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Abstract

The general domain of video segmentation is currently
fragmented into different tasks spanning multiple bench-
marks. Despite rapid progress in the state-of-the-art, cur-
rent methods are overwhelmingly task-specific and cannot
conceptually generalize to other tasks. Inspired by recent
approaches with multi-task capability, we propose TarViS:
a novel, unified network architecture that can be applied to
any task that requires segmenting a set of arbitrarily de-
fined ‘targets’ in video. Our approach is flexible with re-
spect to how tasks define these targets, since it models the
latter as abstract ‘queries’ which are then used to predict
pixel-precise target masks. A single TarViS model can be
trained jointly on a collection of datasets spanning differ-
ent tasks, and can hot-swap between tasks during infer-
ence without any task-specific retraining. To demonstrate
its effectiveness, we apply TarViS to four different tasks,
namely Video Instance Segmentation (VIS), Video Panoptic
Segmentation (VPS), Video Object Segmentation (VOS) and
Point Exemplar-guided Tracking (PET). Our unified, jointly
trained model achieves state-of-the-art performance on 5/7
benchmarks spanning these four tasks, and competitive per-
formance on the remaining two. Code and model weights
are available at: https://github.com/A112500/TarvVis

1. Introduction

The ability to understand video scenes has been a long-
standing goal of computer vision research because of wide-
ranging applications in intelligent vehicles and robots.
Early approaches tackled simpler tasks involving contour-
based [33,40] and box-level tracking [21,25,41,54], back-
ground subtraction [20, 63], and motion segmentation [8,
51]. The deep learning boom then revolutionized the land-
scape by enabling methods to perform pixel-precise seg-
mentation on challenging, real-world videos. In the past
few years, a number of benchmarks have emerged, which
evaluate how well methods can perform video segmenta-
tion according to various task formulations. Over time,
these tasks/benchmarks have ballooned into separate re-
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Figure 1. Predicted results from a jointly trained TarViS model for
four different video segmentation tasks.

search sub-communities. Although existing methods are
rapidly improving the state-of-the-art for these benchmarks,
each of them typically tackles only one narrowly-defined
task, and generalizing them is non-trivial since the task def-
inition is baked into the core approach.

We argue that this fragmentation is unnecessary be-
cause video target segmentation tasks all require the same
high-level capability, namely that of identifying, localizing
and tracking rich semantic concepts. Meanwhile, recent
progress on Transformer networks has enabled the wider
Al research community to move towards unified, multi-task
architectures [1, 30, 31, 39, 60], because the attention op-
eration [64] is well-suited for processing feature sets with
arbitrary structure and data modality. These developments
give us the opportunity to unify the fractured landscape of
target-based video segmentation. In this paper, we propose
TarViS: a novel architecture which enables a single, unified
model to be jointly trained for multiple video segmentation
tasks. During inference, the same model can perform differ-
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ent tasks at runtime by specifying the segmentation target.

The core idea is that TarViS tackles the generic task of
segmenting a set of arbitrary targets in video (defined as
semantic classes or as specific objects). These targets are
encoded as queries which, together with the video features,
are input to a Transformer-based model. The model iter-
atively refines these queries and produces a pixel-precise
mask for each target entity. This formulation conceptually
fuses all video segmentation tasks [3, 56, 68, 74] which fall
under the umbrella of the above-mentioned generic task, be-
cause they differ only in how the targets are defined. During
both training and inference, TarViS can hot-swap between
tasks at run-time by providing the desired target query set.

To demonstrate our generalization capability, we tackle
four different tasks: (1) Video Instance Segmenta-
tion (VIS) [56, 74], (2) Video Panoptic Segmentation
(VPS) [35], (3) Video Object Segmentation [55], and (4)
Point Exemplar-guided Tracking [3] (PET). For VIS, the
segmentation targets are all objects in the video belong-
ing to a predefined set of classes. The target set for
VPS includes that for VIS, and additionally, a set of non-
instantiable stuff semantic classes. For VOS, the targets are
a specific set of objects for which the first-frame ground-
truth mask is provided. PET is a more constrained version
of VOS which only provides the location of a single point
inside the object, rather than the full object mask.

Existing methods for these tasks lack generalization
capability because task-specific assumptions are typically
baked into the approach (see Sec. 2 and 3 for details). In
contrast, TarViS can tackle all four tasks with a unified
model because we encode the task-specific targets as a set
of queries, thus decoupling the network architecture from
the task definition. Moreover, our approach can theoreti-
cally generalize further, e.g., one could potentially define
the target set as all objects described by a given text prompt,
though this is beyond the scope of this paper.

To summarize, our contributions are as follows: we pro-
pose TarViS, a novel architecture that can perform any task
requiring segmentation of a set of fargets from video. For
the first time, we are able to jointly train and infer a single
model on a collection of datasets spanning the four afore-
mentioned tasks (VIS, VPS, VOS, PET). Our experimental
results show that TarViS performs competitively for VOS,
and achieves state-of-the-art results for VIS, VPS and PET.

2. Related Work

Multi-task Models. Multi-task learning has a long his-
tory [11] with several architectures and training strate-
gies [24,36,38,53,61,78]. Earlier approaches mostly con-
sist of a shared backbone with fixed task-specific heads,
whereas we design a more general architecture for video
segmentation with task-specific targets to specify what to

segment. Our approach is inspired by recent attention-based
models, e.g., PerceiverlO [30, 31], which can be trained on
diverse data modalities and task-specific heads are replaced
with output queries. UViM [39] follows a similar direction
by creating a unified architecture for diverse dense predic-
tion tasks. However, both of these models are trained sep-
arately for different tasks. Recent, powerful multi-task vi-
sion language models such as Flamingo [ 1] and GATO [60]
tackle a multitude of tasks by requiring a sequence of task-
specific input-output examples to prime the model. This is
conceptually similar to our task-specific targets, however,
our model does not require per-task priming. Moreover,
our targets are not modeled as sequence prompts, and we
aim for a video segmentation model which is several orders
of magnitude smaller. In the realm of video tracking and
segmentation, the recently proposed UNICORN [73] model
tackles multiple object tracking-related tasks with a unified
architecture. Unlike TarViS, however, UNICORN follows
the task-specific output head approach and is generally ori-
ented towards box-level tracking tasks [22,47,49,77], thus
requiring non-trivial modifications to tackle VPS or PET.

Query-based Transformer Architectures. Several
works [2, 10, 13,30,31,48,67, 80] use query-based Trans-
former architectures for various tasks. The workhorse for
task learning here is the iterative application of self- and
cross-attention, where a set of query vectors (e.g., represent-
ing objects) are refined by interacting with each other, and
with the input data (e.g., an image). Unlike existing meth-
ods which use queries in a task-specific context, TarViS
adopts a query-based Transformer architecture in which the
queries serve as a mechanism for decoupling the task def-
inition from the architecture, i.e., our model can learn to
tackle different tasks while being agnostic to their defini-
tion because the latter is abstracted behind a set of queries.

Task-specific Video Segmentation. Current Video In-
stance Segmentation (VIS) methods broadly work by pre-
dicting object tracks in the video, followed by classifica-
tion into a pre-defined set of categories. Several approaches
[6,9,23,28,34,43,56,66,71,74] are based on the tracking-
by-detection paradigm, some model video as a joint spatio-
temporal volume [4,5], whereas recent works [12,26,29,67,
] adopt Transformer-based architectures.

For Video Panoptic Segmentation (VPS), methods
[35, 57, 68] generally extend image-level panoptic ap-
proaches [14] by employing multi-head architectures for
semantic segmentation and instance mask regression, clas-
sification, and temporal association. In the Video Object
Segmentation (VOS) community, state-of-the-art methods
are broadly based on the seminal work of Oh et al. [52],
which learns space-time correspondences between pixels
in different video frames, and then uses these to propa-
gate the first-frame masks across the video. Subsequent
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Figure 2. TarViS Architecture. Segmentation targets for different tasks are represented by a set of abstract target queries Qin. The core
network (in green) is agnostic to the task definitions. The inner product between the output queries QQou and video feature Fu yields

segmentation masks as required by the task.

methods [15-17, 62,65, 72,75,75, 76] have significantly
improved the performance and efficiency of this approach.
Point Exemplar-guided Tracking (PET) [3,27] is a fairly
new task for which the current best approach [3] regresses
a pseudo-ground-truth mask from the given point coordi-
nates, and then applies a VOS method [17] to this mask.
The above methods thus incorporate task-specific as-
sumptions into their core approach. This can benefit per-
task performance, but makes it difficult for them to gener-
alize across tasks. By contrast, TarViS can tackle all four
aforementioned tasks, and generally any target-based video
segmentation task, with a single, jointly trained model.

3. Method

TarViS can segment arbitrary targets in video since the
architecture is flexible with respect to how these targets
are defined, thus enabling us to conceptually unify and
jointly tackle the four aforementioned tasks (VIS, VPS,
VOS, PET). The architecture is illustrated in Fig. 2.

For all tasks, the common input to the network is an RGB
video clip of length T denoted by V' € R¥XW XT3 Thig
is input to a 2D backbone network which produces image-
level feature maps, followed by a Temporal Neck, which
enables feature interaction across time and outputs a set of
temporally consistent, multi-scale, D-dimensional feature
maps F = {F3a, Fi¢, Fs, F4} where Fs € RE X5 XTxD,
The feature maps F are then fed to our Transformer de-
coder, together with a set of queries J;, which represent the
segmentation targets. The decoder applies successive layers
of self- and masked cross-attention wherein the queries are
iteratively refined by attending to each other, and to the fea-
ture maps, respectively. The refined queries output by the
decoder are denoted with @QQoy. The following subsections
explain how TarViS tackles each task in detail.

3.1. Video Instance Segmentation

VIS defines the segmentation target set as all objects be-
longing to a set of predefined classes. Accordingly, the in-
put query set i, for VIS contains three types of queries:
(1) semantic queries denoted by Qgem € RE*P where C' is
the number of classes defined by the dataset, i.e., each D-
dimensional vector in Qg represents a particular seman-
tic class. (2) instance queries denoted by Qinst € RIxP
where [ is assumed to be an upper bound on the number of
instances in the video clip, and (3) a background query de-
noted by Qg € R™*P to capture inactive instance queries.

The three query sets are concatenated, i.e., Qy =
concat(Qsem; Qinst, Qbe), and input to the Transformer de-
coder, which refines their feature representation through
successive attention layers and outputs a set of queries
Qout = concat(Qlems .i/nsNQ{)g)' These are th.en used to
produce temporally consistent instance mask logits by com-
puting the inner product (Fy, Ql) € RIXWXTxI To
obtain classification logits, we compute the inner product

I
(@i concat(Qlem, Qpg)) € RV H.

mnst?

The three types of queries are initialized randomly at
the start of training and optimized thereafter. The instance
queries Qins enable us to segment a varying number of ob-
jects from the input clip. During training, we apply Hun-
garian matching between the predicted and ground-truth in-
stance masks to assign instance queries to video instances,
and then supervise their predicted masks and classification
logits accordingly. When training on multiple datasets with
heterogeneous classes, the semantic query sets are sepa-
rately initialized per dataset, but Qins and @y, are shared.

Comparison to Instance Segmentation Methods. Sev-
eral Transformer-based methods [10, 13, 67, 80] for im-
age/video instance segmentation also use queries to seg-



ment a variable number of input instances. The key dif-
ference to our approach is the handling of object classes:
existing works employ only instance queries which are in-
put to a fully-connected layer with a fan-out of C' 4 1 to
obtain classification (and background) scores. The notion
of class-guided instance segmentation is thus baked into
the approach. By contrast, TarViS is agnostic to the task-
specific notion of object classes because it models them
as arbitrary queries which are dynamic inputs to the net-
work. The semantic representation for these queries is thus
decoupled from the core architecture and is only learned via
loss supervision. An important enabler for this approach
is the background query (g, which serves as a ‘catch-all’
class to represent everything that is not in Qgep. It is used to
classify non-active instance queries, and its mask logits are
supervised to segment all non-object input pixels.

3.2. Video Panoptic Segmentation

VPS defines the segmentation targets as all objects be-
longing to a set of thing classes (e.g., ‘person’, ‘car’), and
additionally, a set of non-instantiable stuff classes (e.g.,
‘sky’, ‘grass’) which cover all non-object pixels. TarViS
can tackle VPS with virtually no modification to the work-
flow in Sec. 3.1. We can compute semantic segmentation
masks for the input clip by simply taking the inner prod-
uct between Qg and the video features: (Fy,Q.L..) €

RHXWXTXC " Note that here, Qe contains queries rep-
resenting both thing and stuff classes.

Comparison to VPS Methods. Current VPS datasets [35,

] involve driving scene videos captured from moving ve-
hicles. Methods tackling this task [35, 57] are based on
earlier image panoptic segmentation approaches [ 14] which
involve multi-head networks for semantic and instance seg-
mentation prediction. In terms of image-level panoptic seg-
mentation, Mask2Former [ 1 3] uses a Transformer-based ar-
chitecture, but it models stuff classes as instances which are
Hungarian-matched to the ground-truth target during train-
ing, whereas TarViS models semantic classes and instances
using separate, designated queries.

3.3. Video Object Segmentation and Point
Exemplar-guided Tracking

VOS and PET are instantiations of a general task where
the segmentation targets are a set of O objects for which
some ground-truth cue G is given. For VOS, G is pro-
vided as the first-frame object masks My, € RO*XHXW
whereas for PET, G is provided as the (z,y) coordinates
Pyj € R*2 of a point inside each of the objects. TarViS
jointly tackles both tasks by adopting a generalized ap-
proach in which the O target objects are encoded into a set
of object queries Qop;. Thus, both VOS and PET boil down
to designing a function EncodeObjects(-) which regresses
Qobj from the ground-truth cues G and feature maps F:

Qobj — EncodeObjects(gy]:)- (1

Note that Qg is conceptually analogous to Qs m and
Qinst used for VIS in that all three are abstract representa-
tions for their respective task-specific segmentation targets.

Video Object Segmentation. We seek inspiration from
HODOR [2] to implement Encodeobjects for VOS, a re-
cent method for weakly-supervised VOS, which encodes
objects into concise descriptors as follows: the descriptors
are initialized by average pooling the image features inside
the object masks, followed by iterative refinement where the
descriptors attend to each other (self-attention) and to their
respective soft-masked image features (cross-attention).

For TarViS, we employ a lightweight Object Encoder
with a similar workflow to encode the objects as a set of
queries Qopj, but with two differences to HODOR [2]: in-
stead of cross-attending to the entire image feature map
(H - W points) with soft-masked attention, we apply hard-
masked cross-attention to at most py,.x feature points per ob-
ject, where pnax << H - W. Object masks containing more
than pyax points are sub-sampled accordingly. This signifi-
cantly improves the memory/run-time overhead of our Ob-
ject Encoder. Secondly, we note that the process of distill-
ing object features into a single descriptor involves a loss
of object appearance information, which degrades perfor-
mance. We therefore model each object with ¢, queries (in-
stead of one) by spatially dividing each object mask into g,
segments, i.e., Qobj € RO*9%*P (we use g, = 4).

In addition to (o, We initialize a set of background
queries Qe € RP*P to model the non-target pixels in
the reference frame. Following HODOR [2], we employ
multiple background queries, which are initialized dynam-
ically by dividing the video frame containing the ground-
truth masks Moy into a 4 x 4 grid and average pooling
the non-object pixels in each grid cell. The Object En-
coder jointly refines the background and object queries to
yield Qin = concat(Qobj, @ve). During training, the mask
logits for the multiple background queries are aggregated
per-pixel by applying max(-) and supervised to segment all
pixels not part of the target object set.

The remaining workflow follows that for VIS and VPS:
Qin is input to the Transformer decoder together with the
video features F. The refined output query set Qo =
concat(Qq;; @pg) is then used to compute the inner prod-
uct (Fi, Q) € RAXWXTXxOxds - Subsequently, max(-) is
applied on the g,-sized dimension to obtain the final mask
logits for the O target objects.

Point Exemplar-guided Tracking. For PET we imple-
ment Encode0Objects in the exactly same way as VOS: the
given point coordinates Fyp; are converted into a mask with
just one non-zero pixel, followed by iterative refinement by
the Object Encoder (with shared weights for VOS and PET).



The only difference is that here we represent each of the O
objects with just one query, i.e., Qo; € RO*P (g, = 1).
The subsequent workflow is also identical to that for VOS:
the queries are refined by the Transformer decoder followed
by an inner product with F; to obtain object mask logits.

Comparison to VOS and PET Methods. Current state-of-
the-art VOS methods are largely based on STM [52]. It in-
volves learning pixel-to-pixel correspondences across video
frames, which are then used to propagate the given object
mask across the video. This approach is effective since
every pixel in the given mask can be individually mapped
to future frames, thus preserving fine-grained object de-
tails. The core approach is, however, task-specific since
it assumes the availability of first-frame object masks, and
does not generalize to the PET (see Sec. 4.2). PET can be
viewed as a more constrained version of VOS, where only
a single object point is provided instead of the full mask.
Consequently, PET [3] is currently tackled by casting it as
a VOS problem by using an image instance segmentation
network [13] to regress pseudo-ground-truth object masks
from the given point coordinates Fly;.

On the other hand, our approach of encoding objects as
concise queries causes loss of fine-grained object appear-
ance information, but it has the advantage of being agnostic
to how G is defined. As evident from the unified work-
flow for VOS and PET, any variation of these tasks with
arbitrary ground-truth cues G can be seamlessly fused into
our architecture as long as we can implement an effective
EncodeObjects function to regress Qop; from the given G.

3.4. Network Architecture

Temporal Neck. TarViS produces target masks by com-
puting the inner product between (o and the video feature
map Fy. For this to work, the per-pixel features F must
be aligned for the same, and dissimilar for different tar-
gets. Some image instance segmentation methods [13, 80]
apply Deformable Attention [80] to the backbone feature
maps to efficiently learn multi-scale image features. For
TarViS, however, the features must also be temporally con-
sistent across the entire input video clip. To achieve this, we
propose a novel Temporal Neck architecture inspired from
the work of Bertasius et al. [7] for video action classifica-
tion. We enable efficient spatio-temporal feature interac-
tion by applying two types of self-attention in an alternat-
ing fashion: the first is spatially global and temporally lo-
calized, whereas the second is spatially localized and tem-
porally global. The first operation is implemented with De-
formable Attention, following existing work [12, 80]. The
second operation, Temporal Attention, involves dividing the
input space-time volume into a grid along the spatial axes,
and then applying self-attention to the space-time feature
volume inside each grid cell. Both operations allow feature

Deformable

Attention N < Attention

Temporal

Figure 3. Temporal Neck Layer. Colored regions denote the at-
tention field w.r.t the selected pixel (darkened). Deformable At-
tention is spatially unrestricted but temporally limited to a single
frame, whereas Temporal Attention is spatially localized, but tem-
porally unrestricted. Fy is inactive for the temporal attention.

interaction across multiple scales. Both attention operations
are illustrated in Fig. 3. We exclude Fg from temporal atten-
tion since we found this to be more memory-efficient with-
out negatively impacting prediction quality.

Transformer Decoder. The decoder architecture follows
that of Mask2Former [13]: the input queries are iteratively
refined over multiple layers. In each layer, the queries first
cross-attend to their respective masked video features, then
self-attend to each other, followed by feed-forward layers.

3.5. Inference

To infer on videos with arbitrary length, we split videos
into clips of length T¢;, with an overlap of 15, between suc-
cessive clips. Object tracks are associated across clips based
on their mask IoU in the overlapping frames. For the VOS
tasks, the object queries for an intermediate clip are initial-
ized by using the predicted masks in the overlapping frames
from the previous clip as a pseudo-ground-truth. For VPS,
we average the semantic segmentation logits in the overlap-
ping frames. Our approach is thus near-online because the
time delay in obtaining the output for a given frame is at
most Tigip — Toy — 1 (except for the first clip in the video).

4. Experiments
4.1. Implementation Details

Our Temporal Neck contains 6 layers of Deformable and
Temporal Attention. We pretrain for 500k iterations on
pseudo-video clips generated by applying on-the-fly aug-
mentations to images from COCO [44], ADE20k [79],
Mapillary [50] and Cityscapes [18]. The samples are
either trained for VPS, VIS, VOS or PET. This is fol-
lowed by fine-tuning for 90k iterations jointly on samples
from YouTube-VIS [74], OVIS [56], KITTI-STEP [68],



Table 1. Results for Video Instance Segmentation (VIS) on the YouTube-VIS 2021 [74] and OVIS [56] validation sets.

Method Backbone Shared YouTube-VIS 2021 OVIS

Model AP AP50 AP75 ARl ARIO AP AP50 AP75 ARl ARIO
Mask2Former-VIS [12] R-50 X 40.6 60.9 41.8 - - - - - - -
IDOL [71] R-50 X 439 680 496 38.0 509 30.2 513 300 150 375
MinVIS [28] R-50 X 442  66.0 48.1 392 517 250 455 240 139 297
VITA [26] R-50 X 457 674 495 409 536 196 412 174 11.7 26.0
TarViS R-50 v 483 69.6 532 405 559 311 525 304 159 399
Mask2Former-VIS [12] Swin-T X 459 68.7 50.7 - - - - - - -
TarViS Swin-T v 509 716 566 422 572 340 550 344 16.1  40.9
IDOL [71] Swin-L X 56.1 808 635 450 60.1 426 657 452 179 496
VITA [26] Swin-L X 575 806 610 477 626 277 519 249 149 33.0
TarViS Swin-L v 60.2 814 676 476 64.8 432 678 446 180 504

Table 2. Video Panoptic Segmentation (VPS) results for validation sets of KITTI-STEP [

], CityscapesVPS [35] and VIPSeg [46].

Method Shared KITTI-STEP CityscapesVPS VIPSeg

Model g7 AQ  SQ VPQ VPQ™ VPQ™ VPQ VPQ™ VPQY  STQ
Mask Propagation [68] X 0.67 0.63 0.71 - - - - - -
Track [35] X - - - 55.9 43.7 64.8 - - -
VPSNet [35] X 0.56 0.52 0.61 57.0 447 66.0 14.0 14.0 14.2 20.8
VPSNet-SiamTrack [69] X - - - 57.3 44.7 66.4 17.2 17.3 17.3 21.1
VIP-Deeplab [57] X - - - 63.1 49.5 73.0 16.0 12.3 18.2 22.0
Clip-PanoFCN [46] X - - - - - - 22.9 25.0 20.8 31.5
TarViS (R-50) v 0.70 0.70 0.69 53.3 359 66.0 33.5 39.2 28.5 43.1
TarViS (Swin-T) v 0.71 0.71 0.70 58.0 429 69.0 35.8 427 29.7 45.3
TarViS (Swin-L) v 0.72 0.72 0.73 58.9 43.7 69.9 48.0 58.2 39.0 52.9

CityscapesVPS [35], VIPSeg [46], DAVIS [55] and 60.2 AP which is also higher than the 57.5 by VITA. On

BURST [3]. We train on 32 Nvidia A100 GPUs with
batch size 1 per GPU. For each of the query types (Qsem,
Qinst> Qobj» Qog) discussed in Sec. 3, we employ a learned
query embedding, which is used when computing the
Key” Query affinity matrix for multi-head attention inside
the decoder. We refer to the supplementary for more details.

4.2. Benchmark Results

All results are computed with a single, jointly trained
model which performs different tasks by simply providing
the corresponding query set at run-time.

Video Instance Segmentation (VIS). We evaluate on (1)
YouTube-VIS 2021 [74] which covers 40 object classes
and contains 2985/421 videos for training/validation, and
(2) OVIS [56] which covers 25 object classes. It contains
607/140 videos for training/validation which are compara-
tively longer and more occluded. The AP scores for both
are reported in Tab. 1. For all three backbones, TarViS
achieves state-of-the-art results for both benchmarks even
though other methods are trained separately per benchmark
whereas we use a single model. On YouTube-VIS, TarViS
achieves 48.3 AP with a ResNet-50 backbone compared to
the 45.7 achieved by VITA [26]. With Swin-L, we achieve

OVIS with ResNet-50, our 31.1 AP is higher than the 30.2
for IDOL [71], and with Swin-L, TarViS (43.2 AP) outper-
forms the current state-of-the-art IDOL (42.6 AP).

Video Panoptic Segmentation (VPS). We evaluate VPS
on three datasets: (1) KITTI-STEP [68], which contains
12/9 lengthy driving scene videos for training/validation
with 19 semantic classes (2 thing and 17 stuff classes), (2)
CityscapesVPS [35], which contains 50 short driving scene
clips, each with 6 annotated frames, and (3) VIPSeg [46],
which is a larger dataset with 2806/343 in-the-wild videos
for training/validation and 124 semantic classes. The results
are reported in Tab. 2. For KITTI-STEP, TarViS achieves
70% STQ with a ResNet-50 backbone which is better than
all existing approaches. The performance further improves
to 72% with Swin-L. For CityscapesVPS, TarViS achieves
58.9 VPQ which is higher than all other methods except
VIP-Deeplab [57] (63.1). However, VIP-Deeplab performs
monocular depth estimation for additional guidance, and
therefore requires ground-truth depth-maps for training.

For VIPSeg, TarViS outperforms existing approaches by
a significant margin. With a ResNet-50 backbone, our 33.5
VPQ is 10.6% higher than the 22.9 by Clip-PanoFCN [46].
With a Swin-Large backbone, TarViS achieves 48.0 VPQ



Table 3. Results for VOS on DAVIS [55] and PET on BURST [3].
Detailed PET metrics are provided in supplementary.

Method DAVIS (VOS) BURST (PET)
Jer g F oHg Hy
UNICORNG: [73] 70.6  66.1 75.0 - -
HODOR [2] 81.3 784 839 - -
STM [52] 81.8 79.2 843 - -
CFBI [75] 81.9 79.1 84.6 - -
HMMN [62] 84.7 819 875 - -
AOT [76] 849 823 875 - -
STCN [17] 854 822 88.6 - -
XMem [15] 86.2 829 89.5 - -
Box Tracker [32] - - - 12.7 10.1
STCN+M2F [13,17] - - - 244 249
TarViS (R-50) 82.6 793 859 309 321
TarViS (Swin-T) 82.8 79.6 86.0 36.0 364
TarViS (Swin-L) 853 81.7 885 375 36.1

which is more than double that of Clip-PanoFCN (22.9).
Note that VIP-Deeplab performs significantly worse for
VIPSeg (16.0 VPQ), showing that TarViS generalizes better
across benchmarks. Finally, we note that larger backbones
results in significant performance gains for datasets with in-
the-wild internet videos as in VIPSeg, but for specialized
driving scene datasets (e.g. KITTI-STEP and Cityscapes-
VPS), the improvements are much smaller.

Video Object Segmentation (VOS). We evaluate VOS
on the DAVIS 2017 [55] dataset, which contains 60/30
YouTube videos for training/validation. The results in
Tab. 3 show that TarViS achieves 85.3 J&JF which is
higher than all existing methods except STCN [17] (85.4)
and XMem [15] (86.2). As mentioned in Sec. 3.3, encod-
ing objects as queries incurs a loss of fine-grained infor-
mation, which is detrimental to performance. On the other
hand, space-time correspondence (STC) based approaches
learn pixel-to-pixel affinities between frames, which en-
ables them to propagate fine-grained object appearance in-
formation. We note, however, that TarViS is the first method
not based on the STC paradigm which achieves this level
is performance (85.3 J&F), outperforming several STC-
based methods as well as all non-STC based methods e.g.
HODOR [2] (81.5) and UNICORN [73] (70.6).

Point Exemplar-guided Tracking (PET). PET is eval-
uated on the recently introduced BURST benchmark [3]
which contains 500/1000/1500 diverse videos for train-
ing/validation/testing. It is a constrained version of VOS
which only provides the point coordinates of the object
mask centroid instead of the full mask. Tab. 3 shows that
existing methods can only tackle either VOS or PET. To
verify this, we tried adapting STCN [17] for PET by train-
ing it with point masks, but the training did not converge.
By contrast, TarViS encodes objects into queries, which en-
ables it to tackle both tasks with a single model since the

VPS

PET

Figure 4. Qualitative results from a single TarViS model for all
four tasks. Further results are shown in the supplementary.

object guidance (point or mask) is abstracted behind the
EncodeObjects(-) function.

TarViS achieves a HOTA ,; score of 37.5 and 36.4 on the
validation and test sets, respectively, which is significantly
better than the 24.4 and 24.9 achieved by the best perform-
ing baseline method which casts PET as a VOS problem
by regressing a pseudo-ground-truth mask from the given
point, followed by applying a VOS approach (STCN [17]).

4.3. Ablations

Table 4 shows several architecture/training ablations.

Task-specific Training (row 1-3). The first three rows
show results for task-specific models. We train a single
model for VOS and PET since both tasks are closely re-
lated. We note that the VIS-only model performs worse than
the multi-task model on YouTube-VIS (46.3 vs. 48.3) but
slightly better on OVIS (31.5 vs. 31.1). For VPS, the perfor-
mance on KITTI-STEP is unchanged, but Cityscapes-VPS
and VIPSeg both show improvements with the multi-task
model. Lastly, for VOS the task-specific model performs
slightly worse on DAVIS (81.1 vs. 82.0) but significantly
better on BURST for PET (34.7 vs. 30.9). To summarize,
the final, multi-task model performs better on 4/7 bench-
marks, worse on 2/7, and matches performance on 1/7 when
compared to task-specific models. We thus conclude that
the combination of multi-task supervision and more data is
generally beneficial for performance.

Semantic Queries for VIS (row 4). TarViS represents ob-
ject classes as dynamic query inputs to the network (Qsem,
Sec. 3.1). We ablate this by modifying our network to
work for only VIS by discarding the semantic/background
queries and adopting a technique similar to existing meth-
ods [13, 67], i.e. using instance queries Qi in conjunc-
tion with a linear layer for classification (separate for each
dataset). Comparing the results with the VIS-only setting
which is trained on similar data, we see that this architecture



Table 4. Ablation experiment results with ResNet-50 backbone. C-VPS: CityscapesVPS, YTVIS: YouTube-VIS, KITTI: KITTI-STEP.

Video Training Data VIS VPS VOS PET
. 2} N 2l

Setting SeEL£2 22 YTVIS  OVIS KITTI C-VPS VIPSeg  DAVIS  BURST
S22 05 882 (mAP) (mAP)  (STQ) (VPQ) (VPQ)  (J&F) (HOTAY

1. VIS Va4 46.3 31.5 - - - - -

2. VPS S - - 0.70 49.7 324 - -

3. VOS + PET Va4 - - - - - 81.1 34.7

4. No Semantic Queries v 44.7 29.8 - - - - -

5. No Temporal Neck VA A AV A N 42.8 223 0.69 51.2 28.9 78.7 30.3

Final S/ 483 31.1 0.70 53.3 33.5 82.0 30.9

performs worse than the VIS-only setting on both YouTube-
VIS (44.7 vs. 46.3) and OVIS (29.8 vs. 31.5). Thus, our
semantic query based classification makes the network ar-
chitecture task-agnostic and also yields better performance.

Temporal Neck (row 4). We validate our novel Tempo-
ral Neck (Sec. 3.4) by training a model with a simpler neck
that contains only Deformable Attention layers [80], sim-
ilar to Mask2Former [13], i.e. there is no feature interac-
tion across frames. Doing this degrades performance across
all datasets, with particularly large drops for YouTube-VIS
(42.8 vs. 48.3) and OVIS (22.3 vs. 31.1). This shows
that inter-frame feature interactions enabled by our Tem-
poral Neck are highly beneficial for down-stream tasks.

5. Discussion

Limitations. Training on multiple datasets/tasks does not
necessarily improve performance on all benchmarks. For
VOS, the model exhibits class bias and sometimes fails to
track unusual objects which were not seen during training.

Future Outlook. We jointly trained TarViS for four dif-
ferent tasks to validate its generalization capability. The ar-
chitecture can, however, tackle any video segmentation task
for which the targets can be encoded as queries. The re-
cent emergence of joint language-vision models [42,58,59]
thus makes it possible to perform multi-object segmenta-
tion based on a text prompt if the latter can be encoded as a
target query using a language encoder [19]. Another inter-
esting possibility is that TarViS could be applied to multiple
tasks in the same forward pass by simply concatenating the
task-specific queries. Fig. 5 offers a promising outlook for
this; it shows our model’s output for a video clip from a
popular TV series where we perform VIS and VOS simul-
taneously by providing the semantic query for the ‘person’
class (from YouTube-VIS [74]), and the VOS-based object
queries for the dragon by annotating its first frame mask,
i.e. Qin = concat(Qsem, Qinsts Qobj> Qbg). TarViS success-
fully segments all four persons in the scene (VIS) and the
dragon (VOS), even though our model was never trained to
simultaneously tackle both tasks in a single forward pass.

Figure 5. TarViS performing VIS and VOS in a single forward
pass. We provide the mask for the dragon on the left, and the
semantic query for the ‘person’ class.

6. Conclusion

We presented TarViS: a novel, unified approach for tack-
ling any task requiring pixel-precise segmentation of a set
of targets in video. We adopt a generalized paradigm where
the task-specific targets are encoded into a set of queries
which are then input to our network together with the video
features. The network is trained to produce segmentation
masks for each target entity, but is inherently agnostic to
the task-specific definition of these targets. To demonstrate
the effectiveness of our approach, we applied it to four dif-
ferent video segmentation tasks (VIS, VPS, VOS, PET). We
showed that a single TarViS model can be jointly trained for
all tasks, and during inference can hot-swap between tasks
without any task-specific fine-tuning. Our model achieved
state-of-the-art performance on five benchmarks and has
multiple, promising directions for future work.
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Supplementary Material

S1. Extended VOS/PET Ablations

Extended ablation results are given in Table S1 and
discussed below. For these experiments we use a
shorter/lighter training schedule compared to the results
presented in the main text: the network is pre-trained on
augmented image sequences generated from the COCO
dataset for 360k iterations on 8 GPUs, followed by fine-
tuning on actual video data from the DAVIS [55] and
BURST [3] datasets.

Table S1. Extended ablation results for VOS and PET tasks on
DAVIS [55] and BURST [3] benchmarks, respectively.

Setting VOS (J&F) PET (HOTA.)
Without Qg 78.0 25.9
|Qobil = q0 =1 80.6 28.2
Final 81.5 29.2

Background Queries (row 1). We stated in the main text
that we model the non-object pixels in the input video using
background queries for the VOS and PET task. We ablate
this design decision by training TarViS without this sort of
background modeling, i.e. for both VOS and PET tasks, the
input set of queries contains only the object queries Qopj.
This reduces the J&F score for VOS from 81.5 to 78.0,
and the HOTA,; score for PET from 29.2 to 25.9. Thus,
we conclude that background modeling has a noticeable,
positive impact on prediction quality.

Number of Object Queries (row 2). We mentioned in
the main text that we modify the approach adopted by
HODOR [2] for VOS by using multiple (gg) object queries
to represent a single target object. We ablate this by training
our model using gy = 1 (in the final setting we use gy = 4).
We see that this causes the performance on DAVIS to re-
duce from 81.5 to 80.6, and that on BURST from 29.2 to
28.2. Note that gy = 1 for PET even for the final setting, but
because PET inference over lengthy videos involves VOS-
style mask-guidance, the choice of ¢y for VOS affects per-
formance for PET as well.

S2. Detailed BURST Metrics

Due to space constraints, we only presented the final
HOTA,; score for the BURST benchmark in the main pa-
per. Table S2 gives a more detailed breakdown for those
results.

Table S2. Extended results for PET on the BURST [3] validation
and test sets. (‘H’ denotes ‘HOTA’ [45]).

Method BURST (val) BURST (test)
Hall Heom Hune Hall Heom  Hune
Box Tracker [32] 12.7 317 79 10.1 244 173
STCN+M2F [ ] 244 440 195 249 395 220
TarViS (R-50) 309 432 278 32,1 415 30.2
TarViS (Swin-T) 36.0 47.7 33.0 364 450 347
TarViS (Swin-L) 37.5 51.7 340 36.1 47.1 33.8

S3. Implementation Details

Several details related to the training and inference setup
which were omitted from the main paper are given below.

Hardware Setup and Training Schedule. We train our
models on 32 Nvidia A100 GPUs with a batch size of 32
with clips of 3 frames. The pretraining takes 2-3 days de-
pending on the backbone whereas finetuning takes 10-16
hours. An AdamW optimizer is used with a learning rate of
10~ at the start, followed by two step decays with a factor
of 0.1 each.

Inference. Inference is performed on a single RTX 3090
and runs at 6-10 fps using a Swin-T backbone. The varia-
tion mainly arises because different datasets have different
image resolutions. For most datasets, we use clips contain-
ing 12 frames with a 6 frame overlap between successive
clips.

Loss Supervision. Table S3 shows the type of loss func-
tion applied for mask regression for different tasks. Gener-
ally, the supervision signal is a combination of DICE and
cross-entropy losses. For instances/objects we apply per-
pixel binary cross-entropy whereas for semantic segmenta-
tion (where multiple classes compete for each pixel), we ap-
ply a multi-class cross-entropy loss. We apply a sparse loss
similar to Cheng et al. [13], i.e., the loss is not applied to
every pixel in the mask, but rather only to a subset of pixels
which contain a certain fraction of hard negatives and other
randomly sampled points. This type of supervision strategy
was first proposed by Kirillov et al. [37].

Pretraining. @~ We pretrain on synthetic video samples
generated by applying random, on-the-fly augmentations
from the following image-level datasets: COCO [44],
ADE20k [79], Mapillary [50], Cityscapes [18]. Since these
datasets provide panoptic annotations, we can train the
data samples as any of the four target tasks (VPS, VIS,
VOS, PET) e.g. to train for VOS/PET, we assume that the
first-frame mask/point is available for a random subset of
ground-truth objects and ignore the class labels. The task



Table S3. Loss functions used for mask prediction for different tar-
gets. BCE: Binary cross-entropy, MCE: Multi-class cross-entropy,
DICE: soft IoU loss

Target Type Task Loss
Instance VIS DICE + BCE
Semantic Class MCE
Instance VPS DICE + BCE
Semantic Class MCE
Object VOS/PET DICE + BCE

weights for pretraining are given in Table S4.

Table S4. Task weights during pretraining stage.

Task VPS VIS VOS PET
Weight 03 03 028 0.12

Video Finetuning. The finetuning is done on actual video
datasets for all four tasks. The sampling weights for each
dataset/task are given in Table S5. Note that data samples
from DAVIS [55] and BURST [3] can be trained for both
VOS and PET.

Table S5. Dataset weightage during video finetuning.

Dataset Task Weight
KITTI-STEP [68] VPS 0.075
CityscapesVPS [35] VPS 0.075
VIPSeg [46] VPS 0.15
YouTube-VIS [74] VIS 0.225
OVIS [56] VIS 0.225
DAVIS [55] VOS/PET  0.05
BURST [3] VOS/PET 0.2

Point Exemplar-guided Tracking Inference. As men-
tioned in Sec. 3 of the main text, the PET task is tackled
using the same workflow as for VOS i.e. the target objects
are encoded as object queries using the Object Encoder. An
additional detail about inference on arbitrary length video
sequences which is not mentioned in the main text is as fol-
lows: the point — object query regression is only used for
the first clip in which the object appears. For subsequent
clips, we have access to the dense mask predictions for that
object from our model. Hence, for subsequent clips, we
regress the object query from the previous mask predictions
(as we do for VOS).

S4. Query Visualization

To gain some insight into the feature representation
learned by TarViS for different targets, we provide visu-
alizations of the target queries for various tasks and in-
put video clips in Fig. S1,52,S3. The setup is as follows:

for each video clip, we run inference twice: (1) as VIS
where the targets are all instances belonging to the 40 ob-
ject classes from YouTube-VIS [74], and (2) as VOS by
providing the first-frame mask for the objects. We delib-
erately used videos where the set of set of ground-truth ob-
jects would be the same for both tasks. The plot on the
right visualizes the union of the target query set for both
runs by projecting them from 256 dimensions down to 2
using PCA. The image tile on the left shows our model’s
predicted masks for the target objects (the prediction qual-
ity for these video is very good for both VIS and VOS, so
we choose one set of results arbitrarily).

For ease of understanding, we use fixed colors for se-
mantic and background queries (as indicated in the plot leg-
end). For the object queries (VOS) and instance queries
(VIS), the color of the query point is consistent with the
color of the object mask in the image tile. Note that for
VOS we used q, = 4 object queries per target, hence there
are 4 hollow diamond shaped points per object.

We stress that not all aspects of these plots are intuitively
explainable. The main limitation here is the harsh dimen-
sionality reduction from 256 dimensions to 2. Some specu-
lative intuition based on the plots is as follows:

* The internal representation for a given object is gener-
ally consistent across tasks. As an example, consider
the horse and person targets in Fig. S1: we note that
the green query points (person) are close to each other
for both VIS and VOS. Likewise the blue query points
(horse) follow the same behavior.

* The network devotes a large portion of the feature
space for instances/objects, and relatively less for the
various semantic classes. As seen in all three plots,
the semantic queries are tightly clustered together,
whereas the instance/object queries are spread out over
a larger span of the feature space.

Iterative Evolution of Feature Representation. Fig. S4
shows a side-by-side visualization of how the query feature
representation evolves inside the transformer decoder as it
iteratively refined the queries using multiple attention lay-
ers. The plot on the left shows the queries at the ‘zeroth’
layer (i.e. prior to any interaction with the video features),
and the plot on the right shows the final output queries from
the last layer (these are identical to the plot in Fig. S1 except
for the axes range). We note that the distance between the
queries for the two objects increases after refinement, and
that the semantic queries are also slightly more spaced out
after refinement.

S5. Qualitative Results

The following figures show qualitative results for the
different tasks. VIS on YouTube-VIS (Fig. S5,56,S7)
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Figure S1. Target query visualization for the ‘horsejump-high’ sequence in DAVIS.
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Figure S2. Target query visualization for the ‘mbike-trick’ sequence in DAVIS.

and OVIS (Fig. S8,59,510), VPS on KITTI-STEP
(Fig. S11,S12,S13), VOS on DAVIS (Fig. S14,S15,S16),
and PET on BURST (Fig. S17,S18,S19). One can see that
TarViS is able to segment a broad range of objects depend-
ing on the target queries and overall is good at assigning
consistent IDs. Fig. S20 shows an example of a failure case
with several ID switches. Given that we run inference on
short overlapping clips, once an ID switch has been made,
we cannot recover the original ID. In the example, it seems
that TarViS is not able to track the elephant while they are
turning around, even though before and after the turn they
are assigned consistent IDs. Given that we also train on
similar short clips, it is not surprising that TarViS struggles
here and we could potentially improve this by looking into
other training schemes that span longer clips.
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Figure S4. Evolution of the different queries from the first layer to the last layer of the transformer decoder. Queries correspond to the
‘horsejump-high’ video from DAVIS as shown in Figure S1

Figure S5. VIS on a YTVIS sequence showing a cat and a dog.



Figure S8. VIS on an OVIS sequence showing an aquarium with fish.




Figure S10. VIS on an OVIS sequence showing three cats.

Figure S12. VPS on a KITTI STEP sequence showing how a car is followed for a while.



Figure S13. VPS on a KITTI STEP sequence showing a busy pedestrian crossing.

Figure S14. VOS on a DAVIS sequence of a dancer.

Figure S15. VOS on a DAVIS sequence showing several goldfish.






Figure S19. PET on a BURST sequence showing several cars on a street.

= == S i e | ,
Figure S20. VIS on an OVIS sequence of several elephants and their trainers. This sequence shows that TarVis sometimes has issues with
ID switches, especially when the appearance of objects changes, e.g. here the elephants are not tracked consistently while turning around..
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