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Abstract

We develop a novel framework for single-scene
video anomaly localization that allows for human-
understandable reasons for the decisions the system makes.
We first learn general representations of objects and their
motions (using deep networks) and then use these repre-
sentations to build a high-level, location-dependent model
of any particular scene. This model can be used to detect
anomalies in new videos of the same scene. Importantly, our
approach is explainable – our high-level appearance and
motion features can provide human-understandable rea-
sons for why any part of a video is classified as normal
or anomalous. We conduct experiments on standard video
anomaly detection datasets (Street Scene, CUHK Avenue,
ShanghaiTech and UCSD Ped1, Ped2) and show significant
improvements over the previous state-of-the-art.

1. Introduction
We are interested in the problem of spatio-temporal lo-

calization of anomalous activities in videos of a given scene.
Informally, anomalous activities are events that differ from
those typically observed in a scene, such as a cyclist riding
through an indoor shopping mall [35]. Like many other pa-
pers on anomaly detection, this work addresses the setting
in which we have access to an initial set of videos that are
used to define the typical, or ‘nominal’ activities in a partic-
ular scene. Such a situation naturally arises in surveillance
and monitoring tasks [41], where it is easy to collect nomi-
nal data, but it is not practical to collect a representative set
of possible anomalies for a scene. Thus, the problem set-
up is as follows: provided with a set of videos of a scene
which do not contain any anomalies, (called the nominal
set), the goal is to detect any events in a test video from
the same scene that differ substantially from all events in
the nominal set [29, 35]. In defining anomaly detection, it

is important to consider the role of location. In real-world
surveillance scenarios, an event may be normal in one loca-
tion but anomalous in another. For example, a car driving
on a road is typically not anomalous, while one driving on a
sidewalk typically is. In view of this, we adopt the follow-
ing definition [35].
Definition 1 An anomaly is any spatio-temporal region of
test video that is significantly different from all of the nomi-
nal video in the same spatial region.

Unlike most recent work in anomaly detection, a key
goal of our work is to produce not only a set of anoma-
lies, but a simple and clear explanation for what makes
them anomalous. We are motivated by how people tasked
with watching video from a stationary surveillance cam-
era would detect an unusual incident. While monitoring a
scene, we expect a person to note the types of objects seen
(people, buildings, cars) and the motions of those objects
(walking east or west on a sidewalk, driving northwest on
the street) to characterize the given scene. The person could
then notice an anomaly when the objects or motions do not
match what has been seen before. The person could also
explain why something was anomalous.

We design our video anomaly detection system using this
sketch of how a human would solve the problem as motiva-
tion. We want to use deep networks to give a high-level un-
derstanding of the objects and motions occurring in a scene.
By ’high-level’, we mean at the level of whole objects and
not at the level of pixels or edges. To do this, we train deep
networks that take a spatio-temporal region of video (which
we call a video volume) as input and output attribute vectors
representing the object classes, the directions and speeds of
motion and the fraction of stationary pixels (which gives
information on the sizes of moving objects) occurring in a
spatio-temporal region. The feature vectors from the penul-
timate layers of these deep networks yield high-level rep-
resentations, or embeddings, of the appearance and motion
content of each video volume. Ten frames are used for video
volumes in our experiments.
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Unlike many other recent works, we do not learn new
embedding functions (i.e. networks) for new scenes. We
use the same embedding networks for every environment.
Instead, to characterize the nominal video for a new scene,
we store a representative set of all the embeddings found
in the nominal video. That is, for every video volume in
the nominal video of a new scene, we calculate our rep-
resentations of appearance, motion direction, speed, and
background fraction. We then reduce this set of embed-
dings to a smaller set which we call exemplars by remov-
ing redundant embeddings. This results in a compact, ac-
curate, and location-dependent model of the nominal data
in a new scene. Since there is no training of deep networks
for each new environment, modeling a new environment is
‘lightweight’ compared to many other methods, making it
efficient to model new scenes. Our exemplar model also al-
lows very efficient updating if new nominal video is intro-
duced. This is a crucial property for video anomaly detec-
tion methods because, in practice, it is unrealistic to assume
that the initial nominal video covers every possible normal
change. New nominal video will occasionally need to be
added, making it critical that models are easy to extend.

Given test video of the same scene, we compute our
high-level features for each video volume. We then com-
pare these to the exemplars stored in the nominal model
at the corresponding spatial region. Any test feature with
a high distance to every nominal exemplar for that region
is considered anomalous. Because the feature vectors map
to human-interpretable attributes, these attributes can be
used to give human-understandable explanations for why
our system labeled video volumes as normal or anomalous.
We define a method as ’explainable’ if it can give human-
understandable reasons for its decisions. Details of how our
system provides explanations are given in Section 4.4.

In summary, we make the following key contributions:
1) We show that modeling scenes using high-level attributes
leads to robust anomaly detection. 2) We introduce the idea
of directly estimating high-level motion attributes from raw
video volumes using deep networks. 3) We show how these
high-level attributes also allow human-interpretable expla-
nations. 4) Finally, we demonstrate an alternative to much
of the previous work that is based on learning to recon-
struct the nominal data. Our alternative approach is practi-
cal since it does not require training deep networks for each
new scene and allows for simple and efficient updates to a
scene model given new nominal training data.

2. Related Work
Most Video Anomaly Detection (VAD) methods can be

analyzed in terms of their representation learning or their
detection method.
Representation of Nominal Data: Early approaches to
VAD [2, 3, 7, 20, 30, 40, 47] primarily relied on the usage

of handcrafted features. This included features like spatio-
temporal gradients [24, 17], histogram of gradients [40, 28],
flow fields [2, 3, 47, 30], histogram of flows [41, 40, 7],
dense trajectories [28, 43] and foreground masks [3]. Re-
cently, most authors have used deep learning for this task
[9, 10, 14, 15, 16, 21, 26, 34, 37, 36, 42, 45, 39, 1]. These
methods either use a pretrained model [42, 17, 15, 36, 26,
39] for feature extraction or train a model to specifically
optimize for a particular task related to anomaly detection.
These tasks can generally be categorized as either a variant
of training an auto-encoder architecture to minimize the re-
construction error of nominal frames [14, 16, 31, 6, 25, 22],
a generative adversarial network (GAN) to model nominal
frames [21, 25], or future frame prediction given a sequence
of nominal frames [21, 44]. To further improve their per-
formance, recent works have tried specialized architectures
and training methodologies. Particularly [8, 22, 32] trans-
form their respective generative model by memory-based
modules to memorize the normal prototypes in the train-
ing data. Most recently [38] proposed a module based on
masked convolution and channel attention to reconstruct a
masked part of the convolutional receptive field. A key
drawback of reconstruction and future frame prediction
methods is that they do not generate interpretable features.
It is not clear what aspects of the video make it difficult to
reconstruct since there is no mapping to higher-level fea-
tures as in our work. Our work mostly aligns with meth-
ods utilizing pretrained models. However, unlike most of
these approaches, we incorporate the output of our pre-
trained models to interpret model decisions. We addition-
ally make sure that the predictions of our model generalize
to a wide variety of scenes through our data generation and
training procedures. One high-level motion attribute that
our method learns is similar to the histogram of flow feature
used in some early work [41, 40, 7]. However, instead of
computing the histogram of flow from an optical flow field,
our method learns a deep network to predict these features
directly from RGB video volumes and then uses the net-
work’s learned feature embedding as the representation.
Detection Methods: Most methods use either standard out-
lier detection methods [5] as an external module or utilize
the reconstruction strategy to predict anomalies. General
methods of detection that most authors have used in the past
include one-class SVM [42, 17, 28, 49], nearest neighbour
approaches [33, 34, 15, 9, 11], and Probabilistic Graphi-
cal Models [3]. In [4, 13], pseudo-anomalous samples are
used during training to improve discriminative learning. In
[12], an object detector is used to focus on regions around
objects and then networks are trained for various ’proxy’
tasks (such as predicting the arrow of time) on the nomi-
nal data. Thus, unlike our work, they require training deep
nework models for each different scene. Our work has some
similarity to the work of [33, 34] in that we also use an over-
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Figure 1: Our pipeline for building a location-dependent model of nominal video and detecting anomalies in test video.
During the model building phase, we extract a high-level representation of each video volume using our appearance and
motion networks. Using the exemplar selection method, we select a representative subset of video volumes for a given spatial
region. By comparing video volumes in test video to the exemplar set we can detect anomalies.

lapping grid of spatial regions, build exemplar-based mod-
els and use nearest neighbors distances as anomaly scores.
The high-level features that we use are the biggest differ-
ence as compared to the pixel-based features used in their
work. Our high-level features allow for explainable models
as well as much smaller models than theirs.
Explainable VAD: Our work is similar in spirit to the work
of [15, 46] with respect to providing explanations for de-
tecting anomalies. In [15], the authors pre-train their feature
extractor on public image datasets (MS-COCO and Visual
Genome) to detect objects and predict their attributes and
actions. They further use these predictions for ’event re-
counting’ on VAD benchmarks. In [46], the authors utilize
models pretrained for semantic segmentation, object clas-
sification, and multi-object tracking and use the output of
these models directly as their feature representation.

Despite these coarse similarities, virtually all of the de-
tails of our methods are different. Specifically, in [15], they
rely on object proposals to find candidate anomalous re-
gions which can lead to missed detections for objects not
represented in their training data. Our action/motion classes
are also very different - ours being more generic (direction
distributions and speed of motion) while in [15] are much
more specific (bending, riding) and hence not applicable to
a wide variety of scenarios. The method of [46] is specific
to detecting and tracking pedestrians and is not a general
video anomaly detection method. Furthermore, unlike ours,
their method does not spatially localize anomalies.

3. Our Approach
Our method consists of three distinct stages: high-level

attribute learning, model building, and anomaly localiza-
tion. The high-level attribute learning stage is done only
once and uses training samples that are independent of any
video anomaly detection dataset. The resulting deep net-
works learn general representations of object appearances
and object motions which can then be used in the subse-
quent two stages to build a model of a specific scene and
to localize anomalies in that scene, for a wide variety of
surveillance scenarios. The outside data used to train our
high-level attribute models are equivalent to the outside data
used in various prior works on VAD; for example, the MS-
COCO and Visual Genome data used to train the models of
Hinami et al. [15], the outside data used to train object de-
tectors in [12, 11, 17, 42], as well as the many deep models
pretrained on ImageNet and applied to VAD. Our outside
data is not used to build models of a scene.

3.1. High-Level Attribute Learning

For this stage, our main objective is to learn features
that are (a) transferable across scenes and (b) interpretable.
Given this motivation, we learn an object recognizer for our
appearance model as well as regression networks for esti-
mating the following motion attributes for a given video
volume: the fraction of stationary pixels, the distribution
of motion directions and the average speed of movement in
each direction. We also learn a classifier to indicate whether
a video volume is stationary or not. We will describe each
of these deep networks in the following subsections.



To clarify our terminology, we use the term ’high-level
attribute’ to denote the object classes, histogram of motion
directions, vector of motion speeds or fraction of station-
ary pixels which are the final outputs of the various deep
networks that are learned. The term ’high-level feature’ de-
notes the feature vector from the penultimate layer of one of
the deep networks. A high-level feature can be mapped to a
high-level attribute using the final layer of that network.

3.1.1 Appearance model

We formulate the task of object recognition as a multi-label
image classification problem as any given input image patch
may contain more than one object class (or none).

Training Data: We are particularly interested in learn-
ing to recognize objects that have high likelihood of being
present in outdoor scenes. To this end, we select the fol-
lowing 8 categories as our primary set of object classes :
[Person, Car, Cyclist, Dog, Tree, House, Skyscraper, and
Bridge]. For our formulation, we want the learned features
to generalize across different domains. To achieve this,
we construct our training dataset of images from multiple
sources. We use labeled examples of each class (as well
as background images containing none of the classes) taken
from the CIFAR-10 [19], CIFAR-100 [19], and MIO-TCD
[27] datasets as well as a set of publicly available surveil-
lance videos from static webcams that we collected and an-
notated. More details about the data collection is given in
the supplemental material. In total we used 187,793 RGB
training examples, resized to 64x64 pixels.

Neural Architecture: We use a modified ResNext-50
network [48] as our backbone architecture. We modified
the original model by adding an extra fully connected layer
that maps the 2048-dimensional feature vector after the av-
erage pooling layer to a 128-dimensional layer. The 128-
dimensional layer is then mapped by a final fully connected
layer to an 8-dimensional output layer with sigmoid acti-
vations that represent the categories. The extra fully con-
nected layer gives us a 128-dimensional feature vector to
represent appearance instead of the 2048-dimensional fea-
ture vector after RexNext-50’s usual penultimate layer thus
greatly improving memory efficiency. To train our model,
we utilize the Binary Cross Entropy as our loss function.

Note that high-level features are usually distinctive even
for unseen object classes despite the corresponding high-
level attribute having low probabilities for all of the known
object classes. This allows our appearance model to handle
object classes other than the eight that we train on. See
supplemental material for experiments on this.

3.1.2 Motion Model

To characterize the motion information for a given video
volume, we train deep networks to estimate the following

attributes directly from an RGB video volume: (a) his-
togram of optical flow (Yang), (b) a vector of the average
speed of pixels in each direction of motion (Yspeed), (c)
background classifier (Ybkg.cls) and (d) percentage of sta-
tionary pixels (Ybkg.pix). The histogram of optical flow con-
sists of 12 bins each of which stores the fraction of pixels
in the video volume that are estimated to be moving in one
of the 30 degree directions of motion. The average speed
vector consists of the average speed (in pixels per frame) of
all pixels falling in each of the 12 histogram of flow bins.
The background classifier classifies whether the video vol-
ume contains motion or not. The percentage of stationary
pixels in a video volume gives the rough size of the moving
objects in a video volume.

Motion Training Data: We use the set of surveillance
videos mentioned above to learn motion attributes in a self-
supervised way. For each video, we sample video volumes
from regions with significant ’motion’ as well as very little
motion (’background’). We identify these regions by com-
puting their pixelwise optical flow fields using the TV-L1
method [50], which is also used to automatically generate
ground-truth motion attributes. (Note that optical flow is
only used to create ground truth for training our motion
models. It is not used in later stages.) In total we obtain
283, 486 ‘background’ video volumes and 2, 551, 376 ‘mo-
tion’ video volumes. We use 90% of these for training our
models and the remainder for validation.

The ground truth motion attributes for each training
video volume are computed from the corresponding pixel-
wise flow fields as follows: We represent the Ybkg.cls at-
tribute as a single binary variable denoting if a video vol-
ume is ’background’(Ybkg.cls = 1) or not (Ybkg.cls = 0).
The ground truth for Yang and Ybkg are computed by first
computing a 13-bin normalized histogram, wherein the first
12 bins represent the number of pixels with flow orientation
in the ranges [i ∗ π/6 : (i + 1) ∗ π/6) with i ∈ [0, 11] ,
while the last bin denotes the number of pixels with flow
magnitude below threshold. The histogram is then normal-
ized by the total number of pixels. The first 12 bins of this
histogram are used as the ground truth for Yang and the 13th

bin is the ground truth for Ybkg . Finally, we represent Ymag

as a 12-dimensional vector denoting the average flow mag-
nitude for pixels in each of the 12 flow orientation ranges.

Learning Task and Neural Architecture: We treat
each motion attribute independently and train separate mod-
els respectively. For each attribute prediction task, we use
the same backbone architecture design, but train each model
using different objective functions. Our model is a stack of
3D convolutions (3DConv) with batch normalization (BN)
and ReLU. In total we have 3 layers of [3Dconv-BN-ReLU]
followed by a fully connected layer. We provide additional
details in the supplemental material.

We formulate Ybkg.cls attribute prediction as a standard



binary classification task and train the model using cross-
entropy loss function. For Ybkg and Ymag attribute predic-
tion, we treat the learning task as a regression problem and
train the model using mean squared error loss. And finally,
for training the model to predict Yang attribute, we utilize
KL Divergence loss. For all the tasks, we construct a sim-
ple light-weight CNN. The detailed configuration of our 3D
CNN architecture is presented in the supplemental material.

3.2. Model Building

Once trained, the attribute deep nets are used to build
a model of any scene given the nominal video. As illus-
trated in Figure 1, to process each nominal video, we slide
a spatio-temporal window of dimension [h × w × t] with
spatial stride (h/2, w/2) and temporal stride of t to con-
struct video volumes. In the experiments, we select h = w
and choose h to be roughly the height in pixels of a person
in a particular dataset. For each RGB video volume, we
extract its features using the previously trained appearance
net and four motion nets. To get a single appearance feature
vector for a video volume, the feature vectors computed by
the appearance network for each frame of the video vol-
ume are averaged. We concatenate the feature vectors from
the penultimate layers of the appearance, angle, speed and
background pixel nets along with the binary output of the
background classifier net to create a combined feature vec-
tor. We use F to denote a combined feature vector and
app, ang,mag, and bkg to denote the appearance, angle,
magnitude and background pixel fraction feature vectors,
each of size 1 × 128. Finally, cls denotes the binary back-
ground classification of size 1× 1. F is of size 1× 513.

After computing features, we use the exemplar selection
approach of [18, 34] to create a region-specific compact
model of the nominal data. For each region, we use the
following greedy exemplar selection algorithm:

1. Add the first feature vector to the exemplar set.

2. For each subsequent feature vector, compute its dis-
tance to each feature vector in the exemplar set and add
it to the exemplar set only if all distances are above a
threshold, th.

To compute the distance between two feature vec-
tors F1 = [app1; ang1;mag1; bkg1; cls1] and F2 =
[app2; ang2;mag2; bkg2; cls2] we use L2 distances be-
tween corresponding components normalized by a constant
to make the maximum distance for each component approx-
imately 1. When a video volume does not contain motion
(as determined by the background classification, cls), the
motion component vectors are set to 0. The distance func-
tion can be written as follows:

dA(F1, F2) = ‖A1 −A2‖2 (1)

where A ∈ {app, ang,mag, bkg},

d(F1, F2) =
dapp

Zapp
+

dang

Zang
+

dbkg

Zbkg
+

dmag

Zmag
. (2)

The normalization factors, Zapp, Zang , Zmag and Zbkg are
computed once by finding the max L2 distances between
a large set of feature vector components computed from a
validation set (UCSD Ped1 and Ped2 in our experiments).

One big advantage of the exemplar learning approach is
that updating the exemplar set in a streaming fashion is pos-
sible. This makes the approach scalable and adaptable to
environmental changes over time.

3.3. Anomaly Detection

At test time, we process each test video in the same way
(by sliding a [h×w×t] spatio-temporal window with spatial
stride (h/2, w/2) and temporal stride of t) to generate video
volumes. For each video volume, we compute the combined
feature vector as before using the pre-trained nets. Each
combined feature vector is compared with every exemplar
for the corresponding region using the distance function in
Equation 2. The anomaly score for the given test video vol-
ume is the minimum distance over the set of all exemplars
from the same spatial region. A pixelwise anomaly score
map is maintained by assigning the anomaly score to all pix-
els corresponding to every frame of the video volume. If a
pixel has already been assigned an anomaly score (because
of partially overlapping video volumes), then the maximum
of the previous score and the current score is assigned. Fig-
ure 1 shows our anomaly detection pipeline.

3.4. A Note on Computational Efficiency

For both model building and anomaly detection, most of
the time is spent computing feature vectors (forward passes
of 5 networks). This is greatly sped up by testing whether
a video volume is the same as the previous video volume
in time. If there is no change then the anomaly score for
the new video volume should be the same as the one before
it and no computation of feature vectors is needed. This al-
lows our method to run at 20 to 100 fps (dataset dependent).
Details are in the supplemental material.

4. Experiments
4.1. Datasets and Evaluation Criteria

We experiment on five benchmark datasets: UCSD Ped1
and Ped2 [29], CUHK Avenue [24], Street Scene [33] and
ShanghaiTech [26]. We use UCSD Ped1 and Ped2 with
modified ground truth for parameter tuning and CUHK Av-
enue, Street Scene and ShanghaiTech for evaluation.
UCSD Ped1 & Ped2: UCSD Ped1 dataset contains 34
training videos and 36 test videos while UCSD Ped2 dataset
contains 16 training videos and 12 test videos. Anomalies



consists of bikers, skaters and cars in a pedestrian area.
CUHK Avenue: The Avenue [24] dataset contains 16 train-
ing videos with normal activity and 21 test videos. Exam-
ples of abnormal events in Avenue are related to people run-
ning, throwing objects or walking in wrong direction.
Street Scene: The Street Scene [33] dataset contains 46
training videos defining the normal events and 35 test
videos. Prominent examples of anomalies include jaywalk-
ing, loitering and bikes or cars driving outside their lanes.
ShanghaiTech: The ShanghaiTech [26] dataset is a multi-
scene benchmark for video anomaly detection. It consists
of 330 training and 107 test videos. Major categories of
anomalies include people fighting, stealing, chasing, jump-
ing, and riding bikes or skating in pedestrian zones.

While our primary focus is on single scene video
anomaly detection task, we consider the ShanghaiTech
dataset only to highlight the ease of usability and robustness
of our method to multi-scene benchmarks. Our method is
applied to ShanghaiTech without modification even though
the location-dependent aspect of our model is not necessary
for a multi-scene dataset. Improvements in accuracy are
likely if we specialize our model to multi-scene datasets.

Evaluation Criteria. We use the Region-Based Detec-
tion Criterion (RBDC) and the Track-Based Detection Cri-
terion (TBDC) as proposed in [33] for quantitative evalua-
tion of our framework. These criteria correctly measure the
accuracy of spatially and temporally localizing anomalous
regions (RBDC) and anomalous tracks (TBDC) versus false
positive detections per frame. We report the area under the
curve (AUC) for false positive rates per frame from 0 to 1
for each of these criteria. As pointed out in [33], frame-
AUC [29] is not an appropriate evaluation metric for video
anomaly detection methods that spatially localize anoma-
lies. However, we report frame-AUC scores of our method
for completeness and comparison with other older methods.
We also do not use the pixel-level criterion [29] because of
its serious flaws as mentioned in [33].

4.2. Implementation

Feature Learning. To train our appearance model, we
use SGD with a 0.001 learning rate and 0.9 momentum and
train for 50 epochs. The model with lowest classification
error on the validation set is selected. For motion models
we optimize with AdamW [23] with a 0.001 learning rate
and train for 30 epochs. We select the best model for each
attribute using the validation set.
Video volume parameters. We define the dimensions
(w, h) of a video volume for each dataset so that h is
roughly the height of a person in pixels and w = h.
Specifically, for Ped1, Ped2, Avenue, Street Scene and
ShanghaiTech, our region dimensions are (32, 32), (32, 32),
(128, 128), (64, 64) and (100, 100) respectively. Zero-
padding was used for edge regions as needed. The number

Th UCSD Ped1 UCSD Ped2
RBDC TBDC NUM RBDC TBDC NUM

3 36.866 77.83 288 64.808 89.13 350
2.5 49.36 89.43 424 78.813 93.716 761
2 57.524 89.6 944 84.66 95.97 1339
1.5 61.65 88.9 4201 87.44 95.08 4470
1 61.496 87.54 19926 87.408 95.776 19138
0.5 61.435 87.72 49113 87.195 95.12 34862
0.25 61.49 87.81 57636 87.199 95.127 45795

Table 1: RBDC and TBDC scores (in %) of our method for
different thresholds (th) on UCSD Ped1 and Ped2. NUM
denotes the total number of exemplars across all regions.

of frames in a video volume, t, is 10 for all datasets.
Parameter Tuning. To set a threshold th for exemplar

selection without fitting to test data, a validation data set
is needed. We chose Ped1 and Ped2 for this purpose, both
because these data sets are performance-saturated, and be-
cause previous works [34] have identified inconsistencies in
their ground truth. Specifically, ground-truth annotations of
Ped1 and Ped2 do not label every location-specific anomaly.
To rectify this, we augment the existing ground truth anno-
tations to include all anomalies consistent with Definition 1.
This is justified because we are using Ped1 and Ped2 to set
our hyperparameters and not to compare against previous
methods. Table 1 shows region-based and track-based AUC
for different values of the threshold th used for exemplar
selection for both Ped1 and Ped2. We see that the accuracy
of our method is robust to large variations of th. However,
larger values of th lead to smaller numbers of exemplars
and thus smaller models of the nominal video which is de-
sirable. We select th = 1.5 as a good trade-off between
accuracy and model-size. We use this value on all datasets
in our experiments. For Ped2, the average number of exem-
plars selected per region is about 13 (≈ 0.5% of the total
number of video volumes in the nominal video). Exemplar
selection typically finds tens to sometimes low hundreds of
exemplars (for Street Scene) for regions with lots of activ-
ity. Regions with very little activity typically have only 1
or 2 exemplars. This leads to very compact models of the
nominal video.

4.3. Quantitative Results

Tables 2 and 3 compare our method to other top methods
on Avenue, ShanghaiTech and Street Scene. On Avenue, we
improve over all previous methods for the region-based de-
tection criterion (RBDC) and are second best for the track-
based detection criterion (TBDC). On ShanghaiTech, we
improve over the next best method for both RBDC and
TBDC by significant margins. For the frame-level crite-
rion which does not measure spatial localization we are in
the middle of the pack compared to other recent methods
for both Avenue and ShanghaiTech. On the difficult Street
Scene dataset (Table 3), we improve the previous state of



Method Avenue ShanghaiTech
RBDC TBDC Frame RBDC TBDC Frame

Ionescu et al.[16] 15.77 27.07 87.4 20.65 44.54 78.7
Ramachandra et al.
[33]

35.80 80.90 72.0 - - -

Ramachandra et al.
[34]

41.20 78.60 87.2 - - -

Georgescu et al. [12] 57.00 58.30 91.5 42.80 83.90 90.02
Liu et al. [21] 19.59 56.01 85.1 17.03 54.23 72.8
Liu et al. [22] 41.05 86.18 89.9 44.41 83.86 74.2
Georgescu et al. [13] 65.05 66.85 92.3 41.34 78.79 82.7
Liu et al.[21] + Ris-
tea et al. [38]

20.13 62.30 87.3 18.51 60.22 74.5

Liu et al.[22] + Ris-
tea et al. [38]

62.27 89.28 90.9 45.45 84.50 75.5

Georgescu et al.[13]
+ Ristea et al. [38]

65.99 64.91 92.9 40.55 83.46 83.6

Our Method 68.2 87.56 86.02 59.21 89.44 76.63

Table 2: RRBDC, TBDC and Frame AUC scores (in %)
of various state-of-the-art methods on Avenue and Shang-
haiTech datasets. The top score for each metric is high-
lighted in red, while the second best score is in blue.

Methods RBDC TBDC
Auto-encoder [14] 0.29 2.0

Dictionary method [24] 1.6 10.0
Flow baseline [33] 11.0 52.0
FG Baseline [33] 21.0 53.0

Our Method 24.26 64.5

Table 3: RBDC and TBDC AUC scores (in %) of various
baseline methods on Street Scene dataset. The top score
for each metric is highlighted in red, while the second best
score is highlighted in blue.

the art for both RBDC and TBDC, the latter by more than
11%. The good results across five different datasets (includ-
ing Ped1 and Ped2) show the generality of the high-level
features that we use in our models.

4.4. Qualitative Results: Explainability

One of the big advantages of our method in addition to its
accuracy is that it allows intuitive explanations of what the
model has learned and why it labels a particular test video
volume as anomalous or not. To visualize the feature vec-
tor representing a video volume, the appearance and motion
components of the combined feature vector are mapped us-
ing the last fully connected layer of the respective network
to the high-level appearance and motion attributes. We can
then visualize these attributes as illustrated in Figure 2.

As an illustration of our model’s explainability, the top of
Figure 3 visualizes the exemplars learned from the nominal
video for a spatial region in the middle of the street. Cars
travel down and to the right in this lane of the street. The
top six exemplars learned show mainly cars (or unknown
objects, since video volumes containing only parts of cars
are often not classified as cars) traveling down and to the
right, as expected. There are also exemplars for stationary
background, as well as stationary cars (since occasionally
traffic stops on this part of the street). Thus, our learned

model is understandable and consistent with what one ex-
pects. Furthermore, for a video volume containing a person
jaywalking, the visualization in the bottom, left of the figure
shows that our networks correctly identify it as containing a
person walking mainly to the right at moderate speed. The
closest exemplar to this test volume is an unknown object
moving down and to the right which yields a high anomaly
score of 2.08. (A threshold of 1.8 yields high detection rates
with low false positive rates across all the datasets.) Thus,
the explanation of this anomaly is that there is an unusual
object (person) walking in an unusual direction.

Another example is shown for Ped2 in Figure 4. Here we
analyze a region on the sidewalk. The exemplars learned for
this region (shown at the top of Figure 4) are mainly back-
ground with very little movement or people moving mainly
left or right at slow speeds. Some video volumes containing
only parts of people are not classified as people which leads
to exemplars of unknown objects moving left or right. Over-
all, these exemplars are again what we would expect for this
region. For the test frame shown, a cyclist is riding on the
sidewalk. The visualization of the video volume centered
on that frame at that spatial region shows that it was clas-
sified as a cyclist traveling down and right at a high speed.
These high-level attributes differ from the nearest exemplar
in terms of its object class and speed and therefore leads to
a high anomaly score.

As a final illustration (we show more in the supplemen-
tal material), we look at an example from CUHK Avenue in
Figure 5. The top six exemplars for the region highlighted
at the left of the figure show that the model has learned
that this region contains either background with very lit-
tle movement or else people or unknown objects moving
mainly left or right slowly. For the anomalous test video
volume shown containing a person running to the left, the
high-level features estimate an unknown object moving left
at high speed. Even though the object recognizer did not
correctly predict that the video volume contains a person,
the person class is the most likely out of the eight classes.
The nearest exemplar is an unknown object (closest to a per-
son class) moving slowly to the left. The main difference
between the test video volume and the closest exemplar is
the unusual speed which correctly explains this anomaly.

4.5. Ablation Study

We perform an ablation study on all the benchmarks to
evaluate the benefit of each attribute in detecting anomalies.
We consider features from each model separately, combin-
ing features from only motion models and finally our full
model which uses all features. We accordingly change the
distance function to compare features of two video volumes
so that it only uses the provided features. We present our
results in Table 4. We see that different attributes can be
important for different types of scenarios. However, we



Bar graph of the output of the network estimating the fraction of stationary 

pixels.  If the bar is all white then it indicates that there was no motion in 

the video volume.  If the bar is all black then every pixel was predicted to 

be moving.

Bar graphs of sigmoid outputs for the 8 object classes in the 

appearance network. [0 = person, 1 = car,   2 = cyclist,   3 = dog,  

4 = tree,  5 = house,  6 = skyscraper,   7 = bridge.]  Length of 

each bar is proportional to the distance of the sigmoid value from 

0.5.  Values above 0.5 (green) indicate the likely presence of that 

object class, while values below 0.5 (red) indicate otherwise.

Visualization of the direction of motion histogram. For each of 

the 12 angles estimated by the direction network, the length of 

the ray in that direction is proportional to the number of pixels (in 
that video volume) estimated to be moving in that direction.

Visualization of the average speed of pixels moving in a particular 

direction which are estimated by the directional speed network. Each ray 

is proportional to the speed in a particular direction. It is not proportional 

to the number of pixels moving in a particular direction as in the case of 
the angle histogram.

Figure 2: Explanation of our “instrument panel” showing the estimated attributes for a video volume. The interpretation of
this visualization would be (roughly) a car (class 1) taking up most of the video volume, moving right at a high speed.
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Car moving 
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Unknown 
object, a little 
movement 
down and right

Car moving 
down and 
right fast

Unknown 
object 
moving down 
and right fast

Visualization of top 6 exemplars for the region indicated

Frame 1719 of Street Scene 
Test005.  The bounding box 
indicates a particular spatial region 
containing a ground truth anomaly 
(jaywalking).

Person moving right 
at moderate speed

Unknown object moving 
down and right fast

Attributes for the test video 
volume centered around 
the jaywalker shown at left. Closest exemplar

Dist ,
2.08

Figure 3: Visualization of the learned exemplars for a region
of Street Scene and visualization of a test video volume ex-
plaining why it was detected as an anomaly.

Background 
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Mostly 
background 
very little 
movement

Person 
moving left 
slowly

Visualization of top 6 exemplars for the region indicated

Frame 119 of UCSD Ped2 Test001.  
The bounding box indicates a 
particular spatial region containing 
a ground truth anomaly (cyclist on 
sidewalk).

Cyclist moving down 
and right fast

Person moving down 
and right, slowly

Attributes for the test video 
volume centered around the 
cyclist shown at left. Closest exemplar

Dist
,

2.19

Mostly 
background 
very little 
movement

Mostly 
background 
very little 
movement

Unknown 
object, some 
movement 
left slowly

Figure 4: Visualization example for a region of UCSD Ped2
showing an explanation of the anomaly.

get best results across all the benchmarks only when we
combine all the motion and appearance features. This high-
lights the importance of modeling both appearance and dif-
ferent components of motion, especially to be able to pre-
dict anomalies under wide variety of scenarios.

We further perform an ablation study on UCSD Ped1
and Ped2 datasets to empirically evaluate the benefit of our
appearance model to represent object features versus us-
ing ImageNet pre-trained features. For the ImageNet pre-
trained model, we use the pre-classification layer output of
ResNext-50 as features. We present our results in Table 5.
The superiority of our model is most likely due to the loss
function used (binary cross-entropy) which allows an image
patch to contain zero or multiple object classes.

Background 
not moving

Person 
moving 
right, 
slowly

Unknown 
object, 
moving right, 
slowly

Person 
moving right 
and down 
slowly

Unknown 
object small 
movement 
right slowly

Visualization of top 6 exemplars for the region indicated

Frame 400 of Avenue Test004.  The 
bounding box indicates a particular 
spatial region containing a ground 
truth anomaly (running).

Unknown object (most 
similar to a person) moving 
left and up fast

Unknown object (most 
similar to a person) moving 
left and up slowly

Attributes for the test video 
volume centered around the 
runner shown at left. Closest exemplar

Dist , 1.81

Mostly 
background 
very little 
movement

Figure 5: Visualization example for a region of CUHK Av-
enue showing an explanation of the anomaly.

Attributes Ped1 Ped2 Avenue Street Scene
App 29.6 / 64.8 77.7 / 92.5 75.6 / 67.4 1.1 / 4.8

Motion 59.2 / 83.7 81.6 / 93.3 69.0 / 89.0 22.6 / 64.1
Angle 40.9 / 70.6 70.8 / 88.1 66.4 / 89.3 24.5 / 65.9
Mag 60.6 / 90.1 70.1 / 88.5 59.5 / 91.1 16.6 / 50.8
Bkg 45.5 / 86.4 71.7 / 95.2 49.9 / 81.5 11.9 / 49.8

App+Mot 61.7 / 88.9 87.4 / 97.1 69.6 / 86.7 23.9 / 65.3

Table 4: RBDC / TBDC AUC scores (in %) of our method
when using only appearance, only motion (using angle,
magnitude and background pixel predictions combined),
each motion component separately and all the features

Attributes Ped1 Ped2
ImageNet 25.148 / 44.63 64.67 / 83.17

Ours 29.6 / 64.8 77.7 / 92.5

Table 5: RBDC / TBDC AUC scores (in %) of our method
when using our pre-trained model versus ImageNet pe-
trained model as appearance feature extractor.

5. Discussion and Conclusions
We have presented a novel method for explainable video

anomaly localization that has a number of desired proper-
ties. Foremost, the method is accurate and general. We have
shown that it works very well on five different datasets and,
in particular, achieves state-of-the-art results on CUHK Av-
enue, Street Scene and ShanghaiTech. Setting it apart from



almost all previous work, our model is understandable by
humans and the decisions that our method makes are ex-
plainable. Finally, because our method does not require a
computationally expensive training phase on the nominal
data, it is easy to expand our model when new nominal data
becomes available.
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6. Supplemental Material
In this supplemental material, we will give more details

on the high-level appearance and motion deep networks that
we train including the training examples used and the net-
works’ accuracies. We show more visualizations of the ex-
plainability of our method. We discuss the speed of our



method both for model-building and anomaly detection. We
also discuss the limitations of our approach. Finally, we in-
clude a number of videos showing the anomaly detections
of our method on videos from the Street Scene, Avenue,
Ped1 and Ped2 datasets.

6.1. Data generation

6.1.1 Webcam dataset

Our key motivation is to learn features that can efficiently
represent generic knowledge about outdoor environments.
To this end we collected surveillance videos from publicly
available webcams. We collected 33 videos in total of
length 3 minutes each on average.

6.1.2 Appearance Model

As discussed in the main paper, we created our training
dataset from multiple sources (CIFAR-10 [19], CIFAR-100
[19], and MIO-TCD [27] and webcam videos as discussed
above).

Many of our training examples, especially for the person,
car and cyclist classes come from the webcam videos. We
manually annotated the videos with bounding boxes around
the people, cars and cyclists. In addition we added a subset
of the car, pedestrian and cyclist examples from the MIO-
TCD dataset [27]. Finally, we used the car and dog exam-
ples from CIFAR-10 [19] and the tree, house, skyscraper
and bridge classes from CIFAR-100 [19]. In total, we col-
lected 116,799 images for training and 9,240 images held
out for validation spread across the 8 classes, all resized to
64x64 pixels.

After initial training of a ResNext-50 network [48], we
scanned the resulting classifier across a set of 28 large im-
ages of scenes not containing any of the 8 object classes.
Any patches classified as one of the objects were collected
to form a new set of hard negative examples. This yielded
an additional set of 62,336 background images which was
added to the training set and a new object recognizer was
trained from scratch. Hard negative mining was done a sec-
ond time to yield one more set of 8,658 background patches.
The total set of 187,793 images was used for a final training
from scratch to yield the final classifier.

Figure 7 shows example 64x64 pixel training images for
each class as well as the basic network architecture used for
the appearance network.

6.2. Motion Model

As discussed in the main paper, we use RGB video vol-
umes as input to our motion attribute networks and com-
pute ground-truth attribute labels using optical flow. Every
video volume in our dataset can be categorized as either
‘motion’ or ‘background’. To create video volumes, we se-
quentially sample N continuous frames from a video and

the corresponding N − 1 optical flow frames. We chose
N = 10 frames to follow the same settings as our video
anomaly detection pipeline. Using the flow frames and two
fixed thresholds, we define ‘regions with significant motion’
and ’background regions’. The first threshold (thmot) is the
maximum magnitude of a flow vector for it to be counted as
a moving pixel. The other threshold (thbkg) is the percent-
age of moving pixels required to say a video volume con-
tains motion. For our experiments we select thmot = 1.0
and thmot = 99%. We sample motion and background
video volumes from their respective regions. We do this
to improve the efficiency of selecting video volumes, as for
most surveillance videos, only a small set of regions have
some form of activity.

We sample 2, 551, 376 ‘motion’ video volumes and
283, 486 ’background’ video volumes. (Background sam-
ples are 10% of the total samples.) After sampling, we re-
size all the video volumes to spatial dimension [64 × 64].
Thus each video volume is of dimension [64× 64× 3×N ]
( [h × w × c × t] ) . We use 90% of these for training our
models and the remainder for validation.

6.3. Motion network Architecture

Our backbone convolutional neural network model for
motion attribute learning is composed of three 3D convo-
lution (conv) layers and three 3D max-pooling layers, fol-
lowed by a fully-connected layer. Each conv layer is fol-
lowed by a batch normalization layer and a ReLU activa-
tion.

The first 3D conv layers use filters of dimensions 5 ×
5× 5, while the remaining two 3D conv layers use filters of
dimensions 3× 3× 3 each. The three 3D conv layers have
32, 64 and 128 filters respectively. We set the padding to
“same” and stride to 1. We perform only spatial pooling for
all three 3D max-pooling layers. The pooling size and the
stride are both set to 2. We add a fully connected layer at
the end to obtain a 128 dimensional feature vector.

For all the motion attribute learning tasks, we train sepa-
rate models. For each task-specific model, we use the same
backbone architecture described above with an additional
task specific prediction head. For angle prediction, we add
a fully connected layer with 13 units. For magnitude and
background pixel percentage prediction we add a fully con-
nected layer with 12 units and 1 unit each. Finally, for back-
ground classifier, we add a fully connected layer with 1 out-
put unit.

6.4. Experiments on the Accuracy of Appearance
and Motion Networks

The results in the main paper on 5 different video
anomaly detection datasets show that the features learned
by our appearance and motion networks are very effec-
tive for detecting anomalies in video. It is also interest-



Figure 6: Selected frames from the webcam dataset of surveillance videos

Figure 7: Sample images from each category used for train-
ing the appearance model as well as the basic architecture
used for our appearance model. The input to the network is
a single 64x64 pixel color RGB image and the output is an
independent probability (sigmoid function) for each of the
eight output classes (not softmax). Thus, there can be more
than one object class recognized for a single input image.

ing to analyze how accurate our networks are on the object
recognition and motion attribute prediction tasks they are
trained for. Table 6 shows correct detection and false posi-
tive rates for our appearance network on a held-out test set
of 64x64 pixel images containing person, car, cyclist, dog,
tree, house, skyscraper, bridge and background (none of the
above) classes. Overall, accuracy is quite good. The cyclist

class has the lowest accuracy due to the fact that for some
views of cyclists, the bike is heavily occluded by the rider
which can cause the cyclist to be classified as a person. This
also explains why the person class a somewhat higher false
positive rate than other classes.

In Table 7 we show the error rates computed for each
motion attribute network. Specifically, for ’Background
classifier’ (BGClassifierNet) we report the classification er-
ror percentage on the held-out validation set. The table
shows that the background classifier is correct over 98%
of the time (1.69% error). For the ’Background Fraction’
(BGFractionNet) attribute model, we report the average L1
error. This network outputs values between 0 and 1, so
0.053 average error is quite low. In the case of the ’Angle’
(DirectionNet) and ’Magnitude’ (SpeedNet) attribute mod-
els, which output 12 values for the 12 different angle bins,
we are interested in evaluating the average deviation of the
predicted estimate to the ground-truth value over all possi-
ble angle bins. To this end we compute the mean of abso-
lute difference for both the normalized angle histogram and
the magnitude vector. For DirectionNet, the output is a his-
togram so all values are between 0 and 1 and an average L1
error of 0.0184 shows good accuracy. For SpeedNet, values
do not have an upper bound but are typically between 0 and
10 pixels/frame. An average L1 error of 0.331 shows low
error. Our results demonstrate that our models can accu-
rately predict motion attributes for unseen videos with small
errors.



Figure 8: Examples of automatically generated video volumes for training motion attribute models. Rows 1-5 shows example
video volumes from ‘motion’ regions, while Rows 6-7 shows ‘background’ video volumes.

Figure 9: Motion attribute models.

Class Correct Detection Rate False Positive Rate
person 95.5% 3.6%

car 94.2% 1.8%
cyclist 77.6% 1.1%

dog 99.0% 0.3%
tree 99.0% 0.5%

house 89.0% 0.5%
skyscraper 97.0% 0.3%

bridge 97.0% 0.7%

Table 6: Detection and false positive rates for our appear-
ance network on a held-out test set of 64x64 pixel RGB
images.

Further improving network accuracy will lead to in-
creases in video anomaly localization accuracy.

6.5. How well do appearance feature vectors for
unknown classes cluster together?

In the introduction we mention that video volumes con-
taining unknown object classes do not cause a problem for
our method because the appearance feature vectors (output
by our appearance network) for different images of the same



Figure 10: Backbone architecture for our motion model

Attributes Error Rate
BGClassifierNet 1.69%
BGFractionNet 0.053
DirectionNet 0.0184

SpeedNet 0.331

Table 7: Error rates for our motion networks on a held-out
test set of 10x64x64x3 video volumes.

object class tend to have small distance. This is the main
advantage of using the network’s embedding as our appear-
ance feature as opposed to using the output class probabili-
ties. In order to back this claim up with data, we used a set
of 1000 horse images and 1000 ship images from Cifar-10
which are very different object classes from the 8 classes
our appearance network was trained on. For each image,
we computed its embedding using our appearance network
and then computed separately the average L2 distance be-
tween all horse images, between all ship images and be-
tween horse and ship images. The average L2 distance be-
tween horse image embeddings was 11.1, the average dis-
tance between ship image embeddings was 18.3, and the av-
erage distance between horse versus ship embeddings was
22.0. This shows that embeddings for images of the same
class tend to be closer than embeddings for images of dif-
ferent classes.

Furthermore, we ran k-means clustering using two clus-
ters on the horse and ship embeddings. The two result-
ing clusters approximately separated the two object classes.

One cluster contained 91% horse embeddings (and 9% ship
embeddings) and the other cluster contained 77% ship em-
beddings and 23% horse embeddings. Again this shows that
the embedding learned by our object recognizer does a good
job of clustering unknown object classes.

6.6. Computational Analysis

We analyze computational speed of our method on the
Ped2, Avenue and Street Scene datasets. For each dataset,
we compute the processing speed for anomaly detection
stage. The running time for model building (exemplar selec-
tion) is almost identical to anomaly detection. We compute
the total time taken by adding the time taken to extract fea-
tures from our high-level models and perform nearest neigh-
bor matching. The main computational bottleneck for our
method is computing feature vectors, which requires eval-
uating 5 different neural networks, on every video volume.
A simple but effective method was used to speed this up.
The important insight is that the feature vector for a video
volume should not change from one time step to the next
if the pixels of the video volume have not changed. If the
feature vector does not change then the anomaly score will
not change either. So, for any video volume that is almost
identical to the previous video volume in time, we do not
need to compute its feature vector and the anomaly score
for the previous video volume can simply be used for the
new video volume. We use normalized cross correlation to
determine whether two video volumes are nearly identical.
Note that this speed-up does not prevent our method from
detecting static anomalies (such as loiterers).

For each dataset, the size of the spatial regions and thus
the number of regions differs since it is chosen depending
on the approximate height of a person in the dataset. Fur-
thermore, the size of frames in each dataset differs. As a
result, the computational speed differs for each dataset.

Dataset Anomaly Detection
Ped2 32 fps

Avenue 112 fps
Street Scene 12 fps

Table 8: Computational speed for our pipeleine. We show
speed for each stage in frames/second.

We present our results in Table 8. For each dataset,
we report results in frames per second. We used a single
NVIDIA Quadro RTX 8000 GPU for feature extraction and
Intel Xeon E5-2680 v4 @ 2.40GHz CPU for nearest neigh-
bour computations. For the Avenue dataset with 640× 360
resolution frames and a region-size of 128×128 resulting in
45 regions, the speed is relatively fast at over 6 frames/sec.
For Ped2 (with 360 × 240 frames and 345 spatial regions)
and especially for Street Scene (with 1280×720 frames and



897 spatial regions) our method is under 1 frame/sec.
We also show in Table 9 the running times for other pub-

lished VAD methods. These times are for the anomaly de-
tection phase only. (Note that different methods are bench-
marked using different GPUs so the numbers are not di-
rectly comparable.) For the model building phase, most
other methods require training a deep network on the nom-
inal video which makes those methods much slower than
ours since ours requires no network training in the model
building (exemplar learning) or anomaly detection stages.

Method Detection Speed GPU type
Ionescu et al [16] 11 fps Titan XP

Georgescu et al [12] 21 fps GTX 1080Ti
Georgescu et al [13] 18 fps GTX 3090

Liu et al [21] 25 fps GeForce TI-TAN
Liu et al [22] 10 fps RTX 3090

Ours 12 to 112 fps Quadro RTX 8000

Table 9: Computational speed for our pipeleine. We show
speed for each stage in frames/second.

6.7. Example Result Frames

Figure 11: A test frame from Street Scene (Test031) show-
ing the areas detected as anomalous by our method (shaded
in red) and the ground truth bounding box in blue.

Figure 12: A test frame from CUHK Avenue (Test006)
showing the areas detected as anomalous by our method
(shaded in red) and the ground truth bounding boxes in blue.

We show a few frames from Street Scene, CUHK Av-
enue, UCSD Ped1 and Ped2 with the areas detected as

Figure 13: A test frame from UCSD Ped1 (Test006) show-
ing the areas detected as anomalous by our method (shaded
in red) and the ground truth bounding box in blue.

Figure 14: A test frame from UCSD Ped2 (Test006) show-
ing the areas detected as anomalous by our method (shaded
in red) and the ground truth bounding boxes in blue.

anomalous from our method shaded in red and the ground
truth anomalies shown as blue bounding boxes in Figures
11 - 14. We also include example results videos from each
datasets in our supplementary material.

6.8. Additional Visualizations of Results

Figure 15 shows a visualization of the exemplars learned
for a region of Street Scene on the edge of the sidewalk as
well as a visualization of the high-level attributes estimated
for a video volume in this region around an anomalous cy-
clist who is outside of the bike lanes (shown on the left side
of the image). The top ten exemplars for this region (along
the top of the figure) show either background/unknown ob-
jects with little motion or people moving in the direction of
the sidewalk at low speed, as expected. The visualization
of the high-level attributes for the video volume centered
on the cyclist shown in the frame on the left, show that
the video volume was estimated to contain a person mov-
ing downward at a fast speed. Although the object class
is incorrect (it should be class 2, cyclist), the direction and
speed are still different from the exemplars learned for this
region. The closest exemplar (shown at the bottom right of
the figure) is estimated to contain an unknown object (al-
though person is the most likely class) moving down and to
the right at a slow speed. The distance between the test fea-



ture vector and the closest exemplar feature vector is 2.47
which is high and indicates an anomaly.

Figure 16 shows a region of Street Scene on the street.
As expected, the visualization of the top ten exemplars
shows either background with little or no movement or
cars/unknown objects moving mainly down and right (the
direction of the street) at various speeds. The attributes of
a video volume centered around a car that is making a u-
turn is visualized at the bottom, left of the figure. It shows a
car moving right at a fast speed. The nearest exemplar is a
car moving down and right at a slow speed. The exemplar-
based model does not have any examples of cars moving
in this direction from the nominal data. Therefore, the test
video volume has a high anomaly score and is detected as
anomalous.

Figure 17 shows an example from a region on the side-
walk. The exemplars for this region show either back-
ground/unknown objects with very little movement or peo-
ple/unknown objects moving either up and left or down and
right. The visualization of the high-level attribues estimated
for a video volume centered on a person riding a motorcycle
onto the sidewalk is shown at the bottom, left of the figure.
It shows that the video volume was estimated to contain a
cyclist moving left at high speed. Although this is not a
cyclist, it is a reasonable classification for a motorcyclist.
The nearest exemplar is a person walking down and right
at a fast speed. The distance between the test video vol-
ume and the nearest exemplar is large (2.55) and indicates
an anomaly.

Figure 18 shows an example of a false positive anomaly
detection in Street Scene. For the region on the street shown
in the frame at the left of the figure, the visualized exem-
plars show mainly non-moving background/unknown ob-
jects or cars/unknown objects moving down and right at
various speeds. The test video volume centered at the frame
and region shown at the left of the figure contains the back
of a car that is coming to a stop as it moves down and right.
The visualization of this video volume shows that it is esti-
mated by our appearance and motion networks to be a car
moving at moderate speed up and left. This is the opposite
direction to how the car is actually travelling and opposite
to how cars normally travel in this spatial region. The angle
network has made a mistake in this case. Thus, the closest
exemplar is an unknown object (whose highest likelihood is
the car class) barely moving. Because of the wrongly esti-
mate direction of motion, the anomaly score is high, and an
anomaly is falsely indicated.

As a final example, in Figure 19 we show a missed
anomaly detection on Street Scene. The region we focus
on is on the street and the particular video volume is cen-
tered on a cyclist who is outside of the bike lane. As ex-
pected, the exemplars learned for this spatial region show
either background/unknown objects with very little move-

ment or cars/unknown objects moving down and right at fast
speeds. The visualization of the video volume containing
the anomalous cyclist shows that it was estimated to con-
tain a person moving down and right at a fast speed. The
closest exemplar is an unknown object (although with rel-
atively high likelihoods for person and car) traveling down
and to the right at a fast speed. Because the motion angle
and speed match fairly closely and the appearance feature
vector is similar, the resulting distance (1.59) is not high
enough to indicate an anomaly. This is mainly a failure of
the appearance model to correctly classify the cyclist.

The visualizations of correct anomaly detections as well
as false positives and missed detections illustrate how the
high-level attributes estimated for each video volume lead
to human-understandable explanations of the decisions our
system makes. Analyzing the errors also shows that de-
spite state-of-the-art accuracy on Street Scene, CUHK Av-
enue and ShanghaiTech datasets, the appearance and mo-
tion deep networks are far from perfect and improvements
to these networks will directly translate to higher accuracy
for video anomaly localization.

6.9. Limitations

One general limitation of our approach is that it relies
on the appearance and motion networks that estimate high-
level features from a video volume. If these networks are
wrong, our method may make a mistaken determination of
anomalous/normal, depending on how wrong the networks
are. In general, the more accurate the appearance and mo-
tion networks are, the more accurate our anomaly detection
method will be.

Our current system has difficulty with a few classes of
anomalies in the datasets we have tested on. On Street
Scene, we tend to fail to detect anomalies consisting of cy-
clists or cars that are slightly outside of their proper lanes.
This could be improved with a finer grid of spatial regions,
but at the cost of a higher computational cost. We also tend
to miss very small anomalies in Street Scene (mainly small
dogs being walked on the sidewalk).

On the Ped1 and Ped2 datasets, our method has diffi-
culty with skateboarders, especially ones that are traveling
about the same speed as pedestrians. There are often only
very subtle motion differences between skateboarders and
pedestrians in Ped1 and Ped2 since the skateboard itself is
usually barely visible.



Figure 15: Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume
explaining why it was detected as an anomaly.

Figure 16: Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume
explaining why it was detected as an anomaly.

Figure 17: Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume
explaining why it was detected as an anomaly.



Figure 18: Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume
explaining why it was falsely detected as an anomaly.

Figure 19: Visualization of the learned exemplars for a region of Street Scene and visualization of a test video volume
explaining why it was not detected as an anomaly.


