthesize the augmented samples
with diverse combinations of human parts. Concretely, we
first collect the part descriptors in the visible and infrared
modalities of the mini-batch, denoted as the descriptor bank
P t = {pt1, pt2..., ptNt}. We then mix the part descrip-
tors through part mix operation across the inter-modality
A(pvi (u), prj(h)) and intra-modality A(pti(u), ptj(h)) se-
quentially as follows:

A(pvi (u), prj(h))
= [pvi (1), ..., p

v
i (u− 1), prj(h), p

v
i (u+ 1), ..., pvi (M)],

A(pti(u), ptj(h))
= [pti(1), ..., p

t
i(u− 1), ptj(h), p

t
i(u+ 1), ..., pti(M)],

(3)

where h, u denote the randomly sampled indexes of part de-
scriptors pt. Note that we exclude the global descriptor gt

in the part mixing above because it contains all human body
parts information.

3.4. Sample Generation for Contrastive Learning

Existing image mixture-based methods [19,39,46,70,71]
generate the training samples by linearly interpolating the
images and the corresponding labels. These approaches,
however, only synthesize the samples with the combination
of identities in the training set, and thus they have limited
generalization ability on the VI-ReID task where identities
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in the testing set are different from the training set. To alle-
viate this, we present a sample generation strategy that can
synthesize positive and negative samples with the unseen
combination of human parts (i.e. the unseen identity). In
the following section, we explain how to achieve positive
bank B+,t

i and negative bank B−,ti in detail. For simplicity,
only visible samples are described as an example.

Positive Samples. Our first insight is that the combination
of the human parts of the persons with the same identity has
to be consistent. To this end, we design positive samples
that mix the same part information between the person im-
ages within the same identity. Specifically, we mix the part
descriptors with the same identity using (3). Each positive
sample for visible modality is denoted as

b+,v
i = [A(pvi (k), prj(k)),A(pvi (k), pvj (k))], if yi = yj .

(4)
Note that we only mix the part-level descriptor within the
same identity (i.e. yi = yj).

Negative Sample. The positive samples in (4) encourage
the part-level feature within the same identity across the
inter- and intra-modality to be invariant. This, however,
does not guarantee that the model can distinguish the person
identity with different combinations of human parts, and lo-
calize the diverse human parts within the same person.

To overcome this, we design the negative samples that
encourage the model to distinguish the person identity when
the combination of human parts is different and localize di-
verse human parts in each identity. We mix the part descrip-
tor within the same and different identity using (3) as

b−,vi =

{
[A(pvi (k), prj(h)),A(pvi (k), pvj (h))], if yi = yj
[A(pvi (k), prj(k)),A(pvi (k), pvj (k))], if yi 6= yj

,

(5)
where k and h denote the different indexes of part descrip-
tors. Note that our negative samples cover the unseen com-
bination of human parts in the training set. Therefore, these
samples can be seen as out-of-distribution negative sam-
ples that can provide supportive information for improving
the generalization capability of the model as investigated
in [9, 41].

3.5. Entropy-based Mining Strategy

Even though the proposed sample generation strategy
through part mixing yields comparable performance to
some extent (which will be discussed in experiments), it re-
lies on the assumption that there are different human part
information (e.g. clothes, hairstyle) for each person. How-
ever, several persons with different identities share a similar
appearance (e.g., wearing similar clothes). Therefore, sim-
ply mixing these samples makes false negative samples that
still have the same combination of human parts. Moreover,
the false positive samples can be synthesized by randomly

mixing human parts that have different semantic meanings,
especially in the early training stage.

To overcome this, inspired by the uncertainty-based ap-
proaches [10,38], we present an entropy-based mining strat-
egy for eliminating the false positive and false negative sam-
ples. We exploit the difference between the pairwise en-
tropy of the identity prediction that can be an uncertainty
measure for positive and negative samples, where the reli-
able samples are determined as a positive pair with a smaller
entropy difference and a negative pair with a larger entropy
difference. We first obtain identity probability for each sam-
ple through the part-level identity classifier Cp(·). We then
compute the difference between the pairwise entropy for
positive and negative samples as follows:

h+,v
i = [|H(Cp(pvi ))−H(Cp(b+,v

i (j)))|]Uj=1,

h−,vi = [|H(Cp(pvi ))−H(Cp(b−,vi (j)))|]Qj=1,
(6)

where H(·) is entropy function [38], and U , Q are the num-
ber of positive and negative pairs. These uncertainty value
sets for positive h+,v

i and negative h−,vi are then sorted
in ascending and descending order, respectively. We se-
lect the top U ′ and Q′ samples for positive bank B+,v

i =

[b+,v
i (j)]U

′

j=1 and negative bank B−,vi = [b−,vi (j)]Q
′

j=1, re-
spectively.

3.6. Loss Functions

In this section, we describe several loss functions to train
our network. We newly present contrastive regularization
loss Lcont and part ID loss Laid to regularize the model
through positive and negative samples.

Contrastive Regularization Loss. We aim to maximize
the similarities between positive pairs and minimize sim-
ilarities between negative pairs. To this end, inspired by
[34, 58], we adopt the contrastive regularization loss that
jointly leverages positive and negative samples to regular-
ize the model, and thus the model can overcome the lim-
itation of strong reliance on supervision signal. We first
define the similarity between part descriptors and posi-
tive (negative) samples, defined as s+i,j = sim(pi, b

+
i (j))

(s−i,k = sim(pi, b
−
i (k))), where sim(·, ·) denotes a similar-

ity function. The contrastive loss can be written as follows:

Lcont =

Nv+Nr∑
i=1

− log

∑U ′

j=1 exp(s
+
i,j/τ)∑U ′

j=1 exp(s
+
i,j/τ) +

∑Q′

k=1 exp(s
−
i,k/τ)

,

(7)

where τ is a scaling temperature parameter.

Part ID Loss. To estimate accurate entropy values for the
augmented samples, we adopt part ID loss for an additional

5
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Figure 4. Visualization of part detection results by (a) baseline [59] and (b) baseline with PartMix (Ours). The baseline method is
easily overfitted to the specific part, while our method can capture diverse and discriminative human parts.

part classifier that provides identity scores from part de-
scriptors. It allows the model to eliminate the unreliable
positive and negative samples, and learn discriminative and
semantically consistent part discovery, simultaneously.

Laid = − 1

N

N∑
i=1

yi log(Cp(pi)). (8)

Total Loss. Following the baseline [59], we also adopt
modality learning loss LML, modality specific ID loss Lsid,
center cluster loss Lcc, and identity classification loss Lid.
The detailed losses are described in the supplementary ma-
terial. The total loss function of our approach can be writ-
ten as L = Lid +Lcc + λsidLsid + λMLLML + λaidLaid +
λcontLcont, where λsid, λML, λaid, and λcont are weights
that control the importance of each loss.

3.7. Discussion

Most recent trends in inter-domain scenarios (e.g., do-
main adaptation [69,72]) exploited counterfactual interven-
tion to learn domain invariant knowledge, improving gen-
eralization capabilities. These frameworks consist of two
main components: generating “counterfactual samples” by
changing the domain (e.g., style) and using them in the
model training for “intervention”. Our PartMix satisfies
these conditions, as we synthesize the modality-mixed sam-
ples by changing the part descriptor across the modality
and training the whole model with these samples. There-
fore, we can interpret our PartMix as a counterfactual in-
tervention for inter-modality part-discovery, where the part
mixing module can be viewed as a “counterfactual” sample
generator and the contrastive regularization as an “interven-
tion”. This allows our model to learn modality invariant
part representation by encouraging the part discovery to be
invariant under different interventions.

4. Experiments
4.1. Experimental Setup

In this section, we comprehensively analyze and evalu-
ate our PartMix on several benchmarks [33, 57]. First, we
analyze the effectiveness of our PartMix and comparison
with other regularization methods. We then evaluate our
method compared to the state-of-the-art methods for VI-
ReID. In the experiment, we utilize MPANet [59] as our
baseline model. Additional implementation details will be
explained in the supplementary material.

Dataset. We evaluate our method on two benchmarks,
SYSU-MM01 [57] and RegDB [33]. Firstly, SYSU-MM01
dataset [57] is a large-scale VI-ReID dataset. This dataset
contains 395 identities with 22,258 visible images acquired
by four cameras and 11,909 near-infrared images acquired
by two cameras for the training set. The testing set con-
tains 96 identities with 3,803 near-infrared images in the
query, and 301 and 3,010 visible images in the gallery for
single-shot and multi-shot, respectively. Secondly, RegDB
dataset [33] contains 4,120 visible and infrared paired im-
ages with 412 person identities, where each person has 10
visible and 10 far-infrared images. Following [33], we ran-
domly split the dataset for training and testing sets, where
each set contains non-overlapping 206 person identities be-
tween the sets.

Evaluation Protocols. For SYSU-MM01 [57] bench-
mark, we follow the evaluation protocol in [57]. We test
our model in all-search and indoor-search settings, where
the gallery sets for the former include images captured by
all four visible cameras, and the latter includes two indoor
ones. For RegDB [33] benchmark, we evaluate our model
on infrared to visible and visible to infrared setting, where
the former retrieve infrared images from visible ones, and
the latter retrieves visible ones from infrared ones. For both
benchmarks, we adopt the cumulative matching character-
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Methods
SYSU-MM01

Single-shot Multi-shot
Rank-1 mAP Rank-1 mAP

Base 70.58 68.24 75.58 62.91
Base+IntraPM 72.72 69.84 76.82 64.64
Base+InterPM 75.61 71.79 78.64 67.72
Base+IntraPM + InterPM 75.86 72.71 79.05 68.80
Ours 77.78 74.62 80.54 69.84

Table 1. Ablation study for the different components of our
method on the SYSU-MM01 dataset [57].

Bins Recall@1 mean max min subtract
0 78 83 81 80.66667 83 78 5 78
1 82 79 78 79.66667 82 78 4 78
2 76 81 79 78.66667 81 76 5 76
3 67 68 63 66 68 63 5 63
4 61 63 69 64.33333 69 61 8 61
5 57 60 66 61 66 57 9 57
6 58 56 51 55 58 51 7 51
7 52 49 41 47.33333 52 41 11 41
8 54 52 42 49.33333 54 42 12 42
9 43 40 48 43.66667 48 40 8 40

diff
4.03
6.79
8.4
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10.18
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Figure 5. Ablation study for part mixing with different num-
bers of the mixed part (left) and number of part maps (right).

istics (CMC) and mean average precision (mAP) as evalua-
tion metrics.

4.2. Ablation Study

In this section, we conduct ablation analyses to inves-
tigate the effectiveness of our framework. In this abla-
tion study, all experiments are conducted on SYSU-MM01
dataset [57].

Effectiveness of Each Component. Here we analyze the
key components of PartMix, including intra-modality part
mixing (IntraPM), inter-modality part mixing (InterPM),
and entropy-based mining (EM). For the fair comparison,
we utilize MPANet [59] as our baseline (Base) for all ex-
periments. As summarized in Table 1, each component
helps to boost performance. Starting from the baseline,
adding IntraPM improves the performance which indicates
that IntraPM effectively mitigates intra-modality variation
(e.g., human pose variation) thanks to samples synthesized
by mixing part information extracted from diverse human
poses. When the InterPM is added, we observe a significant
improvement, which confirms that the InterPM effectively
synthesizes the unseen combination of human parts across
the modalities, and thus mitigates the overfitting to the spe-
cific parts and modality, simultaneously. We also note that
EM also brings the performance gain for VI-ReID by min-
ing the reliable samples among initial positive and negative
samples.

Number of Mixing Parts. In our experiment, we mix the
part descriptors B times using (3). Note that we set the
number of part maps as 6 in this experiment. We analyze the
quantitative comparison with a different number of mixed
parts B as shown in Fig. 5. The result shows that ours with

Methods
SYSU-MM01

Single-shot Multi-shot
Rank-1 mAP Rank-1 mAP

Base 70.58 68.24 75.58 62.91
Base+MixUp [71] 51.48 46.25 58.30 38.48
Base+Manifold [46] 71.25 67.74 76.72 62.39
Base+CutMix [70] 73.35 70.69 77.03 64.76
Ours 77.78 74.62 80.54 69.84

Table 2. Ablation study for comparison with other regulariza-
tion methods on the SYSU-MM01 dataset [57].

various numbers of mixed parts, which shows the effective-
ness of our PartMix. We consider ours with B = 0 as the
baseline [59]. The result with B = 6 is that positive and
negative samples are set to the counterpart modality sam-
ples within the same and different identities, respectively.
The performance has improved as B is increased from 1,
and after achieving the best performance at B = 2 the
rest showed slightly improved performance. The lower per-
formance with the larger number of mixed parts indicates
that easy samples in which the combination of human parts
is not significantly different from samples with a different
identity in mini-batch can actually be less effective in regu-
larization. Since the result with B = 2 has shown the best
performance on the SYSU-MM01 dataset [57] and RegDB
dataset [33], we set B as 2 for all experiments.

Number of Part Maps. In Fig. 5, we evaluate our model
with the different number of part maps. In all experiments,
we set the number of mixed parts to 1/3 of the number of
part maps. The results show that our PartMix consistently
boosts the performance of mAP in single-shot all-search on
the SYSU-MM01 dataset. For M = 1, we exploit training
samples with the same and different identities in the mini-
batch as positive and negative samples, respectively. We
consider ours with M = 1 as contrastive learning with the
global descriptor. It shows that contrastive learning effec-
tively regularizes the model, and thus the model can miti-
gate modality discrepancy. Specifically, as M is increased
from 4, the performance of our model converges to high
mAP. These results indicate that our PartMix can consis-
tently capture diverse and discriminative human parts with
only a small number of part maps. Since the result with
M = 6 has shown the best performance of mAP in single-
shot all-search on the SYSU-MM01 dataset, we set M = 6
for the remaining experiments.

4.3. Comparison to Other Regularization Methods

In this section, we validate the effectiveness of our
PartMix through the comprehensive comparison with other
regularization methods, including MixUp [71], Manifold
MixUp [46], and CutMix [70]. Table 2 shows Part-
Mix significantly outperforms all other regularization meth-
ods [46, 70, 71]. Interestingly, the MixUp method [71]
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Method

SYSU-MM01 [57] RegDB [33]All-Search Indoor-Search
Single-Shot Multi-Shot Single-Shot Multi-Shot infrared to visible visible to infrared

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
Two-stream [50] 11.65 12.85 16.33 8.03 15.60 21.49 22.49 13.92 - - - -
One-stream [50] 12.04 13.67 16.26 8.59 16.94 22.95 22.62 15.04 - - - -

Zero-Padding [50] 14.80 15.95 19.13 10.89 20.58 26.92 24.43 18.86 16.7 17.9 17.8 18.9
cmGAN [5] 26.97 27.80 31.49 22.27 31.63 42.19 37.00 32.76 - - - -
D2RL [52] 28.90 29.20 - - - - - - - - 43.4 44.1

JSIA-ReID [51] 38.10 36.90 45.10 29.50 43.80 52.90 52.70 42.70 48.1 48.9 48.5 49.3
AlignGAN [50] 42.40 40.70 51.50 33.90 45.90 54.30 57.10 45.30 56.3 53.4 57.9 53.6

DFE [11] 48.71 48.59 54.63 42.14 52.25 59.68 59.62 50.60 68.0 66.7 70.2 69.2
XIV-ReID [24] 49.92 50.73 - - - - - 62.3 60.2 - -

CMM+CML [27] 51.80 51.21 56.27 43.39 54.98 63.70 60.42 53.52 59.8 60.9 - -
SIM [18] 56.93 60.88 - - - - - - 75.2 78.3 74.7 75.2

CoAL [53] 57.22 57.20 - - 63.86 70.84 - - 74.1 69.9 - -
DG-VAE [37] 59.49 58.46 - - - - - - - - 73.0 71.8
cm-SSFT [30] 61.60 63.20 63.40 62.00 70.50 72.60 73.00 72.40 71.0 71.7 72.3 72.9

SMCL [56] 67.39 61.78 72.15 54.93 68.84 75.56 79.57 66.57 83.05 78.57 83.93 79.83
MPANet [59] 70.58 68.24 75.58 62.91 76.74 80.95 84.22 75.11 82.8 80.7 83.7 80.9

MSCLNet [74] 76.99 71.64 - - 78.49 81.17 83.86 78.31 84.17 80.99
Ours 77.78 74.62 80.54 69.84 81.52 84.38 87.99 79.95 84.93 82.52 85.66 82.27

Table 3. Quantitative evaluation on SYSU-MM01 dataset [57] and RegDB dataset [33]. For evaluation, we measure Rank-1 accu-
racy(%) and mAP(%). Our results show the best results in terms of Rank-1 accuracy and mAP.

highly degrades the performance for part-based VI-ReID. It
demonstrates that simply applying MixUp to the part-based
VI-ReID degrades the localization ability of the model due
to ambiguous and unnatural patterns in mixed images, and
thus the model fails to distinguish the different person iden-
tities as done in the literature [45, 70]. On the other hand,
Manifold MixUp [46] shows slightly improved rank-1 ac-
curacy, but achieves lower performance in mAP than the
baseline. The result shows that it still inherits the limi-
tation of the global mixture model [39, 46, 71]. Although
CutMix [70] achieves improved performance than the base-
line [59], it achieves relatively lower performance than
ours by 3.93% and 5.08% mAP in single-shot all-search
and multi-shot all-search on the SYSU-MM01 dataset. It
demonstrated that our method effectively alleviates the
overfitting to the specific part and modality in part-based
VI-ReID. Based on all these evaluation and comparison re-
sults, we can confirm the effectiveness of our methods.

4.4. Comparison to Other Methods

In this section, we evaluate our framework through com-
parison to state-of-the-art methods for VI-ReID, including
Two-stream [50], One-stream [50], Zero-Padding [50], cm-
GAN [5], D2RL [52], JSIA-ReID [51], AlignGAN [50],
DFE [11], XIV-ReID [24], CMM+CML [27], SIM [18],
CoAL [53], DG-VAE [37], cm-SSFT [30], SMCL [56],
MPANet [59], and MSCLNet [74].

Results on SYSU-MM01 dataset. We evaluate our Part-
Mix on SYSU-MM01 benchmark [57] as provided in Table
3. PartMix achieves the Rank-1 accuracy of 77.78% and

mAP of 74.62% in all-search with single-shot mode, im-
proving the Rank-1 accuracy by 0.79% and mAP by 2.98%
over the MSCLNet [74]. In indoor-search with single-
shot mode, our PartMix outperforms the MSCLNet [74] by
Rank-1 accuracy of 3.03% and mAP of 3.21%.

Results on RegDB dataset. We also evaluate our method
on RegDB benchmark [33]. As shown in Table 3, PartMix
records state-of-the-art results with the Rank-1 accuracy of
84.93% and mAP of 82.52% in infrared to visible and the
Rank-1 accuracy of 85.66% and mAP of 82.27% in visi-
ble to infrared mode. Our PartMix outperforms the Rank-1
accuracy by 1.07% and mAP by 4.21% in infrared to visi-
ble mode and the Rank-1 accuracy by 1.49% and mAP by
1.28% in visible to infrared mode over the MSCLNet [74].

5. Conclusion
In this paper, we have presented a novel data augmen-

tation technique, called PartMix, that generates part-aware
augmented samples by mixing the part descriptors. We in-
troduce a novel sample generation method to synthesize the
positive and negative samples and an entropy-based min-
ing strategy to select reliable positive and negative samples
to regularize the model through the contrastive objective.
We have shown that PartMix achieves state-of-the-art per-
formance over the existing methods on several benchmarks.
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Appendix
In this supplementary material, we provide additional ex-

perimental results, implementation details, and qualitative
results to complement the main paper.

A. t-SNE Visualization
Visualization for different identities images. To explain
the effectiveness of our PartMix, we show the feature distri-
bution of part descriptor with different identities in Fig. A1.
For visualizing the feature distribution, the complex feature
distributions are transformed into two-dimensional points
based on t-SNE [43]. Each color represents the M different
part maps. We can confirm that t-SNE visualization of part
descriptors that have different semantic meanings are clus-
tered into distinct groups. And we can also find that the part
descriptor with the same human part information (e.g., short
sleeve) are clustered into the same groups. In Fig. A2, we
visualize an additional example for the feature distribution
of part descriptors with different identities. These two im-
ages do not share the human parts information, and thus our
PartMix effectively divides part descriptors into different
groups. By this visualization, we can demonstrate that our
PartMix can capture different human part information and
synthesize unseen combination of human parts (i.e. the un-
seen identity), improving generalization ability on unseen
identity as demonstrated in the Sec 4.4 of the main paper.
In addition, it can distinguish the different person identities
through the combination of human parts.

B. Loss functions
Following the baseline [59], we adopt several losses, in-

cluding modality learning loss LML, modality specific ID
loss Lsid, center cluster loss Lcc, and identity classification
loss Lid. In this section, we describe these losses in detail.

Modality Learning Loss. Modality learning loss [59]
aims to encourage the modality-specific classifier to esti-
mate consistent classification scores for the same identity
features regardless of the modality. We make the classifica-
tion scores of visible (infrared) person descriptors estimated
by the visible (infrared) and mean infrared (visible) specific
classifier to be similar through the KL divergence, and thus
the model learns modality invariant person descriptors.

LML =

Nv∑
w=1

dKL(Cv(dvw)||C̃r(dvw))

+

Nr∑
q=1

dKL(Cr(drq)||C̃v(drq)),

(9)

where Cv(·), Cr(·) denote visible and infrared classifiers,
and the mean classifiers of those ones are C̃v(·), C̃r(·), re-
spectively.

Modality Specific ID Loss. For modality learning loss,
we train the modality-specific classifiers to learn modality-
specific knowledge from visible and infrared person de-
scriptors such that

Lsid = − 1

Nv

Nv∑
w=1

yvw log(Cv(dvw))

− 1

Nr

Nr∑
q=1

yrq log(Cr(drq)),

(10)

where Cv and Cr are visible and infrared classifier.

Center Cluster Loss. To enhance the discriminative
power of the person descriptor, we adopt center cluster
loss [59] to penalize the distances between the person de-
scriptors and their corresponding identity centers.

Lcc =
1

N

N∑
i=1

||f ti − zyi
||2

+
2

P (P − 1)

P−1∑
k=1

P∑
d=k+1

[ρ− ||zyk
− zyd

||2]+,

(11)

where zyi ,zyk
, and zyd

is the mean descriptor that corre-
spond to the yi, yk, and yd identity in mini-batch, P is the
number of identity in the mini-batch, and ρ is the least mar-
gin between the centers.

ID Loss To learn identity-specific feature representation
across the modalities, we adopt cross-entropy loss between
the identity probabilities and their ground-truth identities as
follows:

Lid = − 1

Nv

Nv∑
i=1

yvi log(C(dvi ))−
1

Nr

Nr∑
i=1

yri log(C(dri )),

(12)
where C(·) is an identity classifier.

C. Implementation Details
Training Details. To train our network, we first conduct
warm up the baseline [59] for 20 epochs, to stabilize the
part detector at the early stage of training and boost the con-
vergence of training. For a fair comparison with the base-
line [59], we then optimize the model for 100 epochs us-
ing overall losses. We also adopt random cropping, random
horizontal flipping, and random erasing [80] for data aug-
mentation. We set 128 images for each mini-batch. For each
mini-batch, we randomly sample 8 images with 16 iden-
tities and the images are re-sized as 384×128. We select
positive samples and negative samples through the entropy-
based mining module. For each training sample, we set the
number of positive U ′ and negative samples Q′ as 2 and
20. To optimize the model, we utilize the Adam optimizer,
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where the initial learning rate is set to 3.5 × 10−4, which
decays at 80th and 120th epoch with a decay factor of 0.1.
Through the cross-validation using grid-search, we set the
hyper-parameters λsid, λML, λcont, and λaid as 0.5, 2.5,
0.5, and 0.5, respectively. The proposed method was imple-
mented in the Pytorch library [36]. We conduct all experi-
ments using a single RTX A6000 GPU.

D. Other Regularization Methods Details
Mixup [71]. Following the work [71], we synthesize the
mixed images by linearly interpolating image and label
pairs such that

x̃ = λx1 + (1− λ)x2,
ỹ = λy1 + (1− λ)y2,

(13)

where x1, x2 are randomly sampled images in mini-batch
regardless of their modality, y1, y2 are its corresponding
identity, and λ is the combination ratio sampled from the
beta distribution Beta(α, α), where the α is set to 1.

Manifold MixUp [46]. We also synthesize the mixed
training samples using Manifold MixUp [46] that applies
MixUp [71] in the hidden feature space as follows :

x̃ = λEg(x1) + (1− λ)Eg(x2),
ỹ = λy1 + (1− λ)y2,

(14)

where Eg(x) denotes a forward pass until randomly chosen
layer g. We also sample the combination ratio λ from the
beta distribution β(α, α), where the α is set as 1.

CutMix [70]. We generate training samples with CutMix
operation as follows:

x̃ = M� x1 + (1−M)� x2,
ỹ = λy1 + (1− λ)y2,

(15)

where M is a binary mask, 1 is a binary mask filled with
ones, � is element-wise multiplication, and the setting of
λ is identical to Mixup [71]. To sample the mask M,
we uniformly sample the bounding box coordinates B =
(bx, by, bw, bh) such that

bx ∼ Unif(0,W ), bw =W
√
1− λ,

by ∼ Unif(0, H), bh = H
√
1− λ,

(16)

where W,H is width and height of the person image and
Unif(·, ·) denotes a uniform distribution.
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Figure A1. Visualization on the feature distribution of part descriptor with different identity images. Data projection in 2-D space
is attained by t-SNE based on the feature representation. Each color represents the different human parts. Our PartMix effectively clusters
the same human part information (e.g., short sleeve) in the same group (represented using a dotted circle), while the different human parts
are divided into different groups.
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Figure A2. Visualization of the feature distribution of part descriptor with different identity images. The details are the same as
above.
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