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Abstract

Zero-shot instance segmentation aims to detect and pre-
cisely segment objects of unseen categories without any
training samples. Since the model is trained on seen
categories, there is a strong bias that the model tends
to classify all the objects into seen categories. Besides,
there is a natural confusion between background and novel
objects that have never shown up in training. These
two challenges make novel objects hard to be raised in
the final instance segmentation results. It is desired to
rescue novel objects from background and dominated seen
categories. To this end, we propose D2Zero with Semantic-
Promoted Debiasing and Background Disambiguation to
enhance the performance of Zero-shot instance segmenta-
tion. Semantic-promoted debiasing utilizes inter-class se-
mantic relationships to involve unseen categories in visual
feature training and learns an input-conditional classifier
to conduct dynamical classification based on the input im-
age. Background disambiguation produces image-adaptive
background representation to avoid mistaking novel objects
for background. Extensive experiments show that we sig-
nificantly outperform previous state-of-the-art methods by
a large margin, e.g., 16.86% improvement on COCO.

1. Introduction
Existing fully supervised instance segmentation meth-

ods [4,24,38,57] are commonly benchmarked on predefined
datasets with an offline setting, where all categories are
defined beforehand and learned at once, thus can neither
handle novel concepts outside training datasets nor scale the
model’s ability after training. Perception errors inevitably
arise when applying a trained instance segmentation model
to scenarios that contain novel categories. To address these
challenges, zero-shot instance segmentation (ZSIS) [70] is
introduced to segment instances of unseen categories with
no training images but semantic information only.
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Figure 1. Two key challenges in generalized zero-shot instance
segmentation. 1) Bias issue: the model tends to label novel objects
with seen categories, e.g., ZSI [70] incorrectly classifies unseen
class dog as training class horse. 2) Background ambiguation:
objects that do not belong to any training categories are considered
background, e.g., parking meter and fire hydrant.

Since scene images typically contain several objects of
different categories, it is more realistic for ZSIS to segment
both seen and unseen objects, which is termed Generalized
ZSIS (GZSIS). In this work, we focus on two key challenges
under GZSIS setting, bias issue and background ambigua-
tion (see Figure 1), and propose D2Zero with semantic-
promoted Debiasing and background Disambiguation to en-
hance the performance of Zero-shot instance segmentation.

Bias towards seen categories imposes a significant chal-
lenge to GZSIS. Since the model is trained on data of
seen categories, it tends to classify all objects into seen
categories, e.g., novel object dog is labeled as seen class
horse in Figure 1. Previous work ZSI [70] introduces
semantic embedding to build a mapping from seen classes
to unseen ones then segments novel objects by sharing
instance proposals of seen group and re-labeling these
proposals within unseen group. Such a “sharing” strategy
brings many false positives by assigning each instance
two labels. Some zero-shot semantic segmentation meth-
ods [5,22,37] employ a generator to synthesize fake unseen
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features and fine-tune the classifier with these synthetic
features. The generative way comes at the cost of forgetting
some knowledge learned from seen categories and impairs
the classifier’s discriminative ability of the real feature.
Besides, classifier is collapsed when a new class comes
in, making the generative way impractical for application.
In this work, we address the bias issue from two aspects,
feature extractor and classifier. Biased feature extractor
mainly discriminate seen classes due to seen-only training
objectives, which generalizes poorly to novel classes. We
propose an unseen-constrained training objective to lever-
age semantic knowledge of unseen classes in visual feature
learning. Specifically, we obtain semantic similarity of
every seen-unseen class pair and generate a corresponding
similarity-based pseudo unseen label for a seen object. Im-
age features of seen classes are required to match the inter-
class correlation with unseen classes under the supervision
of pseudo unseen label, which enables the feature extractor
to distinguish both seen and unseen classes.

Besides feature extractor, the bias devil also exists in
the classifier. Previous zero-shot segmentation methods
either use conventional fully-connected layer as classi-
fier [5, 37] or prototypical classifier built upon semantic
embeddings [66,70]. However, these two types of classifier
both have features clustered to fixed seen-class centers and
do not consider the bias during inference. To address this
issue, we design an input-conditional classifier based on
transformer mechanism. We employ the semantic embed-
dings as query and visual features as key and value of
transformer decoder, which bridges the semantic and visual
spaces and transfers knowledge. Then the decoder outputs
are employed as classifier in a prototypical way. The input-
conditional classifier captures image-specific clues [45] and
can better distinguish different categories of the input im-
age. In such a way, the model learns to dynamically project
semantic embeddings to input-conditional class centers,
which greatly alleviates bias issue. Moreover, the input-
conditional classifier establish the information interaction
between visual and semantic spaces, contributing to miti-
gating multi-modal domain gap problem.

The background ambiguation issue is specific for zero-
shot instance segmentation. In the training of instance
segmentation, objects that do not belong to any train-
ing categories are considered background, e.g., parking
meter and hydrant in Figure 1. The model hence is
likely to identify the novel objects as background, which
affects the final performance a lot. To address this issue,
BLC [68] and ZSI [70] propose to learn a background vector
in the Region Proposal Network (RPN), which is optimized
in a binary classifier of RPN. However, the binary classifier
of RPN tends to overfit to seen categories and may fail to
identify unseen categories [33, 64]. We experimentally find
that the Transformer [56] based DETR-like model [6, 9]

can well generalize to novel categories in terms of proposal
generation, thanks to its end-to-end training manner and
classification-free instance proposal generation. Therefore,
we collect all the foreground mask proposal produced
by DETR-like model to get the global foreground mask
and then apply the reverse of it on the feature map to
get background prototype, which is used for background
classification. Such an adaptive background prototype that
updates according to input image can better capture image-
specific and discriminative background visual clues, which
helps to background disambiguation.

Our main contributions are summarised as follows:

• We propose an unseen constrained visual feature learn-
ing strategy to leverage semantic knowledge of unseen
categories in visual feature training, which facilitates
mitigating bias issue in GZSIS.

• We design an input-conditional classifier that projects
semantic embedding to image-specific visual proto-
types, contributing to addressing both bias issue and
multi-modal domain gap issue.

• To rescue novel objects from background, we intro-
duce an image-adaptive background representation to
better capture image-specific background clues.

• We achieve new state-of-the-art performance on zero-
shot instance segmentation and significantly outper-
form ZSI [70] by a large margin, e.g., 16.86% HM-
mAP under 48/17 split on COCO.

2. Related Work
Zero-Shot Image Classification aims to classify images

of unseen classes that have never shown up in training
samples [19, 29, 32, 34, 35, 49]. There are two different
settings: zero-shot learning (ZSL) and generalized zero-
shot learning (GZSL). Under the ZSL setting [34, 49],
testing images are from unseen categories only. Typical
ZSL methods include classifier-based way [1, 12, 39] and
instance-based way [17, 54, 63], where the former one aims
to learn a visual-semantic projection to transfer knowledge
and the later one aims to synthesize fake unseen samples
for training. GZSL [53] aims to identify samples of both
seen and unseen categories simultaneously and suffers the
challenge of a strong bias towards seen categories [8]. To
address the bias issue, calibration methods [7, 11, 23] and
detector-based methods [3, 18, 54] are introduced. The
former way aims at calibrating the classification scores of
seen categories to achieve a trade-off balance between seen
and unseen groups, while the detector-based way explores
identifying the unseen samples as out-of-distribution and
classifying these unseen samples within unseen categories.

Zero-Shot Instance Segmentation (ZSIS). Fully su-
pervised instance segmentation are extensively studied in
recent years [4, 24, 57], which however are data-driven
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and cannot handle unseen classes that have never shown
up in training. Recently, zero-shot instance segmentation
is raised by ZSI [70] to apply zero-shot learning to in-
stance segmentation. There are two test settings: zero-
shot instance segmentation (ZSIS) and generalized zero-
shot instance segmentation (GZSIS), where GZSIS is more
realistic since an image typically contains multiple objects
of different seen/unseen categories. In this work, we mainly
focus on GZSIS and address its two key challenges, bias
issue, and background confusion. ZSI [70] addresses the
bias issue by copying all the instances detected as seen
categories and re-label these instances within unseen group,
resulting in many false positives. In this work, we propose
an unseen-constrained visual training strategy and input-
conditional classifier to alleviate the bias issue.

Zero-Shot Semantic Segmentation (ZSSS) [5, 27, 59]
aims to segment the image to semantic regions [13] of seen
and unseen categories, it shares some commonalities with
ZSIS. Existing ZSSS methods can be divided into two ways:
embedding-based methods and generative-based methods.
Embedding-based methods [16,28,46,50,59,61,66] project
visual and semantic features to a common space, e.g.,
semantic, visual, or latent space, to transfer knowledge and
conduct classification in this common space. Generative-
based ZSSS methods [5, 10, 26, 37] utilize a feature genera-
tor to synthesize fake features for unseen categories.

Language-driven Segmentation shares some similari-
ties with ZSIS. They utilize language information to guide
the segmentation, e.g., referring expression segmentation
[14, 15, 42–44, 62] and open-vocabulary segmentation [20,
30, 36, 58]. However, instead of following the strict zero-
shot setting of excluding any unseen classes in training data,
these works allow as many classes as possible to implic-
itly participate in model training by using image captions
or referring expressions, which is however considered as
information leakage in the zero-shot learning setting.

3. Approach

3.1. Problem Formulation

In zero-shot instance segmentation, there are two
non-overlapping foreground groups, Ns seen categories
denoted as Cs and Nu unseen categories denoted as Cu,
and a background class cb, where Cs = {cs1, cs2, ..., csNs}
and Cu = {cu1 , cu2 , ..., cuNu}. Each category has a
corresponding semantic embedding, denoted as A =
{ab,as1,as2, ..,asNs ,au1 ,a

u
2 , ...,a

u
Nu}. Given an image

set that contains N i images of Ns and Nu categories,
the training set Dtrain is built from training images of
seen categories, i.e., each training image that contains
any objects of {cs1, cs2, ..., csNs} but no object of unseen
categories. According to whether considering seen classes
during inference, there are two different settings, one is

ZSIS which segments objects of only the unseen categories
and the other is Generalized ZSIS (GZSIS) which segments
objects of both seen and unseen categories. GZSIS is more
realistic since an image usually includes multiple objects
and we cannot ensure there is no object of seen categories.

3.2. Architecture Overview

The architecture overview of our proposed D2Zero
is shown in Figure 2. We adopt ResNet-50 [25] as
backbone and follow the paradigm of Mask2Former [9].
Mask2Former seamlessly converts pixel classification
to mask classification with careful design of proposal
embeddings {xn}N

p

n=1∈Rd and mask predictions
{Mn}N

p

n=1∈RH×W . Since the masks are class-agnostic,
the model is endowed with the ability to generate masks for
novel objects that have never shown up in training set [64].
We generate a set of prototypes as input-conditional
classifier. The background prototype is generated by
masked average pooling on the image feature, where the
background region is decided by all the class-agnostic
masks. Then we adopt seen cross-entropy loss and our
proposed unseen cross-entropy loss as training objectives.

3.3. Semantic-Promoted Visual Feature Debiasing

Due to the lack of unseen categories’ training data, the
model is trained on samples of seen categories only. As a
consequence, there is a strong bias towards seen categories
that the model tends to classify all the testing objects into
seen categories [8]. To address the bias issue, ZSI [70]
separates the classification of seen and unseen categories
and labels each instance with two labels, one from seen
group and the other from unseen group. This strategy,
though works, sidesteps the essence of the bias problem. In
this work, we explore alleviating the bias issue in zero-shot
instance segmentation and attribute it to 1) biased feature
extractor that focuses on producing features to discriminate
seen categories and 2) biased classifier that tends to capture
clues derived from training data statistics. We herein
propose an unseen-constrained feature extractor and input-
conditional classifier to address the biased feature extractor
and biased classifier, respectively. The unseen-constrained
feature extractor utilizes inter-class semantic similarities
to guide the training of visual feature extractor, in which
seen-unseen relationships are involved as training objec-
tive thus unseen categories can join in the visual feature
training. The input-conditional classifier learns a semantic-
visual alignment based on transformer and generates input-
specific visual representations as classifier prototypes.

Unseen-Constrained Visual Feature Learning
The feature extractor trained on seen categories focuses

more on features useful to discriminate seen classes, in-
ducing a loss of information required to deal with unseen
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Figure 2. Framework overview of our D2Zero. The model proposes a set of class-agnostic masks and their corresponding proposal
embeddings. The proposed input-conditional classifier takes semantic embeddings and proposal embeddings as input and generates image-
specific prototypes. Then we use these prototypes to classify image embeddings, under the supervision of both seen CE loss Ls and unseen
CE loss Lu. The unseen CE loss enables unseen classes to join the training of feature extractor. We collect all the masks and produce a
background mask, then apply this mask to the image feature to generate an image-adaptive background prototype for classification.

classes. To address this issue and produce features that
generalize better to novel concepts, we propose to intro-
duce semantic information of unseen categories as training
guidance to constrain visual feature learning. We first
generate an inter-class correlation coefficient by calculating
the semantic similarity of every unseen-seen category pair,

ei,j =
exp(< asi ,a

u
j > /τ)∑Nu

k=1 exp(< asi ,a
u
k > /τ)

, (1)

where<,> is cosine similarity, τ is the temperature param-
eter, ei,j is a soft value in the range of [0, 1] and represents
correlation coefficient of the i-th seen embedding asi and
the j-th unseen embedding auj , the higher ei,j represents
the closer relationship. For each of the Ns seen categories,
there are Nu coefficients, i.e., ei = {ei,j}N

u

j=1. The inter-
class correlation matrix prior is then used to guide the visual
feature learning. Instead of using original soft probability,
we choose a pseudo unseen label for each seen object based
on the coefficient ei,j . Specifically, we employ Gumbel-
Softmax trick [31] to form a Gumbel-Softmax distribution
and transform ei to discrete variable ėi ∈ {0, 1}N

u

ėi = onehot
(
argmax

j
[gj + ei,j ]

)
, (2)

where g1, ..., gNu are random noise samples drawn from
Gumbel (0, 1) distribution. The pseudo unseen label ėi
changes with training iterations, following the rule that the
larger ei,j has the higher probability of cuj being chosen as
the pseudo unseen label of csi . For each proposal embedding
xn, a classification score sun of unseen group is obtained by

sun,j =
exp(MLP(xn)a

u
j /τ)∑Nu

k=1 exp(MLP(xn)auk/τ)
, (3)

where sun = {sun,j}N
u

j=1 ∈ RNu

, MLP denotes Multi-layer
Perceptron. The ground truth of sun is ėcn , where cn denotes
the ground truth seen label index of xn. The unseen cross-
entropy loss Lu is applied on sun to have the model learn
pseudo classification among unseen categories,

Lu = − 1

Nf

Nf∑
n=1

Nu∑
j=1

ėcn,j logs
u
n,j , (4)

where Nf is the number of proposals with foreground
labels. It’s worth noting that Eq. (4) is applied on xn of
foreground objects while disabled for background.

Meantime, for each proposal embedding xn, a classifi-
cation score ssn of seen group is obtained by

ssn,i =
exp(xna

s
i/τ)∑Ns

k=0 exp(xnask/τ)
, (5)

where ssn = {ssn,i}N
s

i=0 ∈ R(Ns+1) is the classification score
for the n-th proposal, as0 = ab and ssn,0 represents score
of background. A cross-entropy loss is applied on ssn to
guide the classification among seen categories,

Ls = − 1

Np

Np∑
n=1

Ns∑
i=0

1(cn = i)logssn,i, (6)

where 1(∗) outputs 1 when ∗ is true otherwise 0, cn is the
ground truth label of n-th proposal. Np is the number of
proposals. The overall training objective is L = Ls + λLu.

With the unseen cross-entropy loss Lu, the feature ex-
tractor is also trained under the constraints of unseen cat-
egories instead of only under the constraints of seen cate-
gories, which greatly help the feature extractor capture clues
that are useful for unseen categories.
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Input-Conditional Classifier
Directly using semantic embeddings A as classifier,

though helps to semantically links knowledge of seen and
unseen groups, makes the features clustered to fixed class
centers and does not consider the bias issue in classifier.
To further alleviate the bias issue in zero-shot instance
segmentation, we propose an input-conditional classifier
that dynamically classifies visual embeddings according
to input features. As shown in Figure 2, semantic em-
beddings ai are employed as query Q in a transformer
module, while key K and value V are concatenation of
proposal embeddings, i.e., X = [x1,x2, ...,xNp ], where
[, ] denotes concatenation operation. After transformer
module, semantic-projected visual embeddings äi that are
conditional on xn are generated. In detail, given semantic
embeddings A = [as1,a

s
2, ..,a

s
Ns ,au1 ,a

u
2 , ...,a

u
Nu ], a self-

attention is first performed on As and outputs Âs. Then
cross-attention is performed as

Q = wQÂ, K = wKX, V = wV X,

Ä = MHA(Q, K, V ) = softmax(
QKT

√
dk

)V,
(7)

where wQ,wK ,wV are learnable parameters of three in-
dependent linear layers mapping inputs to the same inter-
mediate representations of dimension dk. Äs is the desired
image-specific semantic-visual embedding. We then update
the classifier by replacing the original semantic embedding
asj /ask in Eq. (5) and aui /auk in Eq. (3) to input-conditional
semantic embedding äsi /äsk and äuj /äuk , respectively.
Ä has three main advantages over original semantic

embedding A. First, Ä is projected from semantic space to
visual space via interaction with visual proposal embedding
X, which helps to mitigate visual-semantic domain gap and
makes the classification easier to be learned. Second, Ä
capture image-specific clues according to input feature and
can better adaptively distinguish different categories of the
input image. What’s more, the class centers by Ä are input-
conditional instead of fixed, thus the visual features trained
with such dynamic classifier would not collapse to several
fixed feature centers but tend to capture discriminative inter-
class distance, which greatly helps to mitigate bias issue.

3.4. Image-Adaptive Background Disambiguation

There is confusion between background and unseen
objects in zero-shot instance segmentation. The unseen
categories do not join the training of segmentation model,
which is trained to identify objects of seen categories as
foreground objects and others as background, so they are
easy to be mistaken for background. ZSI [70] argues
that the semantic word “background” cannot represent
background class and propose Background Aware RPN
(BA-RPN) & Synchronized Background to use a vector
learned in RPN as background representation in zero-shot

classifier. However, this learned vector is fixed after train-
ing and cannot be changed according to the input image,
which limits its representation to complex backgrounds and
generalization ability to novel scenarios. This background
parameter is optimized in a binary classifier of RPN, which
tends to overfit to seen categories and may fail to identify
unseen categories [33, 64]. To address this issue, we herein
propose an image-adaptive background disambiguation that
adaptively generates high-quality background representa-
tion according to the input image.

Specifically, we gather all the proposed binary masks
{Mn}N

p

n=1 obtained from our model to indicate foreground
regionMf , i.e.,Mf

(x,y)=max(M0,(x,y), ...,MNp,(x,y), ),

where (x, y) denotes pixel position andMf
(x,y) = 1 repre-

sents that the pixel (x, y) belongs to foreground. It’s worth
noting that we gather all the proposed masks to ensure a
high recall of foreground region, which is desired to detect
novel objects. The background mask Mb is generated by
taking the reverse of foreground mask, Mb = 1 − Mf .
Then a Mask Average Pooling (MAP) is performed on
visual feature maps to get background prototype,

pb =

∑
(x,y)Mb

(x,y)F(x,y)∑
(x,y)Mb

(x,y)

. (8)

We use this prototype to replace as0 Eq. (5). pb is adaptive
according to visual feature and thus can better capture
image-specific and discriminative background visual clues.

Comparison with word embedding background and
learned-parameter background. 1) Word embedding of
background is either learned from large-scale text data
without seeing visual data, e.g., word2vec [47], or derived
from text encoder trained on large-scale text-image pairs
of “thing” classes, e.g., CLIP [51]. Thus, the existing
background word-vector cannot well represent the complex
visual appearance of background. 2) ZSI [70] learns a
background vector in the Region Proposal Network (RPN)
and uses this vector to update the semantic embedding
of background class. Such a learned vector is optimized
in a binary classifier of RPN and captures some visual
patterns. However, it is fixed after training and may identify
novel objects as background, since the binary classifier of
RPN tends to overfit to seen categories and may fail to
identify unseen categories [33,64]. 3) Our proposed image-
adaptive prototype is visual feature obtained from the image
background region directly and captures more useful visual
clues. Compared to BA-RPN of ZSI [70] using a binary
classifier, our DETR-like model can better generalize to
novel categories in terms of proposing foreground instances
because of its classification-free instance proposal manner.
The proposed adaptive background prototype changes ac-
cording to the input image and can better capture image-
specific and discriminative background visual clues.
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4. Experiments

4.1. Experimental Setup

Implementation Details. The proposed approach is im-
plemented with the public platform Pytorch. We use
ResNet-50 [25] based Mask2Former [9] to generate class-
agnostic masks and corresponding proposal embeddings.
All hyper-parameters are consistent with the default settings
unless otherwise specified. We use CLIP [51] to extract
semantic embeddings of COCO classes. Meantime, for a
fair comparison with previous works, we also report our
results based on word2vec [48]. Hyper-parameter λ and
τ are set to 0.1, 0.1, respectively. The model is optimized
using Adamw with learning rate set to 0.0001, trained on 8
RTX2080Ti(12G) with batch size set to 16.

Dataset & Training/Testing Setting. Following ZSI [70],
we use MS-COCO 2014 [41] instance segmentation dataset
containing 80 classes to train and evaluate our proposed
approach. Two different splits of seen and unseen categories
are built to evaluate zero-shot ability. The first is 48/17
split with 48 seen categories and 17 unseen categories. The
second is 65/15 split with 65 seen categories and 15 unseen
categories. Training set is built from images containing seen
categories only. To avoid information leakage, the images
that contain any pixels of unseen categories are removed
from training set, which is different from open-vocabulary
setting that allows using of some unseen images [65]. In
testing set, all the MS-COCO testing images that contain
pixels of unseen categories are selected.

Metrics. Following ZSI [70], Recall@100, i.e., top 100
instances, with IoU thresholds of {0.4, 0.5, 0.6} and mean
Average Precision (mAP) with IoU thresholds of 0.5 are
employed to report the performance. Under GZSIS setting,
seen categories far outperform unseen categories and over-
master the Recall@100 and mAP. To better reveal unseen
categories’ effects on overall performance, we compute the
harmonic mean (HM) [60] of seen and unseen categories,
where HM(A,B) = 2AB/(A + B).

Text Prompts. We follow previous works [21, 51] to
generate the text embeddings using prompt ensembling. For
each category, we utilize multiple prompt templates and
then obtain the final text embeddings via averaging.

4.2. Component Analysis
We conduct extensive experiments to verify the effec-

tiveness of our proposed components in Table 1 with both
48/17 and 65/15 splits. We design our baseline by replacing
the learnable classifier with text embeddings to classify
image embeddings, which is similar to VILD-Text [21]. As
we can see, there is a serious bias towards seen categories
issue, e.g., unseen mAP 7.15% is much lower than seen
mAP 53.49%. In the following, we analyze our proposed
component from a qualitative and quantitative perspective.

Seen Unseen HM
Split Ä pb Lu mAP Recall mAP Recall mAP Recall

48/17

7 7 7 53.49 77.52 7.15 32.39 12.61 45.68
3 7 7 53.24 76.11 11.95 36.53 19.52 49.36
7 3 7 53.17 76.13 10.06 36.71 16.91 49.53
7 7 3 52.78 75.69 11.34 38.23 18.66 50.80
3 3 3 54.42 76.22 15.06 38.38 23.59 51.06

65/15

7 7 7 40.64 74.91 15.65 35.61 22.59 48.27
3 7 7 41.26 75.41 18.89 40.64 25.91 52.82
7 3 7 40.45 74.18 17.78 38.12 24.70 50.36
7 7 3 39.51 73.87 18.23 41.38 24.94 53.04
3 3 3 41.18 74.94 20.22 46.01 27.13 57.01

Table 1. Component Analysis of our D2Zero under GZSIS setting.
Ä represents input-conditional classifier. pb is image-adaptive
background. Lu represents unseen CE loss.

a) baseline b) D2Zero

Figure 3. (Best viewed in color) t-SNE [55] visualization of image
and text embeddings distribution on 48/17 split. The circle denotes
the image embeddings. The cross denotes the text embeddings.
Samples from different classes are marked in different colors.

We get the final results by combining all the components,
which significantly surpass our baseline.

Input-Conditional Classifier. By replacing the conven-
tional text embedding classifier with our input-conditional
classifier, we can obtain significant improvement on unseen
results, e.g., ↑4.8% mAP on 48/17 split. The improvement
on unseen group brings performance gain to HM results,
e.g., 6.91% HM-mAP and 3.68% HM-Recall gains on
48/17. Owing to our delicate design of classifier, the issues
of bias toward seen categories and domain gap are greatly
alleviated. Such significant improvements validate the
superiority of our input-conditional classifier quantitatively.

In Figure 3, we utilize t-SNE [55] to visualize the
image and text embeddings distribution with and without
our input-conditional classifier. The t-SNE samples are
from the same image with 4 classes. As shown in Fig-
ure 3(a), image embeddings (circles) and corresponding
text embeddings (cross) are far away from each other,
because of the domain gap between vision and language. In
Figure 3(b), cross-modal features from same class, e.g., the
yellow circles and yellow cross, are pulled closer, showing
high intra-class compactness and inter-class separability
characteristics. Both quantitative and qualitative results
demonstrate that with input-conditional classifier, image
embeddings are well aligned with text embeddings and are
capable of capturing discriminative features.
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Method Seen Unseen HM
mAP Recall mAP Recall mAP Recall

word embedding bg 53.49 77.52 7.15 32.39 12.61 45.68
learned-parameter bg 53.01 76.21 8.74 34.41 15.01 47.41
D2Zero bg 53.17 76.13 10.06 36.71 16.91 49.53

Table 2. Comparison of different background (bg) designs.

Training
Categories

AR@100
0.4 0.5 0.6

Seen 78.5 73.4 67.8
Seen + Unseen 82.1 78.4 73.1

Table 3. Instance proposal
generalization ability.

Method mAP AP50 AP75
ZSI (w2v) [70] 0.008 0.009 0.008
D2Zero (w2v) 4.670 7.025 4.816
D2Zero (clip) 6.093 8.993 6.279

Table 4. Cross-dataset results
on ADE20k validation dataset.

Image-Adaptive Background. The different choices of
background design have great impacts on the final perfor-
mance, as shown in Table 2. The experiments are performed
on our baseline and under 48/17 split. Learned-parameter
bg surpasses word embedding bg with 2.40% HM-mAP
and 1.73% HM-Recall, respectively, which indicates that
learnable bg can mitigate background ambiguation to some
extent. Compared with our image-adaptive background,
using word embedding bg or learned-parameter bg, both
mAP and Recall suffer from degradation, which verifies the
effectiveness of our proposed approach.

In Figure 4, we visualize our generated background
masks on unseen classes, e.g., cow and snowboard. As
shown in Figure 4, the foreground masks can be well
segmented for both the seen and unseen classes. Because of
the satisfactory generalization ability of mask proposal, we
can generate a meaningful background mask for each image
and produce a high-quality background representation.

Unseen Cross-Entropy Loss. When introducing pseudo
unseen labels generated from the seen-unseen similarity
of semantic embeddings, the performance is significantly
improved by 6.05% HM-mAP and 5.12% HM-Recall over
baseline (see Table 1 Lu). This demonstrates that with the
help of pseudo unseen labels, the feature extractor trained
under the constraints of unseen categories can significantly
alleviate bias towards seen classes issue and be well gener-
alized to noval objects that have never show up in training.

Generalization Ability of Instance Proposal. In Table 3,
we test the category-agnostic mask proposal of unseen
classes at different IoU thresholds, using the model trained
on “seen” and the model trained on “seen + unseen”. Train-
ing on “seen” achieves competitive results, demonstrating
that Mask2Former can output masks for unseen categories
when only trained with seen categories.

4.3. Transfer to Other Dataset

D2Zero model trained on COCO can be transferred to
other instance segmentation datasets like ADE20k [71] via
replacing semantic embeddings of our input-conditional
classifier. We input the semantic embeddings of ADE20K
classes as Q to our input-conditional classifier and testing

Image Ours Ground Truth

Figure 4. The predicted background masks by our approach can
well exclude novel foreground objects of cow and snowboard.

Method Seen Unseen HM
Split (text encoder) mAP Recall mAP Recall mAP Recall

48/17

ZSI (w2v) [70] 43.04 64.48 3.65 44.90 6.73 52.94
D2Zero (w2v) 52.53 75.66 9.48 37.93 16.06 50.52
D2Zero (w2v-cp) 51.75 73.23 10.58 50.78 17.56 59.97
D2Zero (clip) 54.42 76.22 15.06 38.38 23.59 51.06
D2Zero (clip-cp) 54.12 73.22 15.82 53.53 24.49 61.85

65/15

ZSI (w2v) [70] 35.75 62.58 10.47 49.95 16.20 55.56
D2Zero (w2v) 38.49 74.25 13.12 41.67 19.57 53.38
D2Zero (w2v-cp) 37.32 70.43 15.39 58.64 21.79 63.99
D2Zero (clip) 41.18 74.94 20.22 46.01 27.13 57.01
D2Zero (clip-cp) 40.90 71.41 21.91 65.72 28.54 68.45

Table 5. Results on GZSIS. “cp” denotes copy-paste strategy of
ZSI [70], i.e., sharing instances between seen and unseen groups.

Method Recall@100 mAP
Split (text encoder) 0.4 0.5 0.6 0.5

48/17
ZSI (w2v) [70] 50.3 44.9 38.7 9.0
D2Zero (w2v) 60.0 55.9 50.8 16.1
D2Zero (clip) 65.5 61.4 55.9 21.7

65/15
ZSI (w2v) [70] 55.8 50.0 42.9 10.5
D2Zero (w2v) 68.5 65.1 60.6 16.9
D2Zero (clip) 73.3 69.7 64.9 23.7

Table 6. Results on ZSIS.

our results on ADE20K, as shown in Table 4. Our method
demonstrates good generalization ability on cross-dataset
testing and significantly outperforms ZSI [70]. In ZSI [70],
there are some classifier parameters related to the dataset
category, making it impossible to transfer to other datasets.

4.4. Comparison with State-of-the-Art Methods

In Table 6 and Table 5, we follow the experimental
settings in ZSI [70] to report our results on both the Zero-
Shot Instance Segmentation (ZSIS) and Generalized Zero-
Shot Instance Segmentation (GZSIS) tasks. The proposed
D2Zero exceeds ZSI by a large margin, e.g., our model
with CLIP [51] as text encoder outperforms ZSI by 16.86%
HM-mAP under the 48/17 split and 10.93% H-mAP under
the 65/15 split. We also report our results using copy-
paste strategy of ZSI, marked with “cp”. The “cp” strat-
egy significantly improves recall performance for unseen
classes but decreases precision since it brings many false
positives. To further evaluate the superiority of our method,
we conduct a model complexity comparison with ZSI.
The #parameters/FLOPs of our D2Zero and ZSI [70] are
45.737M/227.7G and 69.6M/569.3G, D2Zero is dramati-
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Figure 5. (Best viewed in color) From the 1st row to 3rd row are: ground truth, our results, and ZSI [70], respectively. ZSI fails to classify
most of the unseen objects, e.g., cake in the first image and cow in the fifth image. And some novel objects are missed by ZSI due to
background confusion, e.g., skateboard in the second image and couch in the third image. The proposed approach D2Zero shows
much better results by classification debiasing and background disambiguation.

Seen Unseen HM
Split Method mAP Recall mAP Recall mAP Recall

48/17

DSES [2] - 15.02 - 15.32 - 15.17
PL [52] 35.92 38.24 4.12 26.32 7.39 31.18
BLC [69] 42.10 57.56 4.50 46.39 8.20 51.37
ZSI [70] 46.51 70.76 4.83 53.85 8.75 61.16
D2Zero (w2v) 52.30 76.89 9.46 37.28 16.02 50.21
D2Zero (w2v-cp) 51.31 72.04 10.55 54.14 17.50 62.01
D2Zero (clip) 54.47 77.52 14.67 38.09 23.12 51.08
D2Zero (clip-cp) 54.14 74.09 15.45 54.19 24.05 62.60

65/15

PL [52] 34.07 36.38 12.40 37.16 18.18 36.76
BLC [69] 36.00 56.39 13.10 51.65 19.20 53.92
ZSI [70] 38.68 67.11 13.60 58.93 20.13 62.76
D2Zero (w2v) 38.71 74.25 13.00 41.41 19.46 53.16
D2Zero (w2v-cp) 39.32 70.43 15.39 63.64 22.12 66.86
D2Zero (clip) 40.51 74.64 20.23 46.33 26.99 57.17
D2Zero (clip-cp) 40.23 70.98 21.84 66.65 28.31 68.75

Table 7. Results on GZSD. Previous methods all use word2vector.

cally more efficient than ZSI, thanks to our efficient mask
proposal network and lightweight component design.

In Figure 5, we present a qualitative comparison with
ZSI [70] for both seen and unseen classes on COCO under
the 48/17 split. ZSI fails to classify most of the unseen
objects. For example, ZSI identifies cow as horse. By
contrast, our approach outputs more accurate instance labels
for both seen and unseen categories and more precise mask
predictions. Besides, our method successfully segments
the objects missed by ZSI due to background ambiguation,
like couch in the 3rd column, which demonstrates the
effectiveness of our background disambiguation.

We also report our results on Zero-Shot Detection (ZSD)
in Table 8 and Generalized Zero-Shot Detection (GZSD)
in Table 7. We do not use bounding box regression
but simply produce bounding box from our masks, and
achieves new state-of-the-art performance on ZSD and
GZSD. The above experiments and analysis all demonstrate

Recall@100 mAP
Split Method 0.4 0.5 0.6 0.5

48/17

SB [2] 34.46 22.14 11.31 0.32
DSES [2] 40.23 27.19 13.63 0.54
TD [40] 45.50 34.30 18.10 -
PL [52] - 43.59 - 10.10
Gtnet [67] 47.30 44.60 35.50 -
DELO [72] - 33.50 - 7.60
BLC [69] 49.63 46.39 41.86 9.90
ZSI [70] 57.40 53.90 48.30 11.40
D2Zero (w2v) 60.00 56.10 52.00 16.30
D2Zero (clip) 65.70 61.70 57.70 21.40

65/15

PL [52] - 37.72 - 12.40
BLC [69] 54.18 51.65 47.86 13.10
ZSI [70] 61.90 58.90 54.40 13.60
D2Zero (w2v) 69.10 66.20 62.30 16.80
D2Zero (clip) 73.90 70.70 66.60 23.50

Table 8. Results on ZSD. Previous methods all use word2vector.

the effectiveness and efficiency of our D2Zero on Zero-shot
instance segmentation and detection tasks.

5. Conclusion

We propose D2Zero with semantic-promoted debiasing
and background disambiguation to address the two key
challenges in zero-shot instance segmentation, i.e., bias
issue and background ambiguation. To alleviate the bias
issue, we introduce a semantic-constrained feature training
strategy to utilize semantic knowledge of unseen classes
and propose an input-conditional classifier to dynamically
produce image-specific prototypes for classification. We
discuss the background confusion and build an image-
adaptive background prototype to better capture discrimi-
native background clues. We achieve new state-of-the-art
results on zero-shot instance segmentation and detection.
Acknowledgement This work was partially supported by National Natural
Science Foundation of China (No.62173302).
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