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Abstract

Although an object may appear in numerous contexts, we
often describe it in a limited number of ways. Language al-
lows us to abstract away visual variation to represent and
communicate concepts. Building on this intuition, we pro-
pose an alternative approach to visual representation learn-
ing: using language similarity to sample semantically sim-
ilar image pairs for contrastive learning. Our approach
diverges from image-based contrastive learning by sam-
pling view pairs using language similarity instead of hand-
crafted augmentations or learned clusters. Our approach
also differs from image-text contrastive learning by relying
on pre-trained language models to guide the learning rather
than directly minimizing a cross-modal loss. Through a se-
ries of experiments, we show that language-guided learning
vields better features than image-based and image-text rep-
resentation learning approaches.

1. Introduction

Consider the images in Fig. 1, is the center image more
similar to its left or right neighbor? Despite the difference
in background and pose, it is clear that the right pair cap-
tures the same concept: a flying snow owl. Nevertheless, a
self-supervised image model will judge the left pair as more
similar. Human perception and language abstract away ap-
pearance differences to capture conceptual similarity rather
than just visual similarity. Ideally, we could learn visual
features that capture conceptual similarity and generalize
effectively to other visual tasks. In this work, we show how
language can be a proxy for conceptual similarity; allowing
us to sample better pairs for contrastive learning and train
more generalizable visual models.

Image-only contrastive learning uses visual similarity as
a proxy for conceptual similarity. This is based on the ob-
servation that discriminative approaches can discover inter-
class similarity—e.g., cheetahs are similar to lions— without
requiring explicit annotations [106]. The core idea is to train
a discriminative model where each instance is treated as a
separate class, and the model is trained to map augmented
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Figure 1. Language allows us to find conceptually similar image
pairs even if they are visually dissimilar. We use those pairs for
contrastive learning to learn generalizable visual features.

views of the same image to similar features [12—15, 106].
While successful, instance discrimination ignores the simi-
larity between different instances as it assumes all other im-
ages are unrelated. Later work focused on inter-image rela-
tionships by estimating clusters [3,9, 10] or finding nearest
neighbors [28]. However, those relationships are estimated
using visual embeddings; resulting in visually, rather than
conceptually, similar pairs.

Language similarity is a strong proxy for semantic re-
lationships. Consider the example in Fig. 1; images that
depict the same concept are often described similarly. Rad-
ford et al. [76] propose language-image contrastive learn-
ing by mapping images and text to a shared representa-
tion space and achieve impressive generalization capabili-
ties. However, it is unclear whether forcing models to map
onto a shared space is optimal for visual learning. Although
linguistic and visual similarity might align for similar in-
stances, it is unclear whether all distances in one space
should map exactly to the other. Instead of learning a joint
vision-and-language representations, we argue that it is bet-
ter to use linguistic similarity to guide visual learning.



To this end, we propose language-guided contrastive
learning: a simple adaptation to contrastive learning that
uses language models to find conceptually-similar image
pairs for visual learning. Our approach is motivated by
the observation that language models, despite never train-
ing on visual data, can still be used to sample caption
pairs that belong to conceptually similar images, as seen
in Fig. 2. Such sampled images exhibit desirable varia-
tions in pose, lightning, and context which are very dif-
ferent from hand-crafted augmentations which can be ill-
suited to downstream tasks [108] or too focused on back-
ground textures [81]. We use the sampled pairs instead of
image augmentations within standard self-supervised visual
learning approaches such as SimCLR [12], SimSiam [15],
and SLIP [67]. Our approach departs from image-only con-
trastive learning by relying on conceptually-similar image
pairs rather than visually similar augmentations or cluster-
assignment. We also depart from image-text pre-training
by allowing the model to be guided by language similarity
rather than learning a joint embedding space.

We conduct a series of controlled experiments to ana-
lyze our approach and compare it to commonly used rep-
resentation learning paradigms on generalization to down-
stream classification tasks. In controlled settings, our ap-
proach outperforms all baselines on linear probe and few-
shot classification on a range of downstream classification
datasets. Our analysis suggests that while learning multi-
modal joint embeddings can result in good representations,
it is better to use one modality to guide the training of
the other. Furthermore, we find that our approach is ro-
bust to the specific choice of sampling strategy or language
model. Our code and pre-trained models are available at
https://github.com/mbanani/lgssl.

2. Related Work

Visual Representation Learning aims to learn visual em-
bedding spaces that capture semantics, with a typical focus
on learning from scalable data sources. Broadly speaking,
there are two general approaches: generative and discrim-
inative. Generative approaches hypothesize that a model
that can capture the image distribution will learn semanti-
cally relevant features [26,31,37,70,98, 115]. In contrast,
discriminative approaches posit that differentiating between
images will give rise to better features. This idea can be
traced by to early work on metric learning [18] and dimen-
sionality reduction [35], and is clearly seen for supervised
classification models [84]. More recently, Wu et al. [106]
proposed treating each image as a separate class and using
augmented images as class instances to relieve the need for
human annotation. This was followed by papers that simpli-
fied this approach [12-14,38] and proposed non-contrastive
variants [15,34]. While those approaches have been suc-
cessful, the utility of augmentation-based self-supervised

learning has been questioned [68, 108] with follow-up work
proposing the use of objectness [66,75] and saliency [81] to
alleviate some of those concerns. While we share the goal
of visual representation learning, we question the reliance
on image augmentations for training and propose using lan-
guage models to learn for conceptually-similar images.

Language-supervised vision pre-training aims to learn
visual representations from language data. Early work of
Li et al. [57] trained n-gram models using YFCC [93]
images and user-tag metadata. While some works learn
joint vision-and-language representations for tasks like vi-
sual question answering [2, 33, 45, 118], visual reason-
ing [50, 89, 113], and retrieval [72, 112], we are inter-
ested in using language to learn better visual represen-
tations [23, 23, 76, 80, 88]. Early works used language
modeling as a pretext task for visual learning [23, 80],
but contrastive approaches quickly gained more popular-
ity due to their relative simplicity and generalization capa-
bilities [47, 76]. Follow-up work extended the contrastive
formulation to learn dense features [109, 111] or used ad-
ditional self-supervised losses to improve performance and
data efficiency [21, 56,59, 67]. While we share the moti-
vation of using language for visual learning, we focus on
learning visual representations by using linguistic guidance
from pre-trained language models.

Leveraging structure in the data. This is commonly
done in dense feature learning, where optical flow [36, 46,
82, 101] or 3D transformations [29, 44, 83, 90, 105] pro-
vide natural associations between image patches. For im-
ages, prior approaches used class names [51, 79], class
hierarchies [58, 110], meta data [32, 48, 57] or cluster-
ing [3,9, 10,94, 117] to improve learning and inference.
Within contrastive learning, clustering has been a popular
choice for leveraging dataset structure. The intuition is that
natural clusters emerge in feature spaces that can provide
an additional training signal or useful pseudo-labels. While
such approaches work well on curated datasets (e.g., Ima-
geNet) where the label set provides an estimate of the num-
ber of clusters, it struggles with imbalanced and uncurated
data [4]. Other approaches sample nearest neighbors as a
feature-driven within-domain augmentation [28,59]. While
these approaches differ in how they extract inter-instance
relationships, they all use within-domain feature similarity
to sample positive pairs or clusters and hence do not lever-
age the rich cross-modal relationships. Closest to our work
is Han et al. [36] who propose a co-training [6] scheme for
jointly learning image and optical flow representations. We
share their motivation of using similarity in one space (lan-
guage) to learn in another (vision). Furthermore, instead
of relying on co-training on the same dataset, we extract
distances from a text-only language model, allowing us to
leverage unaligned data.


https://github.com/mbanani/lgssl
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Figure 2. Language sampling yields semantically-similar and visually-diverse image pairs. We sample the three nearest neighbors
using a self-supervised visual model [13], an ImageNet supervised model [27], and a self-supervised language model [78]. While visual
sampling yields visually similar pairs, language sampling yields semantically relevant and visually diverse images. We argue that the
combination of semantic consistency and visual diversity are better for learning generalizable features.

3. Method

The goal of this work is to learn visual representations
that can generalize to other datasets. We extend image-
only contrastive learning beyond hand-crafted augmenta-
tions and visually-sampled clusters to learn from concep-
tually similar images. Through learning to associate images
that depict the same visual concept, models can learn vi-
sual invariances that more closely capture human semantics.
To achieve this, we propose sampling image pairs that have
similar captions using a pre-trained sentence encoder [78]
and using them for contrastive learning. This work does
not propose a new model or loss but rather a novel way of
sampling image views that is applicable to a variety of ap-
proaches and losses for learning visual representations.

3.1. Learning from Conceptual Similarity

Instance discrimination has been the dominant task for
visual representation learning. Its core intuition is that vi-
sual similarity is a good proxy for semantic similarity. The
standard approach generates positive view pairs using im-
age augmentations and maximizes their embedding similar-
ity, with or without negative views. While there has been a
large number of contrastive learning approaches, view pair
generation has largely remained the same. Other methods
use visual feature similarity to learn prototypes [3,9, 10] or
sample previously seen instances [28] for contrastive learn-
ing. While these approaches extend beyond instances and
consider relations in the dataset, they still rely on visual
similarity to generate their contrastive pairs. This limits the
visual invariances that they can learn [108].

We propose training models to identify the same visual
concept instead of the same instance. Our key observation
is simple: images that have similar captions often depict
similar concepts regardless of the actual appearance similar-
ity. This can be clearly seen in Fig. 2. Nearest neighbors in
visual representation space depict objects in similar scenes
and poses, with self-supervised models showing some color
invariances due to color augmentation. Conversely, sim-
ilarly captioned images depict objects in different colors,
poses, and contexts. This makes language-sampled images
an excellent source for visual representation learning as they
implicitly capture human-like visual invariances.

3.2. Sampling Image Pairs using Language

Given a captioned image dataset, we want to sample im-
age pairs that have very similar captions. While caption
similarity may be a good proxy for conceptual similarity,
measuring caption similarity is a challenge on its own. Tra-
ditional metrics such as BLEU [71] and CIDER [96] rely
on n-gram overlap, which can be too sensitive to phras-
ing and sentence structure. This makes them ill-suited for
our needs. Other metrics such as SPICE [1] account for
such variety by comparing parse trees; however, they still
can not account for different wording choices. Inspired by
advances in language models as well as approaches like
BERTScore [116] and CLIPScore [43], we use a pre-trained
sentence encoder to compute caption similarity.

Sentence encoders are trained to extract sentence-level
features [52, 61, 78]. We use SBERT [78], which fine-
tunes a pre-trained language model to allow it to better
capture semantic similarity using feature cosine distance.
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Figure 3. Contrasting Contrastive Formulations. While image-only and image-text contrastive learning directly extract views from the
instance, nearest-neighbor methods rely on a memory bank of previously extracted features for training. In contrast, our approach samples
nearest neighbors in caption embedding space using a pretrained language model and use the associated image for contrastive learning.

SBERT is trained in two stages: first, a language back-
bone is trained using a standard self-supervised task such
as masked [25, 65] or permuted [87] language modeling;
second, the language modeled is fine-tuned via contrastive
learning on a large combined dataset of 1 billion sentence
pairs. Fine-tuning the model in a contrastive way simplifies
downstream usage as it allows features to be compared di-
rectly using cosine similarity. We use an SBERT [78] model
with an MPNet [87] backbone. However, we find that our
formulation is not sensitive to the choice of language en-
coder, as shown in Tab. 5c.

Finally, we sample the nearest neighbors for all captions
in the language embedding space. We leverage modern sim-
ilarity search libraries [49] to perform the nearest neighbor
search quickly, despite the large dataset size. For exam-
ple, nearest neighbor sampling runs in under 3 hours for
RedCaps (12 million instances) on 4 GPUs, with 43 min-
utes spent on feature extraction and 117 minutes on nearest
neighbor search. Furthermore, we find that we could further
reduce the complexity of the sampling by only searching
within subsets of the data as shown in Appendix E.

3.3. Language-Guided Visual Learning

Our approach is applicable to several representation
learning methods as it only changes the training view pairs.
We focus on contrastive learning since its fairly minimal
setting allows us to analyze the impact of language guidance
with minimal confounding factors. We train SimCLR with
the language-sampled pairs and refer to it as LGSimCLR.
We also evaluate the impact of language guidance on Sim-
Siam [15] and SLIP [67], and find that they can similarly
benefit from language guidance. We only use random crop-
ping for image augmentations since language-sampled pairs
are naturally augmented versions of each other and find that
additional augmentations are not helpful. For LGSLIP, we
match their setup by applying the CLIP loss only between
the source’s image and caption, ignoring an additional loss
between the nearest neighbor image and its caption.

4. Experiments

Our experiments evaluate the efficacy of learning visual
features from conceptually similar images. We hypothesize
that a model trained with language guidance will learn use-
ful visual invariances and better generalize to downstream
tasks. We are interested in answering these questions: Does
language guidance improve generalization over other pre-
training approaches? Does language guidance generalize to
other datasets and pre-training approaches? How can lan-
guage be used for visual pre-training?

4.1. Experimental Setup

We formulate our experimental setup to compare the
efficacy of different learning signals. We train models
with language-guided sampling and compare them with
image-only self-supervised models and image-text con-
trastive models. We are interested in conducting controlled
experiments for a fair comparison.

Recent work in self-supervised learning has demon-
strated the impressive impact of scaling [12,76, 1 14]. While
such work has shown impressive performance, it has com-
plicated the evaluation as different models are trained on
different pretext tasks on different datasets using vary-
ing amounts of compute and training recipes. Further-
more, replication is difficult, if not impossible, due to the
unavailability of training data or prohibitive compute re-
quirements. Fortunately, several papers report results that
indicate that performance patterns often hold at smaller
scales [10, 12,21,67,76]. Hence, we conduct our experi-
ments at a scale that allows us to perform a comprehensive
evaluation and permits replication by others.

We conduct our experiments with a standard back-
bone [39] on publicly available datasets [11, 24, 85]. To
account for variation in training recipes, we retrain all meth-
ods from scratch using the same training recipe. We scale
down experiments to a level that permits fair comparisons
and replication. We also provide system-level comparisons
in Tab. 4 and scaling results in App. D.



Training details: We use a ResNet-50 backbone and train
all models using the AdamW optimizer [63] with a learning
rate of 1073 and a weight decay of 1072, We use a cosine
learning scheduler [62] with 5000 warm-up steps. Models
are trained using a batch size of 512 for 250k steps; this
corresponds to 10.5 epochs on RedCaps. We use a constant
number of steps to permit meaningful comparisons between
models trained on different datasets.

Evaluation setup: We evaluate all approaches using lin-
ear probe and fewshot classification on 15 classification
datasets inspired by [53,76]. We use the linear probe evalu-
ation proposed by [53] and learn a single linear layer using
logistic regression. We sweep over a range of cost values
and choose the value with the best validation performance.
We retrain a classifier on both train and validation splits and
report test performance. We also evaluate all approaches
on fewshot classification to understand their generalization
ability. We use a weighted kNN classifier on frozen support
features inspired by prior work showing its effectiveness
for fewshot classification [102]. Please see Appendices A
and B for more details on evaluation datasets and tasks.

Baselines: While there have been many proposed visual
representation learning approaches, they can be grouped
into several key directions that differ in the pretext task. We
focus our comparison on a few representative approaches to
explore the impact of the learning signal. We overview the
baselines here and provide more details in Appendix C.

Many of our baselines are variants of contrastive learn-
ing as shown in Fig. 3. Contrastive approaches operate over
paired source and target feature embeddings: z* and z?.
The goal is to maximize the similarity between the paired
embeddings and minimize it with respect to all other em-
beddings. Given a batch size N and embedding dimension
F, 2%, z' € RN*F_ The contrastive loss [86] is:

exp(sim(z;, 2;)/7)
ngvzl exp(sim(z, z})/7) ’

where 7 is a scaling parameter and sim(-, -) is cosine sim-
ilarity. Contrastive approaches primarily differ in how the
embeddings are computed.

L(z2°,2") = —log

D

Image-Only Contrastive Learning contrasts features ex-
tracted from two randomly augmented views of the same
image to perform instance discrimination [106]. We use
SimCLR [12] as a representative approach due to its sim-
plicity and strong performance.

Image-Text Contrastive Learning learns by contrasting
features extracted from images and their captions. Unlike
image-only approaches, this approach can learn semantics
from the captions. Radford et al. [76] first proposed this ap-
proach and has had several follow-ups that augment it with
additional self-supervised losses losses [56,59,67]. We use
CLIP [76] and SLIP [67] due to their simplicity.

Nearest Neighbor Contrastive Learning contrast source
embeddings with retrieved embeddings from a memory
bank. The target features are used to retrieve the near-
est neighbor embedding from a memory bank of previous
batches. Dwibedi er al. [28] proposed this approach for
image-only contrastive learning, while Li et al. [59] pro-
posed adapting this loss for language embeddings. We use
NNCLR [28] as Visual NNCLR and DeCLIP [59] with the
CLIP and the language NNS losses as Language NNCLR.

Image-Only Non-Contrastive Learning deviates from the
typical contrastive setup by learning without negative sam-
ples [15,34]. We use SimSiam as a representative approach
due to its simplicity and strong performance.

Cluster-based Contrastive Learning learn by contrasting
image features with learned prototypes [3,9, 10]. Prototypes
are estimated via clustering or learned jointly with the fea-
ture encoder. Caron et al. [10] report that different cluster-
based approaches perform similarly when provided with the
same algorithmic advances. We use an adapted SwAV with-
out the multi-crop augmentation strategy as it is equally ap-
plicable to other methods. We also compare against a pre-
trained SWAV checkpoint in Tab. 4.

4.2. Results

We train all approaches with a ResNet-50 backbone on
RedCaps and report results in Tabs. 1 and 3. Our model
outperforms all baselines with a significant margin for both
evaluations. We analyze the results below through a series
of questions.

Does language-guided sampling provide better train-
ing pairs than image augmentations? LGSimCLR
greatly outperforms SimCLR despite using the same learn-
ing objective. By using language sampled pairs instead of
image augmentations, LGSimCLR learns stronger invari-
ances. We find that the largest gains arise in fine-grained
datasets: Cars, CUB, and Food101. The performance gains
can be explained by considering the critique of Xiao et
al. [108]: the training augmentations dictate the invariances
learned by SimCLR as shown in nearest neighbor samples
in Fig. 2. Consider the third row of Fig. 2, while language
sampling depicts three Aston Martin cars in different spots,
visual nearest neighbors are sports cars in different poses
and colors, closely resembling the flip and color augmenta-
tions used for training. Similarly in the first row of Fig. 2,
visual nearest neighbors depict owls from different species
in similar poses, while language sampling retrieves three
great horned owls from different viewpoints. These trends
are further amplified when features are used directly for
fewshot classification. Language guidance allows us to cap-
ture relationships that go beyond visual similarity by train-
ing on image pairs that capture human semantics.



Table 1. Linear Probe Evaluations. We train ResNet-50 models on RedCaps and report performance of a linear probe using frozen features
on 15 downstream tasks. Models are split based on whether or not they require caption images for training. LGSimCLR outperforms all
previous approaches with strong performance gains for fine-grained classification datasets.
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SwAV 63.6 813 57.5 216 475 229 354 68.1 61.1 70.5 780 87.7 943 799 843 63.6
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Language Nearest Neighbor Memory Bank Table 2. Language-guided contrastive learning outperforms
Sampling 4096 16384 65536 image-text contrastive learning, regardless of text encoder.
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Figure 4. Nearest Neighbor methods are limited by the mem-
ory bank size. Even with a large memory bank, the nearest em-
bedding can still be unrelated to the source image while language
sampling provides us with conceptually similar pairs.

Can we just sample nearest neighbors from previous
batches? LGSimCLR outperforms NNCLR despite both
relying on nearest neighbors. NNCLR uses the nearest fea-
ture embedding from a memory bank in the same modality.
The quality of their retrieved samples is limited by the size
of the memory bank. To demonstrate this, we visualize the
nearest neighbors retrieved by NNCLR for different mem-
ory bank sizes in Fig. 4. We find that the retrieval qual-
ity is poor even for larger queues. Interestingly, we note
that NNCLR also underperforms SimCLR on RedCaps, de-
spite performing better on ImageNet. We posit that Ima-
geNet’s curated distribution explains this: a queue of 16k
will most probably contain instances from each class, re-
sulting in both visually and conceptually similar retrievals.
Additionally, the quality of nearest neighbors is affected by
the sampling feature space; features that are only trained
on image augmentations will have limited invariances as
shown in Fig. 2. We further explore the impact of sampling
space on training in Sec. 4.3.

Objective Text Encoder Linear Fewshot
Randomly-Initialized 72.9 71.5
Image-Text
Frozen SBERT 71.8 77.1
Imace-Imace Frozen CLIP (RedCaps) 78.3 824
gerimag Frozen SBERT 782 825

Can cluster-based approaches learn better features?
Similar to nearest-neighbor sampling, clustering is per-
formed using visual similarity. Furthermore, it is based
on an estimated number of clusters in the training dataset.
Although this can be determined for ImageNet due to its
known class structure, the number of clusters in an arbitrary
uncurated dataset is unknown. This results in a large perfor-
mance drop, as seen in Tab. 1 and Tab. 3. On the other hand,
sampling related pairs assumes no global structure within
the data and hence is able to better capture inter-instance
similarity. This results in nearest-neighbor sampling out-
performing clustering and both being outperformed by con-
trastive learning and language-guided contrastive learning.

Should we use language for guidance or supervision?
Our experiments indicate that LGSimCLR outperforms
both CLIP and SLIP. We consider two possible explana-
tions: (a) SBERT extracts better language embeddings than
CLIP can learn from the data, or (b) language-guided con-
trastive learning is a better training objective than image-
text contrastive learning. To evaluate this, we compare four
models in Tab. 2. The first two models use CLIP’s train-
ing objective: the first model uses a randomly initialized
language encoder, similar to CLIP. The second model uses
a frozen SBERT model as the language encoder and only
trains the projection layers. The second two models use
LGSimCLR’s training objective but sample pairs using a



Table 3. Few-Shot Evaluations. We train ResNet-50 models on RedCaps and report 5-way, 5-shot classification performance. We observe
that language results in huge performance gains as shown by the performance of CLIP and LGSimCLR. Furthermore, the use of any
augmentations hurts performance as seen by SLIP’s drop in performance.
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SWAV 645 540 61.8 458 849 36.5 34.1 748 66.5 78.1 755 72.6 804 729 64.5
SimSiam 639 499 572 49.5 845 393 379 757 678 79.7 815 69.6 80.6 794 65.5
Visual NNCLR 65.6 54.1 61.7 458 853 379 349 752 673 81.1 754 743 83.6 767 65.6
SimCLR 669 457 51.0 51.5 87.1 440 384 77.6 70.1 80.0 86.9 69.6 83.5 813 66.7
Language NNCLR 89.3 653 734 78.6 90.8 684 404 752 788 90.9 943 89.6 752 719 7713
CLIP 88.9 64.6 73.1 783 909 69.7 40.7 757 77.5 91.6 947 89.8 753 748 715
SLIP 81.5 63.5 70.8 63.1 91.3 629 42.1 79.6 764 884 922 834 827 80.8 75.6
LGSimCLR (Ours) 90.3 663 755 83.1 92.7 77.6 50.6 81.1 84.1 954 97.6 86.5 85.0 89.0 82.5

pre-trained language-only SBERT or the language encoder
from a CLIP model trained on RedCaps. We find that
image-image contrastive learning yields better visual fea-
tures for both setups. While CLIP does not benefit from an
SBERT backbone, LGSimCLR benefits from sampling us-
ing a language encoder trained on the same dataset. This
suggests that learning joint embeddings results in worse vi-
sual features than language-guided learning.

System-level comparisons: We compare LGSimCLR
with publicly-available checkpoints of prior approaches;
see Appendix C for details. We emphasize that while the
experiments reported in Tabs. 1 and 3 were done in a con-
trolled setup (same batch size, training data, optimizer), the
system level comparisons are trained on different datasets
with different training recipes and enhancements to further
boost performance; e.g., large batch sizes, longer train-
ing, multi-crop augmentation. Furthermore, it has been
shown that models trained on ImageNet implicitly benefit
from its curated nature [4,67]. Nevertheless, our approach
still outperforms prior self-supervised approaches. We fall
short of CLIP’s ResNet-50 due to its training scale; 64 x
larger batch, 32x larger dataset, and 75x. We also observe
that ImageNet-supervised ResNet-50 achieves better few-
shot performance. Examining the performance breakdown
in Tab. 10, we find the improvement mainly comes from
CIFARI10, CIFAR100, and Pets. We posit that this can be
explained by ImageNet’s class structure: mostly pets with a
large overlap with CIFAR’s classes.

4.3. Analysis

We now analyze language-guided contrastive learning by
evaluating the impact of pre-training data, the choice of em-
bedding space, and the pretext task. By understanding the
impact of those choices, we can better understand what the
model is learning.

Table 4. ResNet-50 System Level Comparisons. We outperform
prior self-supervised approaches despite them benefiting from Im-
ageNet’s curation for training and using larger batch sizes. CLIP
outperforms us due to the scale of its training.

Batch #Img Updates Dataset Linear Fewshot
Supervised [104] 1024 1.3x108 ImageNet 78.0 85.7
SimSiam [15] 512 1.3x10%  TmageNet 729 787
SimCLR [13] 4096 1.0x10° ImageNet 75.4 77.4
MoCo [16] 4096 1.3x108 ImageNet 77.7 80.1
SwWAV [10] 4096 1.3x108 ImageNet 78.2 78.5
CLIP [76] 32768  1.0x10'0 CLIP 81.8 87.8
LGSimCLR 512 1.3x108  RedCaps 782 825

Approach generality: We extend language guidance to
other contrastive approaches: SimSiam and SLIP. We ob-
serve that language guidance uniformly improves perfor-
mance for all methods, as shown in Tab. 5a. Furthermore,
the difference between SimCLR and SLIP shrinks when
adding language guidance. This suggests that language
guidance provides the model with similar semantics to the
ones learned from an image-text contrastive loss, resulting
in diminished gains from the additional image-text loss.

Impact of training dataset: We train our model on four
datasets: CC3M [85], CC12M [11], RedCaps-2020, and
RedCaps [24]. In Tab. 5b, we observe that larger datasets
result in stronger performance, indicating that our approach
could scale well with even larger datasets. Furthermore,
we observe that RedCaps results in better performance than
Conceptual Captions. This may be attributed to the higher
quality of captions in RedCaps; while the alt-text captions
CC3M and CCI12M can be short and contain image meta-
data, RedCaps captions are diverse, longer, and more de-
scriptive. This allows our model to sample more interesting
visual pairs that capture more visual diversity. We provide
qualitative results in Appendix F to support this.



Linear Fewshot

Tmage Aug. Tanguage SBERT (MPNet) 78.2 82.5

Size Linear Fewshot SBERT (MiniLM) 78.6 83.3

Linear Fewshot Linear Fewshot CC3M 27M 715 76.3 CLIP Language (ViT-B/32)  78.3 83.1

SimSiam 65.7 65.5 71.2 75.7 CC12M 10.9M  76.8 81.9 FastText BowW 76.1 80.9
SimCLR 68.5 66.7 78.2 82.5 RedCaps 2020 32M  73.8 78.8 ImageNet-supervised 78.3 81.8
SLIP 74.0 75.6 78.8 82.8 RedCaps 12.0M 78.2 82.5 SimCLR (ImageNet) 73.1 74.6

(a) Approach Generality

(b) Impact of training dataset

(c) Impact of sampling space

Table 5. Analysis Experiments. We conduct a series of analysis experiments to understand language-guided contrastive learning. The re-
sults indicate that language sampling is beneficial to several formulations and scales well with larger datasets. Furthermore, while language
sampling consistently results in good pairs for training, visual sampling only helps if it has access to semantics through supervision.

Impact of sampling space: The idea of using offline
nearest-neighbor sampling does not require a specific lan-
guage model or even a specific modality. We explore
other choices for embedding space: four sentence en-
coders and two image models. In our experiments, we use
SBERT’s MPNet model [78, 87]; the highest performing
SBERT model for sentence similarity. We compare it to
two other sentence transformers: a smaller SBERT model,
MiniLM [100], and the language encoder from CLIP [76].
We also compared against a bag-of-words (BoW) sentence
encoder that uses FastText [7] embeddings. Results are in
Tab. 5c. While we expected that using CLIP for sampling
would improve performance due to its multimodal training,
we were surprised that MiniLM also improved performance
despite its lower performance on language tasks. We find
that pairs obtained using a BoW model result in a weaker
performance which might hint at the importance of contex-
tual sentence embeddings. Nevertheless, the BoW-sampled
pairs still result in higher performance than all the other
baselines on RedCaps.

We also consider training with pairs sampled using two
visual models: ImageNet-supervised ResNet-50 [104] and
ImageNet-trained SimCLR [13]. We find that using a visual
model for sampling is only beneficial if the visual model
captures semantic relations; e.g., through supervised train-
ing. Using a self-supervised language model results in a
strong drop in performance relative to the other sampling
spaces. Nevertheless, it still allows the model to achieve
better performance than using a self-supervised visual ap-
proach on the same data. This indicates that while language
is a better modality to use, “sample-guided” contrastive
learning can still achieve a stronger performance than only
using self-supervised learning.

Limitations: We observe a few limitations in our approach.
Image captions can be noisy, vague, and often omit obvious
relations in the image [5]. While this broadly affects image-
language models, it can result in us retrieving unrelated im-
age pairs. For example, captions like “I found this in the
garden” or “Photo from our family trip” could describe a
large range of images, some of which are unrelated. We
expand on this in Appendix F. Image descriptions also de-

pend on the context and the perceiver; e.g., a tourist and an
art curator will describe artwork in very different ways. We
observe that descriptions in topic-focused subreddits (e.g.,
r/birdpics and r/woodworking) are more specific than
in generic subreddits (e.g.,r/itookapicture and r/pics).
Our experiments in Appendix E support this observation.
Since a caption only captures one aspect of the image, sam-
pled pairs can be similar for a variety of reasons. Allowing
the model to condition the feature extraction or similarity
calculation on captions could alleviate this issue.

5. Conclusion

We propose using language to find conceptually similar
images for contrastive learning. This is based on a simple
observation: people describe an object in similar ways even
when it appears in different contexts. We use pre-trained
language models to sample similar captions and use the cap-
tioned images for contrastive learning. We hypothesize that
using language guidance instead of image augmentations
would result in learning more human-like invariances.

We evaluate our approach on multiple train and
test datasets and find that it outperforms previous self-
supervised and image-text contrastive models. Our analysis
demonstrates the utility of using nearest-neighbor instances
for training and the superiority of language sampling over
other approaches for unlabeled datasets. Our findings align
with prior work that critiques the use of image augmenta-
tions [81, 108] and shows the utility of cross-modal guid-
ance [36] and intra-instance relationships [28,51]. Our re-
sults demonstrate the potential of incorporating language
guidance in contrastive learning. We hope that future work
will explore scaling up our approach to larger and more di-
verse datasets, as well as modeling approaches that further
integrate language into the learning process.
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A. Evaluation Tasks

We compare all models by evaluating the encoder’s
frozen features on two downstream classification tasks: lin-
ear probe and fewshot. We chose to use simple classifiers
since they allow us to evaluate the features as-is and con-
duct a comprehensive hyperparameter sweep to ensure a
fair comparison. We explain the two evaluation setups in
more detail below. Our implementation can be found at
https://github.com/mbanani/lgssl.

Linear Probe Classification

We follow the linear probe evaluation proposed by Ko-
rnblith ez al. [53] of training a logistic regression classi-
fier using the L-BFGS optimizer [60]. We follow prior
work [53,76] and perform a hyperparameter sweep over the
cost values in the logistic regression loss. We sweep over 96
values in log space from 10~° to 10°. During the hyperpa-
rameter sweep, we train on the train split and validate on the
valid split. We choose the cost value with the best valida-
tion performance and train a final classifier on the combined
train and validation instances. We use the PyTorch [74] im-
plementation of L-BFGS with all the default parameters ex-
cept for the maximum number of iterations, which is set to
1000 similar to CLIP [76]. Our evaluation metric depends
on the dataset, as shown in Tab. 6, to account for class im-
balance.

Few-Shot Classification

We also use fewshot classification as an evaluation for
frozen features. Prior work [95, 102] has shown that simple
classifiers on top of frozen features are strong baselines for
fewshot classification. More specifically, Wang et al. [102]
shows that when features are normalized (mean subtraction
and L2 normalization), a nearest neighbor classifier is a very
effective and strong baseline for fewshot classification. In-
spired by these results, we use a simple weighted nearest
neighbor classifier to evaluate pre-trained frozen features.
We set k to be the size of the support set and classify the
features as follows:
>

(Ivy) EDsupport

Ljp—ysim(f(I'), f(I)) ()

Yy = arg max

where 1}, is an indicator variable that is 1 if y is the same
class as v and O other wise, sim(-,-) is cosine similarity
between two vectors, [ is the visual encoder, I’ is the target
image, Dgypport 1s the support set.

We adopt 5-way, 5-shot classification as our fewshot
classification task. We sample five random classes for each
episode and then sample five images for each class in the
training set, resulting in 25 labeled training images. We also
sample 5 images for each class from the test set as our test
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images. We use all available test images for classes with
less than five test images for that class. This is primarily
an issue for Caltech-101 [30]. We sample 5000 episodes
and compute the average test accuracy across all episodes.
We experimented with increasing the number of episodes
to 50000 to improve evaluation but noticed little change in
the mean performance. We also report the 95% confidence
interval for each dataset.

B. Evaluation Datasets

We list all the evaluation datasets used in Tab. 6. We
use TensorFlow datasets for evaluation to ensure easy repli-
cation [92]. For all datasets, we preprocess the images by
resizing the image so that its smaller dimension is 224 using
bilinear interpolation followed by a center crop to 224 x 224.
We use bilinear interpolation since improves performance
on low-resolution datasets such as CIFAR-10 and CIFAR-
100. We normalize the images using ImageNet’s mean and
standard deviation for pixel values for all models except for
pre-trained CLIP. For CLIP, we use their provided mean
and standard deviation values as they greatly impact per-
formance: an average gain of approximately 4% for linear
probe evaluation. We exclude Patch Camelyon from the
fewshot evaluation since it is a binary classification dataset.
We also include statistics for the ImageNet dataset evalua-
tions done in Appendix G.

C. Baselines

For fair evaluation, we retrained previous methods from
scratch with several methods reimplemented. We also pro-
vided several system-level comparisons using pre-trained
checkpoints provided by prior work. Below, we provide
additional details on our baselines.

Pre-trained model checkpoints

We use publicly available checkpoints of various pre-
trained models for sampling and experimental comparisons:

* SBERT [78]: We use two checkpoints from SBERT:
all-mpnet-base-v2 (MPNet backbone [87]), and
all-MinilM-L12-v2 (MiniLM backbone [100]). Those
models were used for sampling, while MPNet was also
used as a frozen backbone in analysis experiments.

e CLIP [76]: We use checkpoints available in the official
Github repository! for both system-level comparisons
and sampling. We use the RN50 checkpoint in the system-
level comparisons to match the backbone for other mod-
els. We use the ViT-B/32 checkpoint for sampling to pro-
vide the strongest visual sampling performance in evalu-
ating different sampling modalities.

Thttps://github.com/openai/CLIP
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Table 6. Evaluation Datasets. Orange rows indicate datasets that
do not have an official validation split; we constructed one by ran-
domly holding out 20% of the official train split. Blue rows indi-
cate datasets that do not officially define splits; we randomly sam-
ple instances to construct non-overlapping splits. For ImageNet,
the validation set is used as the test set, and we construct a val-
idation set by randomly holding out 20% of the official training
split. ImageNet variants, highlighted in green, are all test sets for
models trained on ImageNet.

Dataset Classes Train Val  Test Metric
Food-101 [8] 101 60600 15150 25250 accuracy
CIFAR-10 [55] 10 40000 10000 10000  accuracy
CIFAR-100 [55] 100 40000 10000 10000  accuracy
CUB-2011 [103] 200 5795 1199 5794  accuracy
SUN397 [107] 397 15880 3970 19849  accuracy
Stanford Cars [54] 196 6515 1629 8041 accuracy
FGVC Aircraft [64] 100 3334 3333 3333 mean-per-cls
DTD [19] 47 1880 1880 1880  accuracy
Oxford-IIIT Pets [73] 37 2944 736 3669 mean-per-cls
Caltech-101 [30] 102 2448 612 6084 mean-per-cls
Oxford Flowers [69] 102 1020 1020 6149 mean-per-cls
STL-10 [20] 10 4000 1000 8000  accuracy
EuroSAT [40] 10 5000 5000 5000  accuracy
RESISC45 [17] 45 3150 3150 25200 accuracy
Patch Camelyon [97] 2 262144 32768 32768  accuracy
ImageNet [22] 1000 1024934 256233 50000 accuracy
ImageNet A [42] 200 N/A N/A 7500  accuracy
ImageNet R [41] 200 N/A N/A 30000 accuracy
ImageNet v2 [77] 1000 N/A N/A 10000 accuracy
ImageNet Sketch [99] 1000 N/A N/A 50889  accuracy

* ImageNet pre-trained model: We use the checkpoints
provided by torchvision package.” For system-level
comparisons, we use the ResNet-50 IMAGENET1K_V2
checkpoint [104] as it achieves better performance than
the original ResNet-50 checkpoint [39]. We also use
ViT-B/32 [27] checkpoint to compare with the sampling
strategy using a CLIP checkpoint.

* SimCLR [13]: We use the SimCLR v2 checkpoint pro-
vided by PyTorch Lightning Bolts.> While SimCLR re-
leased some checkpoints for TensorFlow, we found that
converting them to PyTorch using the recommended tools
resulted in lower performance. We use the same check-
point for both sampling and system-level comparison.
Note that SimCLR only released models trained for 800
epochs.

* SimSiam [12]: We use the checkpoint trained with 512
batch size from the official Github repository* as it more
closely matches our training setup.

* MoCo [16]: We use the official checkpoint for MoCo

zht‘cps ://github.com/pytorch/vision
3https ://lightning-bolts.readthedocs.io/
4https ://github.com/facebookresearch/simsiam
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v3.%> We use the checkpoint for the model trained for 100
epochs to match other checkpoints more closely.

¢ SWAV [10]: We use the official SWAV checkpoint.6 We
use the checkpoint trained for 100 epochs to match the
training duration of other methods. Unlike our imple-
mentation, the full SWAV model is trained using Multi-
Crop augmentation strategy.

Retrained models

We reimplement and retrain all baselines. When an official
implementation was available, we adapted it to fit within
our pipeline. For all models, we use a ResNet-50 backbone
from torchvision with random initialization and a feature
dimension of 2048 (the fc layer is removed). We use a lin-
ear layer or a multi-layer perceptron (MLP) for projection
layers. Every layer except for the last is followed by batch
normalization and a ReLU non-linearity. We describe an N-
layer MLP with N + 1 numbers depicting the input dimen-
sion for the first layer, followed by the output dimension for
all layers.

We use two forms of augmentation: SimCLR or global
crop. Global crop consists of a random resized square crop
with a scale of (0.5, 1.0) to an image size of 224 x224. Sim-
CLR augmentations consist of random resized square crop,
color jittering, random grayscale, random horizontal flip-
ping, and Gaussian blur. We use the same augmentation pa-
rameters as prior work [13, 16]. All images are normalized
using ImageNet’s mean and standard deviation statistics.

We provide baseline-specific details below and refer the
reader to our implementation for more details:

* SimCLR: We use a 3-layer MLP as a projection layer
with feature dimensions (2048, 2048, 2048, 128) simi-
lar to the original paper [13]. We use the SIimCLR loss
implementation from Mu et al. [67], which adapts the
original loss for the distributed settings for inference and
gradients. We use SimCLR augmentations for SimCLR
and global crop augmentations for LGSimCLR. We ex-
perimented with mixing SimCLR augmentation and lan-
guage sampled pairs and found that it results in slightly
inferior performance: adding augmentations reduces the
linear probe average accuracy from 78.3 to 77.9.

* CLIP: We use a linear projection layer to a feature di-
mension of 512 similar to the original paper. We use the
smallest CLIP language encoder, similar to SLIP [67],
with a feature dimension of 512 and a linear language
projection layer. We use the loss implementation from
SLIP [67] but adapt it to share the loss gradients similar
to the SimCLR loss. We use global crop augmentation

5https: //github.com/facebookresearch/moco-v3
Shttps://github.com/facebookresearch/swav
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for CLIP since SLIP [67] reported that it performs better
than CLIP’s original center crop preprocessing.

e SLIP: We follow SLIP’s implementation and combine
the augmentations, projections, and losses from Sim-
CLR and CLIP. We use the same language transformer as
our CLIP implementation. We generate two augmented
views with SimCLR augmentation for the SimCLR loss
and one with global cropping for the CLIP loss. Those
views are passed through their respective projections (3-
layer MLP for SimCLR and linear projection for CLIP)
and losses. For LGSLIP, we only use the global crop
augmentation, resulting in only two augmented views
and forward passes through the encoder instead of 3 for
SLIP. We apply the SimCLR loss between the language-
sampled image pair and the CLIP loss between only one
of the images and its caption.

» SimSiam: We follow the original SimSiam implementa-
tion and use a 3-layer MLP as our projection head (2048,
2048, 2048, 2048) and a 2-layer MLP as our prediction
head (2048, 512, 2048). We use the loss formulation
from the original paper. For LGSimSiam, we use the
same formulation but use global crop instead of SImCLR
augmentations.

* SwAV. We follow the original SwaV implementation and
use a 2-layer MLP (2048, 2048, 128) as our projection
head and a linear layer as our prototype head with an
output dimension of 3000. The prototypes are initially
frozen to improve training dynamics as suggested by the
SwAV repository. We use the distributed Sinkhorn clus-
tering implementation from the official code release.

* NNCLR. We rely on the implementation of NNCLR
provided by Lightly [91] since NNCLR [28] did not
release an implementation. Specifically, we use the
memory bank implementation from Lightly and reimple-
ment NNCLR. While our NNCLR implementation out-
performs SimCLR on ImageNet, as reported in the paper,
it underperforms on RedCaps. We use a 3-layer MLP
(2048, 2048, 2048, 256) as our projection head and a
2-layer MLP (256, 4098, 256) as our prediction head.
We also use a queue of length 16384 (equivalent to 32
batches) for the memory bank. For Language NNCLR,
we also use the memory bank from Lightly, similar to De-
CLIP [59]. We augment the CLIP implementation with a
memory bank for the language encoder. We use a weight-
ing of 0.8 for the CLIP loss and 0.2 for the language NNS
loss, similar to DeCLIP [59].

D. Batch Size Scaling

We explore the scaling performance of our approach for
batch size. Prior work has shown that contrastive meth-
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Table 7. Batch Size Scaling. The performance of both SimCLR
and LGSimCLR scales with larger batch sizes with the LGSim-
CLR outperforming SimCLR even for larger batch sizes.

SimCLR LGSimCLR
Batch Size Linear Fewshot Linear Fewshot
256 67.5 67.2 71.7 82.3
512 68.5 66.7 78.2 82.5
1024 69.3 68.4 78.6 82.6
2048 69.8 68.6 79.1 83.1

ods can benefit larger batch sizes [12, 13,76]. While we
use a batch size of 512 to allow us to perform comprehen-
sive experiments and evaluations given limited compute, we
conduct a few experiments to evaluate scaling for SimCLR
and LGSimCLR. Our results, shown in Tab. 7, indicate that
our approach scales with batch size and maintains our per-
formance gains over SimCLR for larger batch sizes. Fur-
thermore, we show in Tab. 5b that our model benefits from
larger datasets. Our experiments also show that data scaling
comes in two ways: training on more instances and sam-
pling nearest neighbors from a larger pool of images. We
explore this more in Appendix E.

E. Dataset Size Scaling

Scaling up the dataset size not only increases the train-
ing instances, but also broadens the scope to sample near-
est neighbors from. In this section, we study the impact of
data scaling on model performance. First, we compare our
RedCaps-trained LGSimCLR model with another model
trained using a subset of RedCaps instances belonging to
the year 2020. We also train multiple LGSimCLR models
using RedCaps, each having a restricted scope of nearest
neighbor sampling. RedCaps has a natural structure to make
this possible: instances (posts) are grouped in different sub-
reddits, across multiple years. We expect instances within
the same year to be weakly related, and instances within a
subreddit to share a consistent theme; e.g., r/food has im-
ages of food dishes with text describing main ingredients.
We consider three restricted sampling variants of RedCaps:
Year, Subreddit, and Subreddit-Year.

We hypothesize that Subreddit sampling will limit the
pool of nearest neighbor sampling to images within a sim-
ilar domain resulting in higher quality neighbors. In con-
trast, the Year variant will only limit the number of im-
ages to consider, reducing the probability of finding images
with similar captions as neighbors. While posts within the
same year might be related to major events (e.g. COVID-
19 pandemic increased the proportion of indoor images in
year 2020), the relationship is much weaker than domain-
specific subreddits. Additionally, Subreddit-Year, which
only samples the nearest neighbors from the same subreddit



Table 8. Impact of Sampling Scope. LGSimCLR can still learn
good features if it is restricted to only sampling from a subset
of the dataset. Domain-specific partitioning (e.g., subreddits) im-
proves performance, while domain agnostic partitions (e.g., Year
or Subreddit-Year) minimally degrades performance.

Dataset Sampling Scope #Partitions Linear FewShot

RedCaps 2020 All 1 73.8 78.8
All 1 78.2 82.5

RedCaps Year . 4 77.2 80.2
Subreddit 350 79.0 80.5
Subreddit-Year 1391 71.6 78.2

posted in the same year, will combine both effects.

Our results, presented in Tab. 8, show that domain-
specific sampling improves performance. Meanwhile, more
random sampling minimally degrades performance. Fi-
nally, restricting the scope of the nearest neighbor sam-
pling is not the same as subsampling the data. This is
shown by the higher performance of RedCaps with Year
sampling compared to RedCaps-2020. Those results indi-
cate two opportunities: First, our approach can scale to very
large datasets by only performing nearest-neighbor searches
within subsets of the data. This is especially beneficial in
some domains, such as federated learning. Second, iden-
tifying other domain structures within the dataset can im-
prove performance by allowing the model to sample nearest
neighbor images within the same domain.

This result indicates that our approach could scale to
gigantic datasets without requiring the nearest neighbor
search over the full dataset. While identifying semantically-
related partitions in the datasets could improve perfor-
mance, the model could perform very well by splitting ran-
domly or using metadata information such as year or lo-
cation, which might provide some relevant, although very
weak, structure.

F. Qualitative Analysis of Sampled Pairs

We present language-sampled nearest neighbors for dif-
ferent datasets in Fig. 5. We note that CC3M and CC12M
have many stock images with slightly robotic descriptions,
which is explained by how those datasets were collected.
For example, see Fig. 5 top row: the caption indicates ‘an-
imal’ instead of referring to the dog in the image. Mean-
while, RedCaps captions can be more descriptive, referring
to pet names or specific product brands or models. Empiri-
cally, we find that RedCaps results in better performance.

We also observe some repeated patterns in the types of
nearest neighbor captions we get. We identify four patterns,
shown in Fig. 6, and discuss them below:

Similar objects in different contexts: The first set of re-
sults shows examples where language-guided sampling re-
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sults in diverse images depicting the same concept. For ex-
ample, while pairs sampled using visual models (regardless
of whether they are self-supervised or supervised) depict
shoes on their own, language samples three images of the
same shoe model in very different contexts. The third row
also depicts hummingbirds in very different poses. At the
same time, self-supervised models provide three birds on a
branch, and supervised models provide three hummingbirds
taken in similar poses as the source image.

Visual similarity misses the object: The second set shows
examples where visual similarity misses the salient object in
the image. The fourth row is a halibut dish with vegetables.
Visual sampling results in other dishes pictured from the
top, while language sampling gives us three other halibut
dishes with vegetables that look different from the source
image. Rows 5 and 6 show examples where visual sam-
pling focused on the overall appearance and missing the
herb scissors (row 5) and coyote (row 6). Self-supervised
models provide the nearest neighbors with animals in the
snow, but different animals like a lynx or a dog.

Captions capture subtle relationships: The third set
shows examples where the language captures subtle rela-
tionships. Can you guess what the captions were? In row
7, the source image was captioned “itap of a tunnel cre-
ated by the autumn leaves.” Visual similarity focuses on the
trees, while language similarity results in images depicting
autumn more clearly. In row 8, the source caption mentions
a cheetah which can be seen at the right corner of the source
image, but the overall sunset appearance results in different
sets of visual nearest neighbors. Finally, the caption for row
9 mentions a mating ritual between birds. This element is
captured by language guidance, while visual similarity re-
trieves images of animals in the grass. These results suggest
that conditioning the model similarity on the caption could
result in a better-posed learning problem.

Vague Captions: Those examples show cases where the
caption is very vague or unrelated to the image content, re-
sulting in odd nearest neighbors in the language space. Can
you guess the captions from the nearest neighbor images?
Answers are in the footnote.” The caption of row 10 refers
to the appearance of the eyes of the penguin, but since the
“googly eyes” can also refer to a small toy, it retrieves im-
ages of that toy being used on a coffee machine and a wall.
In row 11, the caption asks what the object is, but this is in-
dependent of the object. This results in language retrievals
with miscellaneous objects, while visual retrievals return
other insects. Finally, row 12 shows a case where the re-
trieval uses the dog’s name in some context, resulting in the
retrieval of other pets playing in gardens. These cases rep-

7Source Image Captions:
row 10: “Built-in googly eyes.”
row 11: “I found this today. Anyone knows what it is?”
row 12: “Cinda having fun in the garden!”



resent limitations of language sampling that might result in
poor learning. However, since the core issue arises from
misalignment or vagueness in the caption, it is a limitation
shared by any model that uses captions and images.

G. Additional Results

Due to space limitations, we only report average perfor-
mance for several methods in the main paper. Here, we re-
port the complete performance breakdown for all methods
on linear probe in Tab. 9 and fewshot classification Tab. 10.
For fewshot classification, we also report the 95% confi-
dence interval as a subscript.

We also evaluate all approaches on several ImageNet
evaluation benchmarks. We use the same evaluation se-
tups described in Appendix A and report results in Tab. 11
Specifically, we train on the ImageNet train set and eval-
uate on the ImageNet validation set [22], and several al-
ternative ImageNet test splits that assess robustness. Ima-
geNet A(dverserial) [42], ImageNet R(enditions) [41], Im-
ageNet v2 [77], and ImageNet Sketch [99]. We observe
similar performance trends for the RedCaps-trained mod-
els, with LGSimCLR outperforming all baselines, LGSLIP
outperforming LGSimCLR, and training on larger datasets
or with larger batch sizes improving performance. We also
note that the difference in performance between our mod-
els and the ImageNet pre-trained checkpoints is larger due
to the smaller domain shift they experience from ImageNet
training.
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Figure 5. Language sampled image pairs for the different pretraining datasets. We show qualitative results for language guided
sampling for our pretraining datasets. While the captions for conceptual captions can be generic, RedCaps captions are more natural;
including longer and more natural descriptions as well as irrelevant details.
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Figure 6. Nearest Neighbors on RedCaps for multiple sampling options. We sample the three nearest neighbors using a self-supervised
visual model [13], an ImageNet supervised model [27], and a self-supervised language model [78]. The examples are representative of
some patterns we observe in the sampled pairs. Language guided sampling allows us to get pairs that depict similar objects in different
poses and contexts in ways that go beyond visual sampling. However, sometimes the relationships depicted in the language can be too
subtle. Furthermore, sometimes captions are noisy resulting in unrelated language-sampled pairs.
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Table 9. Linear Probe Evaluations. We report the linear probe classification performance of all baselines and models. Models are grouped
by experiment.
—
=32 I, - 5 g
. =) — — = =) < x| = ° = = = = = @]
Model Dataset Sampling Space HE OO O L0 ;w04 A A L R O »n RO OM A& Avg
Pre-trained Checkpoints
Supervised [104] ImageNet - 71.0 93.2 77.0 68.4 63.0 48.7 41.0 73.0 92.6 91.9 88.3 98.2 95.8 85.3 82.4 78.0
SimSiam [15] ImageNet - 70.6 92.2 749 47.1 0.3 52.4 52.6 74.4 83.3 89.3 91.8 95.9 96.7 86.4 852 72.9
MoCo v3 [16] ImageNet - 71.4 93.3 77.9 51.5 60.4 52.4 53.0 73.6 85.8 90.4 92.1 96.8 96.3 85.0 85.0 77.7
SWAV [10] ImageNet - 72.8 93.0 77.5 48.8 63.2 55.5 52.7 77.2 84.5 89.9 93.4 97.2 96.7 86.9 83.7 78.2
SimCLR [13] ImageNet - 71.4 91.3 73.9 44.3 60.3 44.6 46.7 74.9 83.9 87.4 90.2 96.2 95.9 84.4 85.1 754
CLIP [76] CLIP (400M) - 86.4 88.7 70.2 69.8 72.5 78.4 49.4 76.3 88.0 88.9 96.1 97.2 94.7 87.9 82.7 81.8
RedCaps-trained Baselines
SwAV RedCaps - 63.6 81.3 57.5 21.6 47.5 22.9 35.4 68.1 61.1 70.5 78.0 87.7 94.3 79.9 84.3 63.6
SimSiam RedCaps - 64.1 79.9 56.1 28.2 48.3 29.5 41.2 66.2 69.1 73.6 83.6 85.7 94.4 82.1 83.3 65.7
SimCLR RedCaps - 69.0 82.9 61.6 30.6 52.6 33.7 43.7 69.8 70.5 74.1 86.9 88.0 95.4 84.6 84.4 68.5
Visual NNCLR RedCaps - 65.4 82.8 60.2 26.6 50.0 26.6 40.9 68.0 65.2 75.4 83.5 88.5 95.3 82.2 83.8 66.3
CLIP RedCaps - 80.9 84.7 62.7 50.4 57.4 458 36.7 67.6 79.8 84.0 91.0 93.5 93.9 82.2 82.6 72.9
CLIP (SBERT Encoder) RedCaps - 80.5 81.3 59.4 50.6 56.9 459 35.7 69.1 76.7 81.7 90.2 93.6 92.9 81.1 81.3 71.8
Language NNCLR RedCaps - 81.2 83.1 61.9 48.6 56.5 45.1 37.2 68.8 78.1 82.0 90.2 93.4 92.5 81.1 80.7 72.0
SLIP RedCaps - 77.7 87.2 67.0 42.4 58.1 48.7 452 72.3 79.5 82.7 92.1 92.7 95.6 85.5 83.4 74.0
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 83.2 88.0 69.3 60.4 59.7 64.0 54.0 72.7 82.6 88.5 95.7 94.1 96.4 88.1 82.2 78.6
LGSimCLR RedCaps CLIP (400M) 83.3 87.6 68.9 60.1 59.9 62.9 53.7 70.5 82.6 88.7 95.6 94.3 96.2 88.2 82.0 78.3
LGSimCLR RedCaps CLIP (RedCaps)  83.7 88.0 67.8 59.6 60.7 60.8 53.7 71.4 82.4 89.1 959 93.8 96.1 88.4 82.7 78.3
LGSimCLR RedCaps FastText BoW 80.8 85.5 66.7 54.2 58.7 56.6 51.1 69.9 78.3 88.0 94.4 92.5 96.2 87.7 81.5 76.1
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 75.7 92.2 75.4 57.5 60.2 53.7 52.2 71.7 90.3 90.2 93.1 95.5 96.8 87.7 83.0 78.3
LGSimCLR RedCaps SimCLR 71.4 87.0 67.5 36.8 57.9 41.8 46.3 74.2 82.8 82.6 90.7 93.4 95.7 85.2 83.2 73.1
LGSimCLR RedCaps CLIP (400M) 83.6 90.7 72.1 58.3 62.5 59.2 51.3 75.5 88.7 90.3 95.2 95.4 96.2 88.6 82.9 79.4
Sampling Scope
LGSimCLR RedCaps SBERT - Year 82.6 85.8 66.1 58.1 59.0 57.1 52.8 71.9 80.7 88.1 95.6 93.1 96.1 88.0 82.8 77.2
LGSimCLR RedCaps SBERT - Sub-Year 82.4 86.8 66.9 56.4 59.5 54.5 51.4 72.1 89.0 89.8 94.9 95.2 95.8 88.1 81.9 77.6
LGSimCLR RedCaps SBERT - Sub 83.2 88.7 69.5 60.4 59.9 60.0 53.0 72.4 89.7 90.3 96.2 94.8 96.2 88.4 82.2 79.0
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 64.4 84.6 65.4 44.4 59.1 41.9 46.8 66.0 70.7 83.9 91.2 91.6 95.6 86.1 80.5 71.5
LGSimCLR CC12M SBERT (MPNet) 73.4 88.6 70.1 50.4 66.0 58.7 52.4 72.6 79.0 88.3 92.6 94.5 95.6 87.5 81.6 76.8
LGSimCLR RedCaps 2020  SBERT (MPNet) 77.8 84.3 64.5 53.9 53.9 51.7 48.1 66.4 76.2 83.9 93.9 89.9 95.4 86.4 81.4 73.8
Batch Size Scaling
SimCLR (256) RedCaps - 67.1 83.1 60.5 28.5 51.0 32.5 42.4 70.0 68.3 73.9 85.8 86.5 96.2 84.2 83.1 67.5
SimCLR (1024) RedCaps - 70.0 84.4 62.8 31.9 52.4 35.8 442 709 72.7 74.7 87.9 88.3 95.6 84.8 83.3 69.3
SimCLR (2048) RedCaps - 70.4 83.9 62.6 32.5 53.3 36.7 44.9 70.9 73.1 75.5 88.1 88.8 96.5 85.1 84.2 69.8
LGSimCLR (256) RedCaps SBERT (MPNet) 82.9 87.3 68.0 58.7 60.2 58.2 52.6 73.2 81.1 88.2 95.2 94.0 96.1 87.7 81.8 77.7
LGSimCLR (1024) RedCaps SBERT (MPNet) 83.7 87.1 68.1 62.0 60.7 63.4 53.7 73.4 80.8 89.8 95.7 93.7 95.7 88.3 82.6 78.6
LGSimCLR (2048) RedCaps SBERT (MPNet) 84.2 88.2 69.1 63.2 60.9 65.2 55.5 71.4 81.7 89.7 96.0 94.4 96.3 88.5 82.1 79.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 83.2 87.8 69.0 59.3 60.3 62.3 53.4 71.2 81.8 89.4 95.9 94.0 95.6 88.0 81.1 78.2
LGSimSiam RedCaps SBERT (MPNet) 73.8 83.4 62.6 40.6 54.6 41.1 47.3 68.6 66.5 85.2 90.3 90.8 95.7 85.6 81.3 71.2
LGSLIP RedCaps SBERT (MPNet) 84.5 87.4 69.2 60.7 62.3 62.2 52.5 73.1 83.1 90.2 96.3 94.8 95.3 88.4 82.7 78.8
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Table 10. Few-Shot Evaluations. We report the 5-way, 5-shot classification performance of all baselines and models. Models are grouped
by experiment. The subscript reports the 95% confidence interval in prediction across 5000 episodes.
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Model Dataset Sampling Space = &} &) &} 7 &} < a [ &) = 17 = & Avg.
Pre-trained Checkpoints
Supervised [104] ImageNet - 81.6,, 84.1,. 87.8,, 91.9,. 95.0,, 75.7,. 53.1,, 804, 97.6,, 974, 914, 952, 83.6, 852, 857
SimSiam [15] ImageNet - 70.5,, 77.5,. 82.0,, 67.4,, 92.1,, 51.9,. 43.7,, 81.8,. 86.7,, 94.9,, 93.7,, 89.7,, 87.7,, 82.2,, 78.7
MoCo v3 [16] ImageNet - 72.7,, 823, 849, 747,. 92.5,, 52.0,. 42.4,, 80.7,. 89.1,, 95.8,, 93.6,, 91.5,, 86.3,, 83.0,, 80.1
SwAV [10] ImageNet - 68.3,, 78.1,. 82.1,, 654, 93.7,, 52.7,. 40.3,, 83.8,. 83.8,, 94.5,. 934, 91.2,, 88.0,, 83.8,, 785
SimCLR [13] ImageNet - 70.0,, 76.9,. 80.9,, 67.5,, 92.5,, 51.9,. 42.1,, 82.2,. 85.0,, 93.0,. 90.3,, 88.8,. 83.6,, 78.5,, 774
CLIP [76] CLIP (400M) - 92.1,, 76.3,. 79.2,. 92.9,. 969, 93.3,, 73.2,, 81.8,. 86.1,, 959, 979, 95.6,, 77.5,. 90.5,, 87.8
RedCaps-trained Baselines
SwAV RedCaps - 64.5,, 54.0,. 61.8,, 458, 849, 36.5,. 34.1,, 74.8,. 66.5,, 78.1,. 75.5,, 72.6,, 80.4,. 72.9,, 64.5
SimSiam RedCaps - 63.9,. 499, 57.2,. 495,. 84.5,. 39.3,. 379,. 75.7,. 67.8,, 79.7,. 81.5,, 69.6,. 80.6,. 79.4,. 65.5
SimCLR RedCaps - 66.9,, 45.7,. 51.0,, 51.5,, 87.1,, 44.0,. 384, 77.6,. 70.1,, 80.0,. 869, 69.6,. 83.5,. 81.3,, 66.7
Visual NNCLR RedCaps - 65.6,, 54.1,. 61.7,, 45.8,. 85.3,. 37.9,. 349, 752,. 67.3,, 81.1,. 754, 74.3,. 83.6,. 76.7,, 65.6
CLIP RedCaps - 88.9,, 64.6,. 73.1,. 783,. 90.9,, 69.7,. 40.7,, 75.7,. 77.5,. 91.6,, 94.7,, 89.8,, 75.3,. 74.8,. 77.5
CLIP (SBERT Encoder) RedCaps - 89.9,. 59.9,. 679,. 83.2,. 91.1,, 70.2,. 41.0,. 75.0,. 79.4,, 91.2,, 94.5,, 894, 723, 749,, 77.1
Language NNCLR RedCaps - 89.3,, 653,. 734, 78.6,. 90.8,, 684,. 404, 75.2,. 78.8,, 90.9,, 94.3,, 89.6,, 75.2,. 71.9,, 773
SLIP RedCaps - 81.5,, 63.5,. 70.8,. 63.1,. 91.3,, 62.9,. 42.1,, 79.6,. 76.4,. 88.4,, 92.2,, 83.4,, 82.7,. 80.8,. 75.6
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 90.4,, 67.1,, 76.7,. 83.9,, 92.7,, 79.2,, 52.1,, 81.2,, 86.2,. 955, 97.6, 874, 86.9,, 89.0,, 83.3
LGSimCLR RedCaps CLIP (400M) 90.7,, 65.8,. 75.6,. 83.8,. 92.8,, 80.9,. 52.0,, 81.4,. 85.6,, 955, 97.5, 87.3,. 848, 89.3, 83.1
LGSimCLR RedCaps CLIP (RedCaps) 90.4,, 64.8,, 753,. 82.2,, 92.8,, 76.6,, 50.4,, 81.3,, 84.6,. 952, 97.7,, 869, 86.5,. 89.1,, 82.4
LGSimCLR RedCaps FastText BoW 884, 62.1,. 73.7,. 793,. 92.2,, 74.0,. 52.5,, 794,. 82.7,, 94.3,, 97.5,, 83.0,. 85.4,, 83.5,, 80.9
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 79.6,. 75.6,, 83.0,. 76.6,, 92.5,, 64.6,, 46.1,, 80.7,. 94.3,, 96.3,, 94.8,, 87.4,, 864, 873, 81.8
LGSimCLR RedCaps SimCLR 72.0,, 62.9,. 71.9,. 58.9,. 90.8,, 51.3,. 38.7,. 81.8,. 86.4,. 91.3,, 90.7,, 83.8,, 85.5,, 78.6,. 74.6
LGSimCLR RedCaps CLIP (400M) 88.8,, 72.5,. 79.7,. 77.6,. 93.1,, 73.3,. 45.6,, 82.2,. 90.9,, 94.6,. 96.3,, 89.2,, 84.6,, 87.4,, 82.6
Sampling Scope
LGSimCLR RedCaps SBERT - Year 89.7,, 612,. 72.2,. 81.2,. 92.0,, 71.9,. 484, 80.1,. 79.3,, 93.8,. 97.4,, 84.5,. 84.0,, 87.8,. 80.2
LGSimCLR RedCaps SBERT - Sub-Year 88.0,, 59.0,, 66.6,. 76.5,, 90.6,, 63.6,, 45.2,. 78.5,, 80.7,. 94.8,, 97.4,, 83.2,, 82.2,. 88.7,, 78.2
LGSimCLR RedCaps SBERT - Sub 88.7,, 70.4,. 784, 753,. 90.7,, 613,. 47.6,, 78.3,. 76.6,. 954, 97.8,, 86.5,, 85.3,, 89.1,, 80.5
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 69.2,. 60.6,, 71.7,. 72.0,, 92.8,, 58.8,. 48.9,, 77.4,. 77.8,, 92.9,, 95.0,, 83.0,. 824, 86.3,. 76.3
LGSimCLR CCI2M SBERT (MPNet) 79.6,. 72.0,, 78.5,. 71.2,, 95.2,, 78.2,. 55.5,, 81.8,. 82.1,, 96.2,, 95.3,, 90.0,. 83.6,, 88.0,. 81.9
LGSimCLR RedCaps 2020  SBERT (MPNet) 86.0,, 60.3,, 70.5,. 79.9,, 90.1,. 69.8,, 48.6,, 77.0,, 81.0,. 923, 96.8, 78.8,. 84.7,. 87.0,, 78.8
Batch Size Scaling
SimCLR (256) RedCaps - 64.9,, 52.7,. 579,. 514, 86.6,, 43.6,. 383, 77.1,. 68.7,, 79.2,. 859, 69.7,. 84.1,. 81.3,, 67.2
SimCLR (1024) RedCaps - 67.5,, 54.0,. 59.2,, 53.0,, 87.2,, 44.7,. 389, 779,. 71.5,, 80.4,. 87.9,, 71.8,. 82.5,. 81.8,, 68.4
SimCLR (2048) RedCaps - 684, 518,. 57.8,. 53.3,. 87.3,, 454,. 388, 77.8,. 73.2,, 81.6,. 87.9,, 71.6,. 84.0,. 81.6,, 68.6
LGSimCLR (256) RedCaps SBERT (MPNet) 90.3,. 66.6,. 75.8,. 81.6,, 92.6,. 75.3,. 50.5,, 81.6,. 83.2,, 953, 97.6,, 86.8,. 864, 889, 823
LGSimCLR (1024) RedCaps SBERT (MPNet) 90.3,. 64.9,, 75.7,. 83.8,, 92.6,, 78.2,, 52.6,, 80.9,. 83.6,, 95.6,, 97.6,, 86.7,. 86.0,, 88.6,. 82.6
LGSimCLR (2048) RedCaps SBERT (MPNet)  90.6,. 67.5,, 76.6,. 83.9,, 92.6,, 79.7,. 51.5,, 80.6,. 83.8,, 95.8,, 97.6,, 87.1,, 86.6,, 89.2,. 83.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 90.3,. 66.3,, 75.5,. 83.1,, 92.7,, 77.6,. 50.6,, 81.1,. 84.1,, 954, 97.6,, 86.5,. 85.0,, 89.0,. 82.5
LGSimSiam RedCaps SBERT (MPNet) 81.2,. 61.6,, 71.2,. 63.1,, 90.2,, 60.9,. 44.6,, 78.8,. 68.0,, 92.8,, 93.7,, 81.2,. 85.1,, 86.7,. 75.7
LGSLIP RedCaps SBERT (MPNet) 91.3,. 67.2,, 77.2,. 81.8,, 92.6,. 77.3,. 50.4,, 81.8,. 81.8,, 96.1,, 97.8,, 89.2,. 853, 89.1,. 82.8
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Table 11. ImageNet Evaluations. We evaluate all models on several ImageNet robustness benchmarks. All models were trained using
the ImageNet train set. We report the linear probe and few-shot classification performance. Subscripts show the 95% confidence interval
across 5000 episodes.

Linear Probe Fewshot Classification
e !
P P

s T %2 3 % > 04

g ¥ § & g g g g g g
Model Dataset Sampling Space E E E E E é E 5 E E
Pre-trained Checkpoints
Supervised [104] ImageNet - 80.7 54 276 689 288 974 51.6 61.4 94.5 64.8
SimSiam [15] ImageNet - 30.8 1.0 106 250 99 904 39.8 52.9 85.6 56.3
MoCo v3 [16] ImageNet - 69.5 1.1 203 572 205 91.1 36.0 524 85.8 552
SwAV [10] ImageNet - 706 12 16.6 575 17.6 91.2 41.7 46.6 86.2 49.3
SimCLR [13] ImageNet - 68.7 09 160 56.1 157 90.2 36.2 43.7 84.8 449
CLIP [76] CLIP (400M) - 732 82 319 61.5 31.8 955 68.0 69.0 93.2 74.5
RedCaps-trained Baselines
SwAV RedCaps - 52.1 0.8 7.0 390 6.6 804 38.6 35.1 75.5 33.1
SimSiam RedCaps - 529 0.8 80 403 87 788 39.1 389 734 39.3
SimCLR RedCaps - 562 0.8 84 424 89 798 39.6 38.7 74.4 38.6
Visual NNCLR RedCaps - 544 0.8 83 410 83 813 39.5 38.0 76.3 36.8
CLIP RedCaps - 62.6 2.1 145 49.8 13.7 88.7 44.7 46.6 84.7 46.1
CLIP (SBERT Encoder) RedCaps - 61.5 2.1 144 492 132 89.1 42.6 46.4 84.7 49.2
Language NNCLR RedCaps - 61.6 2.1 137 49.6 133 89.0 45.1 474 84.9 48.8
SLIP RedCaps - 62.6 09 12.6 492 125 86.7 43.0 43.5 82.0 43.8
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 653 1.2 168 528 16.8 91.0 45.1 58.4 86.6 60.8
LGSimCLR RedCaps CLIP (400M) 65.7 12 16.7 53.0 16.8 90.9 454 57.1 86.6 59.2
LGSimCLR RedCaps CLIP (RedCaps) 654 1.3 169 53.0 16.5 90.6 454 57.1 86.2 58.5
LGSimCLR RedCaps FastText BoW 62.6 0.6 155 49.7 149 89.7 44.0 55.8 84.9 57.0
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 669 0.8 19.0 53.6 167 91.2 41.4 56.0 86.1 534
LGSimCLR RedCaps SimCLR 63.0 0.8 12.8 49.1 122 884 38.7 45.8 83.1 46.0
LGSimCLR RedCaps CLIP (400M) 684 1.3 18.1 552 16.7 90.9 452 55.1 86.3 52.7
Sampling Scope
LGSimCLR RedCaps SBERT - Year 645 09 156 51.6 159 88.9 432 53.2 84.2 51.8
LGSimCLR RedCaps SBERT - Sub-Year 662 1.3 19.0 532 20.1 85.8 41.2 533 80.6 53.1
LGSimCLR RedCaps SBERT - Sub 67.0 1.5 19.5 544 20.8 80.1 38.8 48.2 753 429
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 175 1.0 89 134 54 879 41.2 56.6 83.5 60.8
LGSimCLR CCI12M SBERT (MPNet) 65.0 0.7 228 52.1 27.1 919 45.7 66.0 87.8 73.0
LGSimCLR RedCaps 2020 SBERT (MPNet) 58.7 0.6 13.1 454 114 875 41.1 52.1 82.3 51.3
Batch Size Scaling
SimCLR (256) RedCaps - 548 07 79 416 8.1 1795 39.5 38.4 74.0 383
SimCLR (1024) RedCaps - 572 0.7 88 437 87 805 394 39.2 75.1 38.3
SimCLR (2048) RedCaps - 58.1 0.8 9.0 445 92 8.1 39.3 39.5 75.8 389
LGSimCLR (256) RedCaps SBERT (MPNet) 649 12 167 52.0 16.6 90.6 46.3 574 86.3 59.7
LGSimCLR (1024) RedCaps SBERT (MPNet) 65.8 12 16.7 529 16.8 90.7 44.8 572 86.3 58.8
LGSimCLR (2048) RedCaps SBERT (MPNet) 662 1.1 173 53.1 174 90.8 44.7 58.0 86.3 60.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 652 1.1 166 525 162 90.9 45.0 574 86.4 59.2
LGSimSiam RedCaps SBERT (MPNet) 589 0.7 122 459 122 88.1 44.1 48.8 83.5 50.7
LGSLIP RedCaps SBERT (MPNet) 66.8 14 182 543 189 904 46.2 58.4 86.2 59.7
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