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Abstract

Instructional videos are an important resource to learn
procedural tasks from human demonstrations. However,
the instruction steps in such videos are typically short and
sparse, with most of the video being irrelevant to the pro-
cedure. This motivates the need to temporally localize the
instruction steps in such videos, i.e. the task called key-
step localization. Traditional methods for key-step local-
ization require video-level human annotations and thus do
not scale to large datasets. In this work, we tackle the prob-
lem with no human supervision and introduce StepFormer, a
self-supervised model that discovers and localizes instruc-
tion steps in a video. StepFormer is a transformer decoder
that attends to the video with learnable queries, and pro-
duces a sequence of slots capturing the key-steps in the
video. We train our system on a large dataset of instruc-
tional videos, using their automatically-generated subtitles
as the only source of supervision. In particular, we super-
vise our system with a sequence of text narrations using an
order-aware loss function that filters out irrelevant phrases.
We show that our model outperforms all previous unsuper-
vised and weakly-supervised approaches on step detection
and localization by a large margin on three challenging
benchmarks. Moreover, our model demonstrates an emer-
gent property to solve zero-shot multi-step localization and
outperforms all relevant baselines at this task.

1. Introduction

Observing someone perform a task (e.g. cooking, assem-
bling furniture or changing a tire) is a common approach for
humans to acquire new skills. Instructional videos provide
an excellent large-scale resource to learn such procedural
activities for both humans and AI agents. Consequently, in-
structional video datasets [25,35,42] have recently received
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Figure 1. StepFormer for instruction step discovery and local-
ization. StepFormer is a transformer decoder trained to discover
instruction steps in a video, supervised purely from video subti-
tles. At inference, it only needs the video to discover an ordered
sequence of step slots and temporally localize them in the video.

significant attention and been used for various video under-
standing tasks, e.g. [1,5, 13,24,29,39,40]. A potential im-
pediment with using instructional videos from the web is
that they tend to be long and noisy, i.e. a limited number
of frames in the video correspond to the instruction steps,
while the remaining video segments are unrelated to the task
(e.g. title frames, close-ups of people talking and product
advertisements). Thus, a major challenge with instructional
videos is filtering out the uninformative frames and focus-
ing only on the task-relevant segments, i.e. the key-steps.
For instance, in a procedure of making a cake the key-steps
could be “crack eggs”, “add sugar”, “add flour”, then “mix”,
etc. As a result, many recent efforts tackle the problem of
instruction key-step localization, e.g. [9, 10,24,25,35,42].



Most previous work aiming at temporally localizing key-
steps from instructional videos rely on some form of su-
pervision. Fully supervised approaches require start and
end times of each step [35,41]. Weakly supervised ap-
proaches either rely on knowledge of steps present in the
video in the form of a set [2 1], ordered steps transcript [2,9]
or partially ordered steps captured with a flow graph [10].
Unsupervised approaches aim at directly detecting and lo-
calizing key-steps without a priori knowledge of instruc-
tion steps comprising videos [11, 15, 18,31]. Conceptu-
ally, these approaches are appealing for applications with
large datasets, as they eschew the need for expensive and
ambiguous labeling efforts. In practice, previous unsuper-
vised approaches rely on knowing the video-level task label
at training time [1 1, 18,31], and thus are not fully unsuper-
vised. Moreover, so far they have been only applied to small
instructional video datasets (up to 3K videos), as their task-
specific models are not designed to handle large databases.
As a result, state-of-the-art procedure learning methods are
not deployable at scale and without human supervision.

To address these challenges, we present StepFormer, a
novel self-supervised approach that simultaneously discov-
ers and temporally localizes procedure key-steps in long
untrimmed videos, as illustrated in Figure 1. StepFormer
takes a video as input and outputs an ordered sequence of
step slots, capturing instruction key-steps as they happen
in the video. Notably, it does not rely on any human an-
notations at training or inference time. Instead, we train
our model on a large instructional video dataset and use the
accompanying narrations obtained from automated speech
recognition (ASR) [30, 31] as the only source of supervi-
sion. StepFormer is implemented as a transformer decoder
with learnable input queries. Similar to the learnable ob-
ject queries in DETR [3], StepFormer’s queries learn to at-
tend to informative video segments and thus can be viewed
as step proposals. To enforce the output step slots to fol-
low the temporal order, we use an order-aware loss based
on temporal alignment of the learned steps and video nar-
rations. Since video narrations tend to be noisy and do
not always describe visually groundable steps, we use a
flexible sequence-to-sequence alignment algorithm, Drop-
DTW [9], which allows for non-alignable narrations to be
dropped. To localize the predicted step slots in the video,
we explicitly use their learned temporal order. Precisely,
Drop-DTW aligns informative step slots with the video, and
outputs start and end times for every detected step.

We train our system on HowTolOOM [25], a large
instructional video dataset with no human annotations.
For evaluation, we use three standard instructional videos
benchmarks, i.e. CrossTask [42], ProceL [11] and COIN
[35]. Empirically, for unsupervised step localization, our
self-supervised method outperforms all weakly- and un-
supervised baselines on all three downstream datasets, with-

out any dataset-specific adaption. Additionally, we demon-
strate an emergent property of our model to perform zero-
shot key-step localization from a text prompt (i.e. without
finetuning on the target dataset), where it also outperforms
all relevant baselines.

Contributions. The contributions of our paper are three-
fold. (i) We present StepFormer, a novel self-supervised
approach to key-step discovery and localization in instruc-
tional videos. (ii) We model the temporal order of steps ex-
plicitly, and use it to design effective training and inference
methods. (iii) We supervise StepFormer only with video
subtitles on a large instructional video dataset, and success-
fully transfer the model to three downstream datasets with-
out any finetuning. On all three datasets, StepFormer estab-
lishes a new state of the art on unsupervised step localiza-
tion, outperforming unsupervised and weakly-supervised
baselines. We are commited to releasing our code.

2. Related work

Step localization in instructional videos. Instruction
step localization entails detecting and temporally localiz-
ing task-relevant video segments [4,8—10,16,22,24,28 47].
Work tackling this task can be largely split into three classes
based on the type of supervision. Fully supervised ap-
proaches [12,23,35,41] are not ideal as they require ex-
pensive labelling efforts of key-step temporal endpoints in
each video. Alternatively, weakly supervised approaches
relax training efforts by either relying on unordered [21] or
ordered step sequences [4, 8,9, 16,28,42]. Nevertheless,
relying on knowledge of steps still entails the labour inten-
sive process of watching all videos to determine the steps
present. More recent work goes a step further to reduce la-
belling efforts by relying on task-level recipes [10]. Here, a
general purpose recipe describing a given task is converted
into a graph that captures the partial order of steps and is
used to temporally localize the steps in videos. However,
this approach still requires human annotation for video task
labels and creating the flow graphs.

More closely related to our work are unsupervised ap-
proaches that aim at discovering procedure step prototypes
attraining [ 1, 18]. A common drawback of such methods is
that they rely solely on the video signal to discover the step
prototypes, completely ignoring the readily available com-
plementary information present in the subtitles, which leads
to subpar results. More recent work trains for step localiza-
tion by aligning video and narrations [31]. The important
distinction from our work is that it does not explicitly tackle
the target task of step detection and localization. Instead,
their model only finetunes the video features via video to
text alignment. To discover and localize the steps, they per-
form ad-hoc K-means clustering of the video features at
test time. In contrast, StepFormer is designed to discover



individual instruction steps present in the video and local-
ize them with an alignment procedure, which leverages the
temporal structure of the process. Crucially, all the above
“unsupervised” methods actually rely on video-level task
labels for guidance during training [11, 18, 31]; therefore,
we refer to them as weakly-supervised in this paper. Finally,
the above methods can only be trained and evaluated on the
same dataset, as the models they learn are task-specific. In
contrast, our StepFormer is a task-agnostic solution for step
detection that can generalize across datasets; it only relies
on videos and their accompanying narrations for training.

Learning from visual-textual information. In the era
of open world learning [17] and large scale datasets (e.g.
[25,27]), the ability to learn with minimal supervision is
becoming vital. For this reason, recent work strongly relies
on the complementarity between visual and textual infor-
mation as a natural source of supervision [22,24,27]. This
complementarity is especially appealing when dealing with
narrated videos, such as instructional videos [35, 41, 42].
A large body of work uses this multimodal data for repre-
sentation learning, thereby yielding strong representations
enabling various downstream tasks [15, 22, 24]. In this
work, we build on these strong representations and further
rely on weak temporal alignment between modalities to di-
rectly tackle the problem of automatic key-step discovery
and temporal localization.

Sequence-to-sequence alignment. Alignment between
sequences has seen a recent surge of interest with many
approaches relying on it either as a proxy task for repre-
sentation learning [2, 7, 14, 15,24], or more closely related
to our work, for learning to localize steps [4, 9, 10, 31].
Most previous work uses alignment in a weakly supervised
setting, where knowledge of the sequence of steps is as-
sumed [2, 4, 6, 9] or the video-level task label is used for
clustering [31] or to build a task-level flow graph [10]. In
contrast, we do not make use of step order or video-label in-
formation. Instead, we train a model to discover steps con-
ditioned on video content and align those discovered steps
to narrations in a completely self-supervised manner. No-
tably, unlike other work using alignment [9, 10, 15], we de-
vise a method that only requires both modalities at training
time, while only requiring video at inference time to auto-
matically discover and localize key steps.

3. Technical approach

In this section, we present our approach to self-
supervised procedure step detection and localization in
video. We first introduce StepFormer’s architecture and our
data preparation pipeline (Section 3.1). Next, we describe
the adopted sequence-to-sequence alignment method (Sec-
tion 3.2), which we use for both training and inference. We

then describe our training (Section 3.3) and inference (Sec-
tion 3.4) procedures. Finally, we describe the implementa-
tion details in Section 3.5.

3.1. StepFormer

StepFormer is our model for procedure step discovery
in instructional videos. Given an N second long video as
input, StepFormer returns K step slots, s — a sequence of
vectors capturing ordered instruction steps in the video. We
train StepFormer on a large dataset of instructional videos
without any supervision by temporally aligning step slots
with the narrations that accompany the video. Our full train-
ing pipeline is presented in Figure 2.

Data. To train StepFormer, we assume access to a large
dataset of instructional videos, with no annotations. Our
method is self-supervised; it relies on videos and their ac-
companying narrations. To use the narration for learning,
we transform the speech into text using YouTube’s ASR,
and then follow the text processing pipeline proposed in
previous work [31]. More precisely, we run the subtitles
through punctuation [36] and co-reference resolution [33]
modules, followed by a dependency parser to discover verb-
phrases of the form verb+(prt)+dobj+(prep+pobj). As a
result, we transform long subtitle text into an ordered se-
quence of L verb phrases, some of which describe ground-
able actions and procedure steps occurring in the video. Ex-
amples of extracted verb phrases are given in supplement.

We extract features from video and phrases us-
ing UniVL, a self-supervised pre-trained video-language
model [22], such that verb phrases are mapped to a sequence
of L feature vectors, p € REXd and an N second video
is mapped to a sequence of N vectors, v € RV*9  Im-
portantly, our approach relies on the fact that UniVL maps
video clips and language into a shared embedding space,
e.g. a video of cutting a tomato and the phrase “cutting a
tomato” map to similar vectors. Starting with video and text
features sharing a common embedding space makes training
StepFormer feasible, despite the noise in the narrations.

While we derive supervision from the verb phrases, it is
important to stress that in instructional videos, much of the
audio narration contains irrelevant content, and only a small
portion of the verb phrases are relevant to the instruction
steps. Thus, one of the challenges that we address in this
work is identifying the relevant phrases for training. We
describe how we leverage such noisy sequential targets to
supervise our step slots in Section 3.2.

Architecture. We implement StepFormer as a multi-layer
transformer decoder [37], 7T, that receives K learnable
queries, q € R%*4_ as input, and attends to the video fea-
tures (with added sinusoidal positional embeddings [37]),
v € RN*4_ at every decoder layer. Notably, while the
length of the videos, N, can vary, the number of learned



([ StepFormer

Transformer

Decoder

CXOX

19p02U3 03PIA TAIUN

\ Step Queries J  Step Slots

Contrastive Loss

~@-0-0-8-0-0-O-

.
‘;]
]

Seq2seq alignment

)

Subtitles

Start by cracking your eggs in a bowl... + 0:11
It won’t affect the omelet taste... 02
You want to beat the eggs until...
‘ Lastly, add sault and mix again...
It actually makes it better...
Gently spread butter...

Make sure it’s done properly...

O00e00®

19p02Uu7 IX3] TAIUN
uoOEIIX3 aselyd-gian

See you soon in the next... 2:4
Phrases

Figure 2. StepFormer training overview. (left) We first embed an untrimmed instructional video with a frozen UniVL encoder [22].
Next, we attend to the video with our StepFormer with learned step queries to extract step slots. (right) To form the training targets, we
take the corresponding video subtitles, extract a sequence of verb phrases, and embed them with the UniVL text encoder [22]. (middle)
To supervise StepFormer, we find a matching subsequence between the step slots and verb phrases via seq-to-seq alignment with outlier
rejection [9]; the green entries in the alignment matrix denote correspondences. The resulting alignment is used to define a contrastive loss.

queries and corresponding step slots, K, is fixed. The out-
put of StepFormer is a sequence of K contextualized vec-
tors, s € RE*4_ that we term step slots, i.e. s = T(v,q).
Intuitively, different step slots bind to different segments of
the video; so, each step slot potentially represents a differ-
ent instruction step. We enforce step slots to be temporally
ordered, i.e. a video segment captured by s; would happen
before the segment captured by s;, if 7 < j. To achieve the
temporal ordering of step slots, we employ an order-aware
sequence-to-sequence loss, described in Section 3.3.

3.2. Sequence-to-sequence alignment

A key feature of our StepFormer model is the temporal
order among the predicted step slots. We take full advan-
tage of the temporal order in subtitles to supervise our sys-
tem. Also, it enables us to localize the step slots in the video
and respect their temporal order. To infer the relationship
between the elements of two sequences, we extensively use
sequence-to-sequence alignment, which forms the basis of
our method.

Aligning two sequences entails computing the optimal
pairwise correspondence between the sequence elements,
while preserving their match orderings. Thus, given an
ordered sequence of narrations for training, sequence-to-
sequence alignment is a natural choice to supervise the cor-
responding step slots and enforce their temporal order. Sim-
ilarly, at inference, given a sequence of step slots and video
frames that both follow the temporal order, it is natural
to tackle step localization by aligning those sequences and
finding correspondence between video frames and predicted
step slots. For sequence alignment, we choose the recent
Drop-DTW [9] algorithm for its following properties. (i) It
operates on sequences of continuous vectors, such as video
and text embeddings. (ii) It automatically detects outliers
and allows to drop them from one or both sequences, es-
sentially aligning only relevant sequence elements. (iii) It
supports both one-to-one (needed for training) and many-
to-one (needed for inference) matching.

In Drop-DTW’s formulation, matching or dropping ele-
ments incurs some cost. The cost of matching two elements
typically is defined as their negative cosine similarity, while
a drop cost is often defined as some percentile of the match
cost distribution. The alignment is then computed such that
the total cost is minimized. In this work, we are interested in
the correspondence between elements, established by Drop-
DTW through sequence alignment. That is, given two vec-
tor sequences, X € RN*d gnd z € RE*d Drop-DTW re-
turns a binary alignment matrix, M of size K x N, indicat-
ing that elements z; and x; are matched if M;; = 1. As de-
scribed next, given the correspondence matrix, we can both
formulate a self-supervised training objective and segment
a video into steps at inference time.

3.3. Training

To train our system, we rely on a combination of losses,
enforcing temporal alignment of step slots with narrations,
and learning discriminative step slots, as well as additional
training regularizers. Below, we elaborate on each compo-
nent of our training objective.

Local step contrastive loss. We supervise the output of
StepFormer, i.e. the sequence of step slots, s € RX*? with
the sequence of verb phrase embeddings, p € RE*?. We
first align the step slots, s, with phrase embeddings, p, us-
ing Drop-DTW. This process allows verb phrases and step
slots that do not have a strong match to be dropped from
further consideration, and enforces only one-to-one corre-
spondences between the elements that are a good match, i.e.
a single step slot can match with a maximum of one phrase,
and vice versa. The resulting correspondence matrix, M,
is used to construct positive and negative pairs, which we
use in a contrastive training setting. An example of such
a correspondence matrix, M, is given in Figure 2 (middle),
with correspondences highlighted in green. Specifically, ev-
ery step slot, s;, and phrase embedding, p;, matched by
Drop-DTW (i.e. M;; = 1) forms a positive training pair,



and all other non-matching pairs (i.e. M;; = 0). are used
as negative examples. To learn from such correspondences
we use the Info-NCE [26] loss, a contrastive objective that
promotes the similarity between positive pairs, and pushes
the negatives away from each other:

f(si7pj*)
f(si7pj*> + Zj;ﬁj* f(si,Pj)’

where f(z,z) = exp(cos(z, z)/7), 7 is a scaling temper-
ature and j* is the index of s;’s positive pair. The full
sequence-to-sequence alignment loss, L4, is defined as a
combination of two Info-NCE losses, one contrasting the
step slots and the other contrasting the phrases:

Ince(si; p) = —log (D
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1 1
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Global video-step contrastive loss. The local step con-
trastive loss, (2), learns from positive and negative examples
that all come from the same video; however, it is known that
contrastive learning can greatly benefit from a large and di-
verse set of negative examples [26, 32]. Thus, we intro-
duce an additional contrastive loss that forms negative pairs
from phrases and step slots that come from different videos.
The intuition behind this loss is that, given a video, some
of the extracted step slots must match with some phrases,
regardless of the order, while at the same time, the slots and
phrases coming from different videos should be different.
To realize the global contrastive loss, we use a
contrastive multiple-instance-learning objective, MIL-
NCE [24], that promotes the similarity between sets of step
slots and phrases coming from the same video, and con-
trasts them with the signal coming from different videos.
Formally, the global contrastive loss is defined as
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where f(z,z) = exp(cos(z, z)/7), 7 is a scaling temper-
ature, M = K - B is the total number of step slots across
the batch of size B, P; is the set of indexes j that form
a positive pair with s;, i.e. the p; coming from the same
video, and NV; indexes the negative pairs, coming from dif-
ferent videos. An additional benefit of this global loss is
that step slots representing non-procedural steps, commonly
appearing across different videos, will be discouraged. As
we show in the experiments, this loss greatly improves the
learned step slots.

Regularization. To improve the training and introduce
prior knowledge in the system, we use two additional regu-
larizers acting on the step slots.

Input Video
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Figure 3. Step localization inference. Given a video, StepFormer
first extracts a sequence of step slots. The step slots can be inter-
preted as temporally ordered key-step candidates. Next, it aligns
the sequence of step slots with the video sequence, using Drop-
DTW [9]. This step puts the elements of the two sequences in cor-
respondence, while identifying outliers. Here, the step slots and
video frames of the same color are matched by Drop-DTW, while
the white slots and frames are dropped from the alignment. The
colored video segments represent the final step localization result.

The first regularizer enforces diversity among step slots.
Indeed, the main objective functions described so far do
not encourage the step slots predicted from one video to be
significantly different, which results in numerous duplicate
steps capturing the same part of the video. To counter this
limitation, we introduce a regularization term, Lg;y, that en-
courages low cosine similarity among step slots of the same
video and thereby make predicted step slots more diverse.

The second regularizer enforces attention smoothness.
Due to natural video continuity, we expect the attention of
step slots in the video to change smoothly, and be similar for
close frames. Thus, we add a regularization term, Lgnooth,
that, for all step slots, enforces their attention in the video to
be similar for neighboring frames and different for distant
frames. Both regularizers improve discovered step and seg-
mentation quality, as we show in the experiments. Please
see supplement for the exact loss definitions.

Finally, to train our system we optimize the weighted
sum of four losses,

»Ctotal = Cseq + Eglobal + aﬁdiv + ﬁ‘csmoothv (4)
where the o and 3 scalars are chosen using cross validation.
3.4. Step localization inference

At inference time, StepFormer detects and localizes key-
steps without requiring narrations. StepFormer’s inference
procedure is illustrated in Figure 3. It takes an instructional
video as input and returns an ordered sequence of K step
slots conditioned on this video. Each step slot corresponds
to a procedural key-segment in the video and carries its se-
mantics. However, given that we use a large fixed num-
ber of K step slots for all videos, some step slots may be



duplicates or have weak binding with the video segment.
For this reason, we need select a subset of the step slots
that concisely describe the given video. A simple approach
would be to use hard attention of step slots in the video
directly [20, 31] and get some meaningful step segments.
While viable, this solution can not properly handle the du-
plicates, and more importantly, it completely ignores the or-
der present in step slots, which is a useful source of infor-
mation for step localization [4, 9].

Instead, we rely on sequence-to-sequence alignment as
our inference procedure for step localization. Specifically,
for each input video, we first extract the corresponding K
step slots using StepFormer. We then use Drop-DTW [9] to
align the step slot embeddings, s, to the video embeddings,
v, allowing outliers to be dropped from both sequences.
Notably, here, we use the formulation of Drop-DTW that
allows many-to-one correspondences, so it can assign mul-
tiple video frames to a single step slot, which effectively
segments the video into steps.

The ability to drop irrelevant step slots for individual
videos, and the ability to take the order of steps into ac-
count explicitly leads to improved segmentation quality, as
we later validate empirically. Notably, alignment of step
slots and video is possible in the first place, because the
video and text features used for training share a common
embedding space. Thus, step slots, which were trained us-
ing procedure text should align with video too.

3.5. Implementation details

We implement StepFormer using a Pre-LN Transformer
decoder [38] with six layers, and fix the number of step slots
to be K = 32. We train the model for a total of 60 epochs,
starting with three epochs of warm-up from 0 to 3e-4, fol-
lowed by cosine decay to le-6. We use weight decay of
le-4 and 0.1 dropout [34] in the intermediate layers. In our
sequence-to-sequence alignment loss, we use Drop-DTW
with 0.8 percentile drop cost [9]. We set the regularizer
weights to a = 0.3 and 8 = 0.02. All the hyper-parameters
are set using cross-validation. It takes about two days to
train one model using eight Tesla T4 GPUs.

4. Experiments

In this section, we evaluate StepFormer on unsupervised
step detection and localization (Section D), and its emergent
property to address zero-shot step localization (Section 4.3).
Finally, we perform an ablation study of our approach (Sec-
tion E).

4.1. Evaluation protocol

Datasets. Given that our approach is trained entirely in a
self-supervised manner, we train our model on the largest
instructional video dataset, HowTol00M [25], that comes
with no annotations. Following previous work [31], we

evaluate our proposed method on the CrossTask [42] and
ProceL [11] datasets. CrossTask contains 2750 videos, de-
picting 18 different tasks, while ProceL covers 12 differ-
ent tasks with 60 videos for each task. In addition, given
that our approach does not require any finetuning, we also
report results on the largest annotated instructional video
dataset, i.e. COIN [35], which includes 11827 videos, cov-
ering 778 procedures. For all evaluations, the same model
pre-trained on HowTol00M is used directly, without fine-
tuning or adaptation to the downstream task.

Evaluation metrics. Following previous work [31], we
use precision, recall, F1 score and Mean over Frames
(MOoF) for evaluation. Precision highlights the percentage of
frames correctly predicted as belonging to key-steps, while
recall emphasizes the model’s ability to detect frames be-
longing to key-steps. F1 score balances the two previous
metrics by calculating their harmonic mean and is there-
fore the most informative metric. MoF is a less strict metric
calculating the percentage of correctly predicted frames, in-
cluding the background ones (i.e. non key-steps).

Baselines. We compare our method to previous weakly-
supervised baselines [11, 18,31], which only use the video
task label as supervision. Precisely, Kukleva et al. [18] and
Elhamifar et al. [ 1] train a model purely from video, to dis-
cover global step prototypes in the training set, while Shen
et al. [31] extract prototypes from a video on the fly and
supervises them with text subtitles. In this work, we adapt
the methods of Kukleva et al. and Shen et al. to completely
unsupervised training (i.e. without video labels), and per-
form a more direct comparison to our unsupervised Step-
Former. All the baseline methods must be trained and tested
on the same dataset, and cannot generalize to new data, un-
like StepFormer. The supplement provides additional de-
tails about our baselines.

4.2. Unsupervised step discovery and localization

The goal of this experiment is to evaluate our model’s
ability to automatically discover task-relevant steps and lo-
calize them. Thus, the model does not have access to
ground-truth key-steps in this experiment. Instead, for each
video, we predict K step slots with our StepFormer, and let
our inference procedure select only the task-relevant steps
among them (see Section 3.4). To do so, we temporally
align a video with its corresponding step slots while allow-
ing both “outlier” step slots and frames to be dropped. To
achieve this end, we use Drop-DTW [9], which performs
temporal sequence alignment while dropping interspersed
outliers in both sequences. The output of this alignment is
a sequence of K’ step slots (K’ < K) and corresponding
video segments, which our model highlights as correspond-
ing to key, rask-relevant, steps.



Supervision Method CrossTask ProcelL COIN
Fl1 Prec. Rec. MoF | Fl Prec. Rec. MoF | F1 Prec. Rec. MoF
Kukleva et al. [18] 159 103 372 285 | 194 141 343 304 | 285 21,5 486 82
Weak Elhamifaretal. [11] | 17.2 109 417 41.7 | 155 11.3 273 273 | 284 20.6 520 302
Shen et al. [31] 223 162 375 41.0 | 203 174 267 354 |30.1 259 398 356
Kukleva et al. [18] 18.1 120 398 294 | 172 128 30.0 289 | 279 21.8 450 136
Unsupervised | Shenetal. [31] 16.0 11.7 23.1 37.1 | 18.0 13.6 228 33.1 | 188 16,5 251 327
StepFormer (ours) 283 221 420 419 | 219 183 28.1 409 | 321 271 425 38.6

Table 1. Dataset-level unsupervised step detection and localization results on the CrossTask, Procel. and COIN datasets.

To evaluate the quality of the extracted key-steps, we fol-
low previous work [11, 18,31] to associate predicted steps
to ground-truth segments using clustering and Hungarian
matching. Specifically, we start by accumulating the ex-
tracted key-steps of all videos corresponding to a given task
(e.g. making pancake, changing a car tire, etc.). Next, we
cluster all extracted steps using K-means, setting the num-
ber of clusters, K., to be the ground-truth number of key-
steps in the task according to the dataset. In each cluster,
we only keep 60% of the step slots that are the closest to
the cluster center and label the rest of the steps as back-
ground, as done in previous work [31]. Finally, we use
Hungarian matching to find a global one-to-one matching
between the video segment associated with each cluster and
the ground-truth segments. We evaluate the resulting corre-
sponding segments using the metrics defined in Section 4.1.

Table 1 compares our performance to the baselines [ 11,

, 311, which all use a video task label for training. We
report baseline results under their original settings, where
they use video task label for training, which we refer to as
weak supervision. Additionally, we compare to [18, 31]
adapted to the fully unsupervised setting (i.e. we train a
single model for all tasks). The results summarized in Ta-
ble 1 speak decisively in favor of our approach, which out-
performs all baselines in both the weak and unsupervised
settings with sizeable margins. This pattern is despite the
fact that the baselines are trained and tested on the same
data distribution, whereas our model generalizes to the tar-
get dataset without any finetuning. The results (i) highlight
StepFormer’s capability to automatically discover key-steps
even while being completely unsupervised and having no
access to the datasets used for evaluation during training
and (ii) also show that our method yields better localization,
as highlighted in the qualitative results in Figure 4.

4.3. Zero-shot key-step localization

In this experiment, the goal is to show that the step slots
learned by our StepFormer can be used directly for key-step
localization in a zero-shot setting. The task of zero-shot
step localization is defined as temporally localizing a se-
quence of procedure steps in the video, given their natural
text description (e.g. “break egg”, “add sugar”, “add flour”,

etc.) without any training or finetuning on the target data.

How to Make Jello Shots
Kukleva et al.

I- |
Ehamifar et al. LTI T T T T T 011

Shen et al.

StepFormer

Ground Truth

-

stir mixture

Figure 4. Qualitative comparison of temporal localization.
Comparison of our self-supervised StepFormer with the weakly-
supervised baselines [11, 18,31] on CrossTask.

To tackle this task, we use each video in the target dataset
as input to our StepFormer and extract the corresponding K
step slots. These slots are then aligned to the embeddings of
the ground-truth steps. We use Drop-DTW [9] to compute
an alignment between the K step slots and ground-truth
steps while allowing unmatched slots to be dropped. Next,
we align the remaining step slots, corresponding to ground-
truth steps, with the video (again using Drop-DTW) to au-
tomatically identify the start and end times of each ground-
truth step. Notably, to address this task successfully, the
step slots must align well with both text and video features
simultaneously. Thus, we use this evaluation as an opportu-
nity for a deeper investigation on our model’s capability.

Table 2 summarizes our results under these settings,
while comparing to a state-of-the-art method for step de-
tection and localization [3 1] in both weakly supervised (i.e.
separate model for each task) and unsupervised (a single
model for all tasks) settings. Note that out of all available
baselines, we compare only to Shen et al. [31], as it is the
only method extracting video clusters alignable with text
using subtitle text supervision. The results show the superi-
ority of our method and highlight the quality of the learned
step slots, which are better able to capture procedure steps
given the sequence of ground-truth text descriptions.

We include an additional baseline, dubbed “GT text fea-
tures”, where we directly use embedded ground-truth step
text to localize the key-steps in the video, using Drop-DTW
to align the text and video features. This is a strong baseline
as it relies on aligning UniVL video and text features, that
were trained to be alignable in the first place. Interestingly,
StepFormer outperforms this baseline as well. We attribute
this performance improvement to two key aspects of our



Supervision Method CrossTask ProceLL COIN
IoU Prec. Rec. MoF | IoU Prec. Rec. MoF | IoU Prec. Rec. MoF
Weak Shen et al. [31] 163 272 262 672 | 121 160 19.0 30.7 |20.8 313 33.7 405
GT text features | 18.6 322 292 679 | 12.6 202 21.1 36.1 | 244 38.1 353 50.6
Unsupervised | Shenetal. [31] 128 252 199 669 | 105 13.8 147 242 | 11.7 183 243 292
Ours 23.7 329 431 67.1 | 181 363 248 369 |27.1 428 379 484

Table 2. Zero-shot key-step localization on the the CrossTask, ProceL and COIN dataset. GT denotes ground-truth.

Shen et al.

StepFormer GT text features

Step-to-frame
Attention

Predicted seg. S .

GT seg. - it -

Figure 5. Visualization of step attention in the video for zero-shot multi-step localization. (top row) The attention of the step slots in
the video, with different colors capturing different steps. (middle row) Multi-step localization results obtained from the above attention.
(bottom row) The corresponding ground-truth step localization. Notably, the step slot attention (column 3) even outperforms the attention
of GT text descriptions (column 4) at step localisation, without ever being trained to do so.

Unsup. Segmentation Zero-shot Localization

Method FI  Prec. Rec. MoF | IoU Prec. Rec. MoF
Ours w/o Loeg 173 184 205 635 |46 59 63 698
Ours W/o Lol 209 149 411 333 | 115 179 262 552
Ours w/o Lais 267 205 409 446 | 169 276 293 66.1
Ours W/o Lamootn 271 212 400 487 | 177 269 330 634
Ours w/o Drop-DTW | 28.1 203 414 47.0 | 20.1 280 408 62.1
Ours 283 221 420 419 | 237 329 431 67.1

Table 3. Ablation study of StepFormer’s training and inference
components on CrossTask.

model. First, StepFormer is trained to align entire videos
with their subtitles, which allows StepFormer to globally
reason about the step order, giving it an advantage over the
original UniVL features, extracted locally. Second, step
slots are directly conditioned on video and therefore have
higher potential of better aligning with video content.

To better understand the behavior of our step slots and
highlight their usefulness, in Figure 5, we demonstrate the
attention of the selected step slots (or ground-truth text fea-
tures) in the video. While Shen et al. [3 1] outputs steps un-
alignable with the video, StepFormer’s step slots accurately
capture independent procedure steps and provide clear at-
tention peaks in the true key-step locations. Further, the
quality of the StepFormer outputs even surpasses those of
the ground-truth text features.

4.4. Ablation Study

In this section, we perform an ablation study of our
approach by systematically removing StepFormer’s com-
ponents and measuring the performance on unsupervised
step segmentation and zero-shot key-step localization on
CrossTask. An additional study on the hyper-parameters
can be found in the supplement. The ablation results are
summarized in Table 4. Removing the main sequence-to-
sequence alignment loss, Lq, severely degrades the perfor-

mance of our model, especially on zero-shot key-step local-
ization, where step order is essential. The global contrastive
learning loss, Lgiobal, is also important for learning expres-
sive step slots, removing it impairs the performance on both
tasks. Finally, removing the diversity, Lgy, and smoothness,
Lsmooth» regularizers of our step slots mildly hurts unsuper-
vised step segmentation performance. However, the drop in
performance of zero-shot key-step localization is more not-
icable, as accurate key-step localization requires step slots
to be diverse (when aligning them to step text descriptions),
and have smooth attention in the video (when aligning the
slots to the video). Finally, we replace our step localization
inference procedure based on Drop-DTW, with an order-
agnostic procedure, that assigns a frame to the most similar
step-slot, akin to [11,31]. This modification does not af-
fect the performance on unsupervised segmentation signifi-
cantly, because the task evaluation is insensitive to the step
order. However, there is a notable drop in performance on
zero-shot key-step localization, where recovering the cor-
rect step order is essential. Overall, all the proposed compo-
nents of StepFormer are important to achieve state-of-the-
art step discovery and localization.

5. Conclusion

We introduced StepFormer, a self-supervised, task-
agnostic model that discovers and localizes key-steps in in-
structional videos. We train it on a large dataset of instruc-
tional videos using automatically generated subtitles as the
only source of supervision. Our model yields state-of-the-
art results on step localization across multiple datasets, even
outperforming weakly-supervised models. StepFormer not
only provides good step localization, it defines a new type
of model for procedure understanding, that is simple, effec-



tive, scalable and requires no supervision. Therefore, it has
potential to advance research in procedure understanding.

Appendix

A. Summary

In this supplemental material, we elaborate on the de-
tails of the proposed approach and experimental validation
setup. In Section B, we begin by supplementing the de-
scription of data processing provided in Section 3.1 of the
main paper with an explicit illustration of the subtitle pro-
cessing outcome. Next, we define the regularization losses
in Section C. Then, in Section D, we give a more detailed
description of the used baselines. Finally, we present the
additional ablation studies in Section E.

B. Subtitle processing

To train StepFormer, we derive supervision from video
subtitles (or narrations), as described in Section 3.1 of the
main paper. More precisely, we run the narrations through
punctuation [36] and co-reference resolution [33] modules,
followed by a dependency parser to discover verb-phrases
of the form verb+(prt)+dobj+(prep+pobj). As a result, we
transform long subtitle text into an ordered sequence of verb
phrases, some of which describe groundable actions and
procedure steps occurring in the video. We demonstrate an
example of the verb phrase extraction in Figure 6, and addi-
tionally highlight the phrases that were matched to step slots
during training (in the last epoch). This example, confirms
that a subset of the extracted verb phrases indeed contain
important information about procedure steps. Notably, most
of the relevant verb phrases get selected by Drop-DTW for
supervision, as shown in the underlined steps on the right of
Figure 6.

C. Regularization losses

As described in Section 3.3 of the main paper, we train
StepFormer with verb phrases supervision and employ two
extra regularizers, acting on the step slots.

Diversity regularizer. The first regularizer, Lgy, enforces
diversity among step slots. Precisely, given the step slots
s € RE*4 extracted from video v € RY*4 using the trans-
former, T, i.e., s = T (v), the diversity regularizer encour-
ages low cosine similarity among the step slots s; as fol-

lows:
K

1
Laiy = K(T—U Z Z cos(s;, Sj)7 (%)

i=1 j#i

Where K is the number of predicted slots. The diver-
sity regularizer promotes slot diversity and improves perfor-
mance by removing duplicate slots as validated in Table 3
of the main paper.



Full Subtitles Text

hello this video here will be a demonstration on how to disassemble a 802 keyless remote
this also includes how to replace the battery now first we want to start by doing this is a
three button remote here so as the lock unlock buttons and also the panic button on the
rear of it now you can see here it's a little harder to see on the video but there's actually a
little cut out I'll just put the case now you can take a flat screwdriver or possibly just a thin
coin and just pop it in there what you want to do is actually just pry it open now if you're
having a little trouble you can go around the outside here if it's stuck together just to pop it
open so you can see you have the back half here now just for the battery itself here what
you want to do actually is continue with the button just pushing on them here just to push
the whatever house actually is a rubber case that goes all the way around that houses the
circuit board itself so | simply just pull the part of the circuit board like there then you can
slide the battery out itself now the battery number is two zero three two now when placing
anew battery you want to make sure the positive side goes up now the battery is marked
but it's also the flat side of the battery that side there's actually the negative side now it also
shows on the circuit board right here right at the top here does say where the battery the
positive side does goes up there too so it also has markings on here now if you do have any
contact problems you can actually bend these little tabs up here | just in the bottom side
there just to give it a little more pressure on the battery itself now as to continue on further
removal of the key fob assembly here you can peel the rubber out here see that just slides
in there now the buttons actually just pop out on their own now the unlock button here
does go on the bottom here like so but it also does have a little tab on the top side there or
slides into a little cutout right there now as for the panic button itself it does slide in with a
rubber here it actually does slide them to a groove itself so we actually want to do is just
sometimes you can get this with your finger here and pop the rubber out itself see there it's
through rear a gasket oh and then the rear panic button now this is it for my tutorial video if

you have any comments or questions please don't hesitate to post them also rate and
subscribe to my channel thank you for watching you

Extracted Verb Phrases

. disassemble remote

. replace the battery

do this

put the case

. take a flat screwdriver

do what

. have alittle trouble

. have the back half for the battery
do what

. push the whatever house

. pull the part

. slide the battery

. place a new battery

. have markings

. have any contact problems

. bend these little tabs

17. give a little more pressure

18. peel the rubber

19. have a little tab

20. get this

21. pop the rubber

22. have any comments

NV AWN R
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Figure 6. Verb-phrase extraction from subtitles. (left) Original video subtitles. (right) Verb phrases extracted from the subtitles. The
underlined verb phrases are the ones chosen by Drop-DTW for step slot supervision at end of training.

Smoothness regularizer. The second regularizer, Lymooth,
enforces that step slots attend to video content smoothly.
Intuitively, due to natural video continuity, we expect the
attention of step slots in the video to change smoothly, and
be similar for close frames. Given the video, v € RV*d,
and the corresponding step slots, s € R¥*?, the attention,
a € RVXK ofall steps in the video is defined as follows:

a = softmax(cos(v,s)/7), (6)
where v = 0.03 is the softmax temperature, softmax is
taken along the last dimension, and cos(v,s) € RV XK isa

matrix of cosine similarities, i.e. cos(v,s);; = cos(v;, s;).

To define the regularizer on the attention vectors, we
draw inspiration from the video representation learning lit-
erature [19]. In particular, we require that, for a given atten-
tion vector a; € R¥ (at frame %), the attention vectors ay, of
the neighboring frames, i.e. ||i — k|| < M, are similar, and
the attention vectors, a; of distant frames, i.e. || — j|| > M,
are dissimilar, where M is the size of the positive neighbor-
hood. We implement this requirement using the MIL-NCE
contrastive loss on the attention according to

1 L Zje’pi f(aiaaj)

L i—1 Zlez flai, &)
Where 7 is the set of L frame indices sampled at random,
P; is a subset of Z indices that form a positive pair with
i, i.e. lie in the positive neighborhood of M frames, and
f(z,z) = exp(cos(z, z)/7), where v = 0.03 is a scaling
temperature.

)

Esmooth = - 10g

10

Unsup. Segmentation Zero-shot Localization

Method F1 Prec. Rec. MoF | IoU Prec. Rec. MoF
Ours (24 slots) 279 214 405 453 | 21.6 309 442 664
Ours (48 slots) 265 207 398 40.6 | 242 341 40.1 67.7
Ours (2 layers) 232 184 341 396 | 149 249 268 68.1
Ours (4 layers) 27.8 214 412 43,6 | 208 289 388 674
Ours (8 layers) 266 220 397 425|227 324 455 66.7
Ours (6 layers, 32 slots) | 28.3 22.1 420 419 | 237 329 431 67.1

Table 4. Ablation study of StepFormer’s
components on CrossTask.

training and inference

D. Baselines

To verify the effectiveness of StepFormer, we compare
our model to three baselines: Kukleva et al. [ 18], Elhamifar
et al. [11], and Shen et al. [31]. We consider all the base-
lines as weakly-supervised, as they use information about
the video task label during training. Kukleva et al. [18]
and Elhamifar et al. [ 1] train a model purely from video;
thus, we use these baselines only in unsupervised step lo-
calization (Section 4.2 of the main paper). More similar
to StepFormer, Shen et al. [31] extract prototypes from a
video on the fly and supervises them with text subtitles. In
principle, their prototypes should follow the temporal order
and be alignable with text features, similar to our step slots.
Hence, we compare StepFormer to Shen et al. also in the
zero-shot step localization setup (Section 4.3 of the main
paper). While Elhamifar et al. directly uses video task la-
bels for supervision, Kukleva et al. and Shen et al. use such
labels implicitly, i.e. they train a separate model for each
task using only the videos that belong to that task. In this
work, we adapt the methods of Kukleva et al. and Shen et



al. to completely unsupervised training (i.e. without video
labels), by merging all tasks (and their videos) into a single
dataset-level task, thereby not revealing the task-specific la-
bels during training. Unlike StepFormer, all the baseline
methods must be trained and tested on the same dataset (as
they learn task-specific step prototypes), and cannot gener-
alize to new data. For direct comparison with StepFormer,
we train all the baselines using the same video features [22],
and fix the same training and testing splits in every dataset.

E. Ablation study

In this section, we complement Section 4.4 of the main
paper with additional ablations of StepFormer components
on the CrossTask dataset. Specifically, we vary the num-
ber of transformer decoder layers and the number of out-
put step slots used to describe a video, and report the re-
sults in Table 4. First, as the table demonstrates, increas-
ing the number of transformer layers to 6, i.e. the default
value used in the main paper, helps improve the perfor-
mance. However, further increasing the number of layers
actually hurts. We attribute this effect to optimization diffi-
culty of larger models. Second, using 32 step slots to solve
unsupervised step localization seems to be optimal for unsu-
pervised step discovery and localization. However, to solve
zero-shot step localization, more step slots seem to work
better. We attribute the increased zero-shot step localiza-
tion performance with 48 slots to the improved text-to-slot
matching step, as 48 slots offer more freedom in the match-
ing. Nevertheless, we elect to use the setup consisting of 6
layers and 32 step slots as it offers a good compromise in
terms of performance on both target tasks.
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