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Figure 1. Examples of the language conditioned policy adaptation experiments, including the evaluation of (i) Compositional General-
ization in (a), where we train a policy to pack objects of different shapes in the brown box, and put blocks of different colors in the bowls
of different colors, and adapt it to put objects of different shapes in the bowls of different colors; (ii) Out-of-distribution Generalization
in (c), where we train a policy to pack certain objects in the brown box, and adapt it to pack unseen objects, and in (d), where we adapt a
policy trained on seen environments to an unseen environment with different textures and placements of static elements such as the sliding
door and the light button; (iii) Sim-to-real Transfer in (b), where we adapt a policy trained on simulation data to the real world.

Abstract

Recent progress on vision-language foundation models
have brought significant advancement to building general-
purpose robots. By using the pre-trained models to encode
the scene and instructions as inputs for decision making, the
instruction-conditioned policy can generalize across differ-
ent objects and tasks. While this is encouraging, the policy
still fails in most cases given an unseen task or environment.
In this work, we propose Policy Adaptation from Founda-
tion model Feedback (PAFF). When deploying the trained
policy to a new task or a new environment, we first let the
policy play with randomly generated instructions to record
the demonstrations. While the execution could be wrong, we
can use the pre-trained foundation models to provide feed-
back to relabel the demonstrations. This automatically pro-
vides new pairs of demonstration-instruction data for pol-
icy fine-tuning. We evaluate our method on a broad range

*Work done during internship at UCSD.
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of experiments with the focus on generalization on unseen
objects, unseen tasks, unseen environments, and sim-to-real
transfer. We show PAFF improves baselines by a large mar-
gin in all cases.

1. Introduction

Learning generalizable manipulation policies have been
a long standing problem in robotics. The goal is to train
a general-purpose robot which can tackle multiple tasks
with different object compositions in diverse environments.
However, most current policy learning approaches with im-
itation learning or reinforcement learning can only learn to
solve one task at a time, and usually operate on a fixed set
of objects. To achieve human-level generalization, many
efforts have been made on performing robotic manipulation
tasks specified by natural language [34, 35, 56]. Language
can not only bring its compositionality to low-level robot
skills, but also operate as a high-level planner for long-
horizon tasks.
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Recently, there is a trend on leveraging the pre-trained
vision-language foundation models [38,47] as the backbone
encoders for generalizing robot skills. For example, CLI-
PORT [56] uses the pre-trained CLIP model [47] as the
image observation and language instruction encoder, and
learn a manipulation policy on top for tasks across different
object arrangements. While encouraging results have been
shown in this line of research on generalization across train-
ing tasks, it is still very challenging for the learned policy to
generalize to unseen tasks and environments. For example,
as shown in Figure 1 (a), our experiments show that if we
train such a policy on two tasks including (i) pack objects
of different shapes in the brown box and (ii) put blocks of
different colors in the bowls of different colors, it is very
challenging for the policy to generalize to a task that put
objects of different shapes in different colored bowls. Fur-
thermore, the difficulty drastically increases when we need
to perform this task in the real world with a different robot.

Our key insight is that, while the action generator (i.e.,
the policy) cannot generalize well, the action classifier with
foundation models can still achieve a high accuracy even
when “zero-shot” transferred to unseen environments [35,
56]. In this paper, we leverage vision-language founda-
tion models to provide feedback during deploying the pol-
icy in unseen tasks and environments. We utilize the feed-
back from foundation models to fine-tune the policy fol-
lowing test-time training [28, 57, 61], which updates model
parameters during test-time. Specifically, we propose Pol-
icy Adaptation from Foundation model Feedback (PAFF)
with a play and relabel pipeline. When adapting a trained
policy to a new task or new environment, we first let the
policy play, that is, the model continuously generates and
performs actions given a series of language instructions in
the new task and we record the demonstrations including
the visual observations and model’s actions. Of course, the
instructions and the outcome demonstrations will often not
match under the out-of-distribution environment. We then
let the model relabel to make the correction, that is, the
recorded demonstrations can be automatically relabeled by
the vision-language pre-trained model. By taking the vi-
sual observations of recorded demonstrations as inputs, the
pre-trained model can retrieve accurate language instruc-
tions correspondingly. Given the accurate paired demon-
strations and instructions in the new environment, we can
fine-tune and adapt the policy with them. We emphasize
that the whole process of PAFF performs in an automatic
way using trained models without human interventions.

We carefully design a broad range of language condi-
tioned robotic adaptation experiments to evaluate the pol-
icy adaptation across object composition, tasks and envi-
ronments including from simulation to the real world. Our
evaluations consist of (i) Compositional Generalization in
Fig. 1 (a), where we train a policy to pack objects of dif-

ferent shapes in the brown box, and put blocks of differ-
ent colors in the bowls of different colors, and adapt it to
put objects of different shapes in the bowls of different col-
ors. (ii) Out-of-distribution Generalization in Fig. 1 (c),
where we train a policy to pack certain objects in the brown
box, and adapt it to unseen objects; and in Fig. 1 (d), where
we adapt a policy trained on seen environments to an un-
seen environment with different textures and placements of
static elements such as the sliding door, the drawer and the
switch. (iii) Sim-to-real Transfer in Fig. 1 (b), where we
adapt a policy trained on simulation data to the real-world.
We show PAFF improves baselines by a large-margin in
all evaluations. In sim-to-real transfer, our method signifi-
cantly improves the success rate by an average of 49.6% on
four tasks than the baseline. Our pipeline fills the domain
gap between simulation and real world through utilizing
the generalization capability of the foundation model. Our
method also increases the success rate from 17.8% to 35.0%
in the compositional generalization evaluation, and from
48.4% to 63.8% for packing unseen objects. When adapting
the policy to an unseen environment, our method increases
the success rate of completing 5 chains of language instruc-
tions from 5% to 11% over the baseline method. The exten-
sive evaluation results show that PAFF can effectively adapt
a language conditioned policy to unseen objects, tasks, en-
vironments, and realize sim-to-real transfer.

2. Related Work
Language Conditioned Manipulation. Instruction-

based manipulation has been a popular research topic in
robotics [4, 6, 7, 20, 33, 35, 37, 45, 54, 55] not only because
it provides an user-friendly interface, but also because the
compositional properties of language allows skill general-
ization and guides long-horizon planning. Recently, the ad-
vancement of foundation models [5, 9, 22, 36, 47, 49, 50, 58,
64] have led to significant progresses in generalizable ma-
nipulation skill learning [2, 25, 34, 56]. These approaches
adopt the pre-trained foundation models to encode the lan-
guage instruction and visual observation, and train policy
network on top. While this pipeline successfully general-
izes the policy across different tasks and new objects, it still
has a hard time on generalizing to completely unseen envi-
ronments and tasks. In this paper, we propose policy adap-
tation from foundation model feedback to adapt our policy
during deployment in unseen environments and tasks.

Policy Adaptation with Visual Inputs. The ability to
adapt a visuo-motor control policy to unseen environments
is the key in many applications such as sim2real trans-
fer. A popular way to achieve such generalization is us-
ing domain randomization [46, 51, 59] and data augmenta-
tion [8,19,29,30,69] for learning invariant visual represen-
tations. However, it is still very challenging for these poli-
cies to generalize beyond the randomization range of train-
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Figure 2. The pipeline of policy adaptation from foundation model feedback (PAFF). When we adapt a trained policy to a new task, we first
let the robot play, that is, the policy continuously predicts and performs actions given a series of randomly generated language instructions.
We record these demonstrations including visual observations and model’s actions. After that, we let the model relabel, that is, the vision-
language foundation model relabels the demonstrations by retrieving the language instructions given the recorded visual observations. We
then fine-tune the policy with the paired observations and instructions, and corresponding actions, which are collected in an automatic way.

ing. Another line of research is to utilize GANs [15, 73]
to translate input images across domains before forward-
ing to the policy [24, 52, 70, 71]. However, all the ap-
proaches mentioned above require the tasks and environ-
ments are aligned across training and deployment. To adapt
to a different task, researchers have proposed different ways
to finetune the policy during deploying to the new environ-
ment [18, 26, 28, 39, 67, 72]. For example, Julian et al. [26]
propose to collect 800 grasping attempts when transferring
to a new robotic manipulation environment, and use the col-
lected data to fine-tune the policy. However, this process
requires significant human interventions. Hansen et al. [18]
follows test-time training [57,61] to allow the policy to con-
tinue training after deployment in a new environment by ex-
ploring self-supervision. Instead of using self-supervision,
we utilize the feedback from vision-language foundation
models to fine-tuning the policy in an automatic way.

Pre-trained Foundation Models in Robotics. Be-
sides language-conditioned manipulation tasks, we have
witnessed the utilization of foundation models on various
robotic learning algorithms [1, 17, 40, 43, 48, 53, 65, 66, 68].
For example, Radosavovic et al. [48] propose to train
a masked autoencoder [21] on large scale data such as
Ego4D [16], and perform real robot learning with behavior
cloning using this pre-trained representation. It is shown
that such pre-training helps largely reduce the sample ef-
ficiency and improves the performance. However, it is
not thoroughly studied how pre-training can affect out-of-
distribution generalization, and most works only use the
pre-trained network as policy encoder. In this work, be-
sides utilizing the representations from foundation models,
we also exploit their generalization ability in recognizing
visual concepts when transferred to unseen environments to
provide feedback during deployment in a new environment.

3. Method
We propose policy adaptation from foundation model

feedback (PAFF) with a play and relabel pipeline. As sum-
marized in Algorithm 1, our pipeline consists of two stages.
In the first stage, we train a policy and fine-tune a vision-
language pre-trained model with the training demonstra-
tions. The second stage involves play and relabel in the
new task. Specifically, as shown in Fig. 2, we first let the
policy play with a series of randomly generated instruc-
tions and record the demonstrations including visual ob-
servations and actions. While the manipulation could be
wrong, we let the fine-tuned vision-language model relabel
the demonstrations by retrieving the language instructions
given the visual observations. With the re-labeled pairs of
demonstration-instruction data, we fine-tune the policy to
adapt to the new task.

Our method utilizes the generalization capability of the
vision-language foundation model in recognizing visual
concepts, to annotate the data for fine-tuning the policy of
the new task in an automatic way. PAFF can effectively
adapt a language conditioned policy to manipulate unseen
objects and solve new tasks in novel environments, and re-
alize sim-to-real transfer.

3.1. Language Conditioned Policy

Inspired by previous work [34,56], we consider the prob-
lem of learning a language conditioned policy π that outputs
actions at given input γt = (ot, It) consisting of a visual
observation ot and a language instruction It as below:

π(γt) = π(ot, It) → at (1)

We use an imitation-learning based method to learn the lan-
guage conditioned policy. We experiment with two types

3



Algorithm 1 PAFF

Function: train a policy and fine-tune a foundation model
. Stage 1, Sec. 3.1 and Sec. 3.3

Input: training demonstrations; a randomly initialized pol-
icy πθ; a pre-trained foundation model fφ

1: for each training demonstration do
2: optimize the policy with L(πθ(ot, lt), at)
3: optimize the pre-trained foundation model with

L(fφ(ot, ot+1, lt))
4: end for

Function: play and relabel in a new task, then fine-tune the
policy . Stage 2, Sec. 3.2

Input: initial observation; a series of language instructions
5: for each language instruction do
6: predict action ât = πθ(ot, lt), perform manipula-

tion and record demonstrations
7: end for
8: for each recorded demonstration do
9: retrieve a language instruction l̂t = fφ(ot, ot+1)

10: end for
11: for each recorded demonstration do
12: optimize the policy with L(πθ(ot, l̂t), ât)
13: end for

of manipulation platforms with different action space: (i)
We follow CLIPORT [56] to formulate tabletop object ma-
nipulation (e.g., pick up a block and place it in a bowl)
as a series of pick-and-place affordance predictions, where
the objective is to detect actions and each action involves
a start and final end-effector pose, and build our model
upon a two-stream architecture in CLIPORT; (ii) We fol-
low CALVIN [35] to formulate manipulation tasks that re-
quire continuous control (e.g., push the sliding door to the
left side) as 7-DoF control, and build our model based on a
hierarchical architecture in HULC [34]. We adopt the same
imitation training loss L(πθ(ot, lt), at) as defined in CLI-
PORT and HULC to optimize the policy.

3.2. Play and Relabel

After we train a policy and adapt it to a new task, it can
often make mistakes (e.g. the policy picks up a star and
places it in a yellow bowl given the instruction “put the
flower in the orange bowl” as shown in Fig. 2). If our model
can correct the instruction to a matching one (e.g. “put the
star in the yellow bowl”), then the paired demonstration-
instruction data can be used to fine-tune the policy.

We propose policy adaptation from foundation model
feedback to collect the data for fine-tuning the policy of a
new task in an automatic way, without human interventions.
Specifically, as shown in Fig. 2, we first let the policy “play”
with a series of randomly generated language instructions.

Given:“take the red block and rotate it to the right”

Re-labeled:“push the sliding door to the left side”

Re-labeled:“slide the block that it falls into the drawer”

Given:“lift the blue block from the sliding cabinet”

(a)

(b)

Figure 3. Given the language instruction in an unseen environ-
ment, the policy performs actions that do not match the instruction.
The vision-language foundation model relabels the demonstration
by taking the sequential visual observations as inputs and retriev-
ing the language instruction among all possible instructions.

Given the current visual observation ot and an instruction
It, the policy predicts the action at and the robot performs
the corresponding manipulation, reaching a new scene with
the visual observation ot+1. After a certain number of lan-
guage instructions are executed, the scene will be reset au-
tomatically by the robot, which moves the objects out of
the containers to the table following the instruction “move
the objects out”. In this way, the policy can “play” in the
new task, that is, the robot will explore the scene by con-
tinuously receiving language instructions and manipulating
objects. We record these demonstrations including the vi-
sual observations {ot}Tt=1 and the robot’s actions {ât}Tt=1

predicted by the trained policy.
After recording the demonstrations, we let the model

relabel the demonstrations using the fine-tuned vision-
language foundation model as shown in Fig. 2. We for-
mulate the task of labeling the demonstrations as visual-
to-language retrieval. Specifically, given the visual obser-
vations ot and ot+1, the foundation model retrieves a lan-
guage instruction Ît among all possible language instruc-
tions. Benefit from pre-training on large-scale data, the
foundation model can generalize well across domains, thus
is able to retrieve accurate language instructions for the
recorded demonstrations.

After play and relabel, we collect new pairs of
demonstration-instruction data automatically including the
visual observations {ot}Tt=1, the re-labeled language in-
structions {Ît}Tt=1, and the actions {ât}Tt=1, which are used
to fine-tune the policy for the adaptation to the new task.

3.3. Vision-language Foundation Model

To make the model relabel the recorded demonstrations
with the accurate instruction automatically, we cast the
task of labeling demonstrations as visual-to-language re-
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trieval, which is a mainstream downstream task in vision-
language pre-training. The existing vision-language foun-
dation model such as CLIP [47] pre-trains on single images
and their captions describing the static content, thus can
not be directly applied to label the recorded demonstrations
with sequential visual observations. For example, for ma-
nipulations that require continuous control such as “pushing
the sliding door to the left side” as shown in Fig. 3, in order
to recognize this action, the model requires the capability of
both spatial and temporal reasoning among the sequential
visual observations. The demonstration can not be labeled
if the model lacks the ability to infer temporal information
of the visual observations.

We utilize a Spatio-Temporal Adapter (ST-Adapter) [42]
to fine-tune CLIP for the ability to reason about sequential
visual observations of the recorded demonstrations. Specif-
ically, the pre-trained CLIP fφ adopts a visual encoder fv
for visual representations, and a text encoder ft for lan-
guage representations. We add a depth-wise 3D convolu-
tion layer [12] between the transformer [10] layers of the
CLIP visual encoder fv , so that fv can take sequential vi-
sual observations ot and ot+1 as inputs to conduct spatio-
temporal modeling (We denote sequential observations of
executing a language instruction as ot and ot+1 for sim-
plicity). We use the CLIP text encoder ft to extract rep-
resentations of the language instruction lt. We adopt con-
trastive learning to maximize the similarity between the rep-
resentations of visual observations denoted as fv(ot, ot+1)
and representations of the corresponding language instruc-
tion denoted as ft(lt), and minimize the similarity between
fv(ot, ot+1) and representations of other language instruc-
tions with Noise-Contrastive Estimation (NCE) [41],

L(fφ(ot, ot+1, lt)) = NCE(fv(ot, ot+1), ft(lt)) (2)

NCE(xi, yi) = −log
exp(xTi yi/τ)∑N
j=1 exp(xTi yj/τ)

(3)

where N is the number of the language instructions and
τ is the temperature hyper-parameter and we set τ = 0.05.
We train the 3D convolution layers on the the seen tasks and
freeze the parameters of the pre-trained CLIP.

After fine-tuning the vision-language foundation model,
given a recorded demonstration, we calculate the similarity
between the representations of the visual observations and
the representation of all language instructions, and retrieve
the language instruction with the maximum similarity. The
fine-tuned foundation model can achieve a high retrieval
accuracy even when “zero-shot” transferred to unseen en-
vironments. For example, our fine-tuned CLIP achieves
a retrieval accuracy of 99.3% on the demonstrations of
the unseen environment in the CALVIN [35] benchmark.
Through utilizing the generalization capability of the large-
scale vision-language foundation model in recognizing vi-
sual concepts, our method can relabel the recorded demon-
strations for fine-tuning the policy in an automatic way.

4. Experiment

4.1. Evaluation Settings

We carefully design four language conditioned pol-
icy adaptation evaluations based on CLIPORT [56] and
CALVIN [35], to evaluate (i) Compositional Generaliza-
tion, where we train a policy to pack objects of different
shapes in the brown box (“pack-shapes”), and put blocks
of different colors in the bowls of different colors (“put-
blocks-in-bowls”), and adapt it to put objects of differ-
ent shapes in the bowls of different colors (“put-shapes-
in-bowls”) as shown in Fig. 1 (a); (ii) Out-of-distribution
Generalization, where we train a policy on packing seen
objects and adapt it to unseen objects (“pack-unseen-
objects”) using Google Scanned Objects dataset [11] as
shown in Fig. 1 (c), with the same split as CLIPORT, and
train a policy on seen environments and adapt it to a new en-
vironment with different textures and differently positioned
static elements such as the sliding door and light button in
CALVIN as shown in Fig. 1 (d). We use environment A,
B and C for training, and environment D for adaptation;
(iii) Sim-to-real Transfer, where we train a policy on sim-
ulation data and adapt it to real world with four tasks in-
cluding “pack-blocks”, “packing-shapes”, “put-blocks-in-
bowls”, “put-shapes-in-bowls” as shown in Fig. 1 (b). We
also explore a challenging task (i.e. compositional “put-
shapes-in-bowls”), where the policy is trained on simulation
data of “packing-shapes” and “put-blocks-in-bowls”.

For the compositional and out-of-distribution evalua-
tions in the CLIPORT platform, we follow CLIPORT to
report task success rate of 100 evaluation instances on 10
different scenes (with different blocks, objects and bowls),
where the success rate is the number of the correctly placed
objects, divided by the total number of the objects. For the
out-of-distribution evaluation in the CALVIN platform, we
follow CALVIN to evaluate Long-Horizon Multi-Task Lan-
guage Control (LH-MTLC), which treats the 34 tasks as
subtasks and evaluates 100 unique instruction chains, each
consisting of five sequential tasks. The policy receives the
next subtask in a chain only if it successfully completes the
current one. We calculate the success rate of each task in
the chain and the averaged successful sequence length as
the evaluation metrics. For the sim-to-real transfer evalua-
tion, we report task success rate of 10 evaluation instances
for each task, where a instance consists of executing 5 lan-
guage instructions.

4.2. Implementation Details

To train policies, we follow CLIPORT [56] and
HULC [34], but adopt the pre-trained MDETR [27] as
the visual and language encoder (See Sec. 4.5 for details).
To fine-tune the vision-language foundation model (i.e.,
CLIP [47]) for labeling, in the CLIPORT platform, we use
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“put letter T to green bowl” “put letter A to blue bowl” “put letter M to red bowl” “put circle to cyan bowl” “put letter R to white bowl”

“put letter R to green bowl” “put letter T to cyan bowl” “put letter A to red bowl” “put circle to blue bowl” “put letter M to white bowl”

“pack black blue sneaker” “pack yoshi figure” “pack pepsi next box” “pack green stripes shoe” “pack porcelain salad plate”

re-labeled instructions

given instructions

given instructions
32 51 4

32 51 4

32 51 4

re-labeled instructions
32 51 4

“pack black blue sneaker” “pack yoshi figure”“pack pepsi next box” “pack green stripes shoe” “pack porcelain salad plate”

(a)

(b)

Figure 4. Given instructions vs. automatically re-labeled instructions of the recorded demonstrations with five consecutive steps, where we
let the policy play in new tasks. The policy performs manipulations, where the outcome demonstrations do not match the instructions. By
taking the recorded demonstrations as inputs, our model retrieves accurate language instructions correspondingly.

Table 1. Results of compositional and out-of-distribution general-
ization evaluation in the CLIPORT platform. The evaluation met-
ric is the success rate, where each step receives a new instruction
in the left column, while a step receives a new instruction when
the previous instruction is executed correctly in the right column.

Method put-shapes-in-bowls pack-unseen-objects
CLIPORT [56] 28.0% 16.8% 58.9% 46.1%
MdetrORT [27] 33.8% 17.8% 62.0% 48.4%
AugORT [44] 34.4% 18.9% 63.1% 49.0%

Ours 51.0% 35.0% 72.8% 63.8%

the start and end frame of the visual observations as the in-
put of CLIP. In the CALVIN platform, a language instruc-
tion in the training set corresponds to sequential observa-
tions with 64 frames, and we sample 8 frames following
TSN [62] as the input of CLIP. We freeze the pre-trained
CLIP and train ST-Adapter [42] for 300 epochs with the
training data of seen tasks and environments on 8 GPUs.

For evaluations in the CLIPORT platform, we first train
a policy with 100 demonstrations per task for 200 epochs
on a single GPU. We then let the robot play by follow-
ing language instructions generated by a template “put
in ”. We record 40 demonstrations continuously for each
scene, where a demonstration performs five instructions.
After the model relabels demonstrations, we save recorded
demonstrations, where the similarity score between repre-
sentations of visual observations and retrieved instruction
is higher than 3.0. We fine-tune the policy on the saved
demonstrations for 100 epochs.

For the evaluation in the CALVIN platform, we train a
policy on the training data of environments A, B, C for 10
epochs on 16 GPUs. We then let the robot play by follow-
ing instructions that are randomly chosen from all instruc-
tions used in seen environments. We record 500 demonstra-

Table 2. Results of out-of-distribution generalization evaluation in
the CALVIN platform. The number denotes the success rate of
each subtask in the chain, and “Len” denotes the averaged suc-
cessful sequence length.

Method 1 2 3 4 5 Len
HULC [34] 43% 14% 4% 1% 0% 0.62

MdetrLC [27] 69% 38% 20% 7% 4% 1.38
AugLC [44] 69% 43% 22% 9% 5% 1.48

Ours 72% 47% 30% 13% 11% 1.73

tions in the environment D, where a demonstration performs
five subtasks. We fine-tune the policy on the re-labeled and
saved demonstrations for 5 epochs.

4.3. Baselines

Besides CLIPORT [56] and HULC [34], we also adopt
two methods MdetrORT and MdetrLC as the baselines by
replacing the visual and language encoder in CLIPORT and
HULC with the pre-trained MDETR [27]. They train a pol-
icy of seen tasks in exactly the same way as our method
without play and relabel. Based on MdetrORT and Mde-
trLC, we further adopt two methods AugORT and AugLC,
which use data augmentation to train a policy following Pa-
shevich et al. [44].

4.4. Results

4.4.1 Compositional Generalization

As shown in Fig. 4, this kind of adaptation across object
composition is challenging. For example, given the lan-
guage instruction “put letter T to cyan bowl” in the second
column, the trained policy wrongly picks up letter A object
and puts it in the blue bowl in the third column. Such a
mistake can be corrected by our fine-tuned vision-language
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“put square to yellow bowl” “put flower to blue bowl” “put pentagon to white bowl”“put triangle to purple bowl” given instructions

✓
✓

✓
✓ ✓

✗
✗

✗
✗

✗

Ba
se
lin
e

O
ur
s

“put star to orange bowl”
32 51 4

Figure 5. Real world experiments for sim-to-real transfer with five consecutive steps. The task puts objects of the specified shape in the
bowls of the specified color.

Table 3. Results of the sim-to-real transfer evaluation. The evaluation metric is the success rate, where each step receives a new language
instruction. “compositional” denotes that the policy is trained on “pack-shapes” and “put-blocks-in-bowls”.

Method pack-blocks pack-shapes put-blocks-in-bowls put-shapes-in-bowls put-shapes-in-bowls (compositional )
MdetrORT [27] 72% 32% 40% 24% 14%

Ours 98% 92% 88% 82% 70%

foundation model as it retrieves “put letter A to blue bowl”
as the language instruction given the visual observations of
the second and the third column.

We show evaluation results of compositional generaliza-
tion in Tab. 2. Our method achieves the best results under
both evaluation protocols. Compared with MdetrORT [27],
which trains a policy on seen tasks in exactly the same
way as ours, our method improves the success rate by
17.2%, which shows the effectiveness of our play and re-
label pipeline for compositional generalization. The fine-
tuned foundation model can be generalized to recognize the
visual concepts (i.e. objects and bowls) in the compositional
setting as shown in Fig. 4 (a), thus the re-labeled demon-
strations can be used to fine-tune the policy in the new
task. We further observe that MdetrORT performs better
than CLIPORT by replacing the pre-trained CLIP [47] with
the pre-trained MDETR [27] as the visual and language
encoder. MDETR learns object-aware representations by
aligning features of visual regions and text phrases, and can
benefit the learning of a object manipulation policy. Au-
gORT further improves performance slightly by applying
data augmentation [44] during training, but still achieves
poor results since compositional generalization is outside
the randomization range of training.

4.4.2 Out-of-distribution Generalization

We design two experiments to evaluate the out-of-
distribution generalization. Tab. 2 lists the results of pack-
ing unseen objects in the CLIPORT platform. Our method
surpasses the baseline methods under both evaluation proto-
cols. As shown in Fig. 4, when the policy picks up an object

that does not match the language instruction, the vision-
language foundation model can correct the mistake by re-
trieving a corresponding language instruction given the vi-
sual observations. Since the foundation model is pre-trained
on large scale data, it can be generalized to recognizing un-
seen objects in the new task.

Tab. 1 reports the results of adapting a policy to an un-
seen environment in the CALVIN platform. Our method
outperforms the baseline methods in terms of the success
rate of each subtask in the chain and the averaged successful
sequence length. As shown in Fig. 3, given the sequential
visual observations, our fine-tuned vision-language founda-
tion model is able to relabel the recorded demonstrations
through spatial and temporal reasoning with the Spatio-
Temporal Adapter [42]. We further observe that using the
pre-trained MDETR as the visual and language encoder in
HULC also improves performance, and applying the data
augmentation helps adapt the policy to an unseen environ-
ment. But their results still lag far behind ours.

4.4.3 Sim-to-real Transfer

Adapting a policy trained on the simulation data to the real
world is challenging because of the huge simulation-to-
real gap such as different textures, lighting, colors, and ob-
jects. We evaluate four tasks in Tab. 3, and our method sig-
nificantly boosts performance in each task compared with
the baseline method (without play and relabel). We fur-
ther evaluate a more difficult setting, which also involves
the evaluation of compositional generalization by training
policy on the simulation data of “pack-shapes” and “put-
blocks-in-bowls”. As shown in Fig. 5, when we directly
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Table 4. Ablation Study on the number of the recorded demon-
strations. Each demonstration consists of executing five language
instructions. We evaluate the compositional generalization and the
out-of-distribution generalization in the CLIPORT platform.

Number put-shapes-in-bowls pack-unseen-objects
10 36.0% 21.3% 69.7% 59.0%
20 37.6% 24.6% 73.2% 62.4%
40 51.0% 35.0% 72.8% 63.8%

adapt the learned policy to the real world, it picks up the
incorrect object and often places it in the bowl with wrong
color. By contrast, through play and relabel, our method can
perform manipulation correctly given the language instruc-
tions. Our pipeline fills the domain gap between simulation
and real world through utilizing the generalization capabil-
ity of the pre-trained foundation model.

4.5. Ablation Study

Number of recorded demonstrations. We study the ef-
fect of the number of the recorded demonstrations when we
let the policy “play” in the new task, where the policy exe-
cutes five language instructions in each demonstration and
then follows the instruction “move the objects out” to re-
set the scene automatically. As shown in Tab. 4, in gen-
eral, recording 40 demonstrations for each scene achieves
the best performance for both the compositional generaliza-
tion and the out-of-distribution generalization evaluation.
Recording more demonstrations increases the diversity of
the collected data for fine-tuning the policy, thus benefits
the policy adaptation to the new task.

Visual and language encoder We explore different
pre-trained foundation models including MoCo [22],
DenseCL [63], MAE [21], GLIP [31], CLIP [47] and
MDETR [27] as the visual and language encoder to train
a policy, and evaluate their performances without play and
relabel on the compositional generalization experiment with
two evaluation protocols. For image pre-trained model, we
use the text encoder in CLIP as the language encoder. The
results are listed in Tab. 5. We have some observations.
First of all, Vit [10] based MAE achieves the worst re-
sult. Compared with other models that use ResNet [23]
and Swin Transformer [32] for multi-scale feature maps, Vit
produces feature maps at a single scale, which does not ben-
efit object manipulation policy learning. Second, DenseCL
surpasses MoCo through performing dense pair-wise con-
trastive learning at the level of pixels rather than contrast
global features. DenseCL tailors the self-supervised learn-
ing method for dense prediction tasks such as object de-
tection, which is beneficial to learning a policy for object
manipulation. Furthermore, GLIP and MDETR outper-
forms CLIP by aligning features of regions in the image and
phrases in the text. The learned object-level and language-
aware visual representations contributes to a better manipu-

Table 5. Ablation study on the visual and language encoder using
different foundation models. We evaluate the compositional gen-
eralization with “put-shapes-in-bowls” in the CLIPORT platform.

MoCo DenseCL MAE GLIP CLIP MDETR
[22] [63] [21] [31] [47] [27]

22.6% 26.4% 19.0% 30.1% 28.0% 33.8%
13.2% 13.6% 11.8% 17.3% 16.8% 17.8%

Table 6. Ablation study on the temporal reasoning mechanism
for fine-tuning the foundation model. We evaluate the out-of-
distribution generalization in the CALVIN platform with the av-
eraged successful sequence length as the evaluation metric.

2D joint- 3D joint- Divided- ST-Adapter
attention [3] attention [13, 60] attention [14] [42]

1.60 1.53 1.46 1.73

lation policy. Finally, MDETR achieves better results than
GLIP, and we adopt this pre-trained foundation model as
our visual and language encoder.

Temporal reasoning mechanism. To capitalize the foun-
dation model CLIP pre-trained on single images and cap-
tions for labeling recorded demonstrations with sequential
visual observations, we explore different temporal reason-
ing mechanism to fine-tune CLIP including (i) 2d joint-
attention [3], which uses 2d convolution to flatten each
image and performs joint-attention [10], (ii) 3d joint-
attention [13, 60], which uses 3d convolution to flatten
two images and performs joint-attention, (iii) divided-
attention [14], which adds temporal attention [3] among
different images, and (iv) Spatio-Temporal Adapter (ST-
Adapter) [42], which adds a depth-wise 3D convolution
layer [12] between each transformer layer. As listed in
Tab. 6, ST-Adapter achieves the best result on the out-of-
distribution generalization evaluation in the CALVIN plat-
form. ST-Adapter trains the depth-wise 3D convolution lay-
ers for spatio-temporal reasoning, and meanwhile freezes
the parameters of the pre-trained CLIP to reserve the gen-
eralization capability, thus can retrieve more accurate lan-
guage instructions to fine-tune the policy.

5. Conclusion
In this work, we propose policy adaptation from founda-

tion model feedback (PAFF), which leverages the vision-
language foundation model to collect the data for fine-
tuning the policy in unseen tasks and environments auto-
matically. We evaluate our method on a broad range of
language conditioned policy adaptation experiments includ-
ing compositional generalization, out-of-distribution gener-
alization and sim-to-real transfer, and show great superior-
ity of our method.
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