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Abstract

Medical images usually suffer from image degradation
in clinical practice, leading to decreased performance of
deep learning-based models. To resolve this problem, most
previous works have focused on filtering out degradation-
causing low-quality images while ignoring their potential
value for models. Through effectively learning and leverag-
ing the knowledge of degradations, models can better resist
their adverse effects and avoid misdiagnosis. In this pa-
per, we raise the problem of image quality-aware diagnosis,
which aims to take advantage of low-quality images and im-
age quality labels to achieve a more accurate and robust di-
agnosis. However, the diversity of degradations and super-
ficially unrelated targets between image quality assessment
and disease diagnosis makes it still quite challenging to ef-
fectively leverage quality labels to assist diagnosis. Thus,
to tackle these issues, we propose a novel meta-knowledge
co-embedding network, consisting of two subnets: Task Net
and Meta Learner. Task Net constructs an explicit quality
information utilization mechanism to enhance diagnosis via
knowledge co-embedding features, while Meta Learner en-
sures the effectiveness and constrains the semantics of these
features via meta-learning and joint-encoding masking. Su-
perior performance on five datasets with four widely-used
medical imaging modalities demonstrates the effectiveness
and generalizability of our method.

1. Introduction
Medical imaging is one of the most valuable sources

of diagnostic information about anatomical structures and
pathological characteristics [1]. Advanced deep learning-
based methods applied to high-quality (HQ) medical im-
ages have shown significant potential in disease analysis
and diagnosis [2, 3], achieving favorable results compared
with human healthcare professionals [4]. However, in clin-
ical practice, obtaining HQ images is not always feasible.
Medical images often exhibit significant variations in imag-
ing quality due to factors such as patient movements or en-
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Figure 1. Illustration of impact of image degradations on diagno-
sis semantics for fundus (top) and OCTA (bottom) images. Top:
Degradations obscure parts of the vessel structure and present
lesion-like spots. Bottom: Degradations result in a fake enlarge-
ment of the foveal avascular zone (central circular area).

vironmental conditions [5,6]. For instance, a medical image
quality assessment study of 28,780 fundus images revealed
that approximately 41.6% of them contained image artifacts
and corruption and were considered low-quality (LQ) [7].
Such degradations can increase the uncertainty in patholog-
ical observation, leading to misdiagnosis [8, 9].

Medical image degradations can significantly affect di-
agnostic semantics, as illustrated in Figure 1. For instance,
shadow degradation can obscure anatomical structures cru-
cial for diagnosis, while spot artifacts can obfuscate patho-
logical signs that typically manifest as circular shapes [10].
Furthermore, image degradations can also affect diagnos-
tic measurements, such as the vessel area density in optical
coherence tomography angiography (OCTA) images, ren-
dering them unreliable [6]. These close relationships raise
challenges in distinguishing degradations from actual ab-
normalities [10], leading to false knowledge of lesions and
undesired misdiagnosis during training and deployment [9].
Aware of the profound influence of image quality on diag-
nosis, many previous works have focused on utilizing image
quality assessment to select relatively HQ images for train-
ing and testing, thereby avoiding the influence of LQ im-
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ages [7, 11–14]. However, discarding LQ images contain-
ing diagnostically valuable information results in a waste of
precious clinical data [7]. Including LQ images and corre-
sponding quality information in training can assist models
in recognizing potential false abnormalities, thus achieving
more robust and accurate diagnosis [15–17].

In this paper, we reconsider the value of LQ images and
corresponding image quality labels, and introduce the prob-
lem of image quality-aware diagnosis (IQAD). The goal of
IQAD is to enable models to leverage LQ images while si-
multaneously learning image quality labels to achieve an
accurate and robust diagnosis. However, effectively lever-
aging quality labels for diagnosis is non-trivial with a multi-
task learning framework. Specifically, image quality assess-
ment can be considered as a task “unrelated” to disease di-
agnosis [18], since it focuses on capturing image degrada-
tions, while diagnosis emphasizes identifying lesions. This
distinction makes it challenging for models to effectively
utilize image quality labels. Further, commonly-used coarse
annotations of quality may not sufficiently reflect the diver-
sity of image degradation, making it difficult to provide in-
formation that could be useful for precise diagnosis.

To achieve IQAD, we propose a novel meta-knowledge
co-embedding network (MKCNet) consisting of two sub-
nets, Task Net and Meta Learner. To enable leveraging
potential benefits of quality information, Task Net con-
ducts diagnosis predictions by explicitly leveraging knowl-
edge co-embedding features with desired knowledge of
image quality and disease diagnosis. These features are
constructed by learning auxiliary label embeddings from
Meta Learner. Further, we employ meta-learning and joint-
encoding masking to ensure the effectiveness and seman-
tics of auxiliary label embedding and circumvent the bar-
rier of obtaining fine-grained image quality labels. Specif-
ically, joint-encoding masking selects a part of the Meta
Learner output as auxiliary label embedding through com-
binations of quality and diagnosis labels. Moreover, Meta
Learner learns to provide auxiliary label embedding in a
meta-learning manner to assist Task Net optimization, en-
couraging it to learn effective knowledge co-embedding
features. Our main contributions are highlighted as follows:

(1) We tackle a novel problem named IQAD. To the best
of our knowledge, this is the first work to discuss and ana-
lyze this critical and practical problem.

(2) We propose a novel method, MKCNet, to effectively
handle the challenges posed by annotation granularity and
task focus discrepancy via leveraging quality information
explicitly and introducing a meta-learning paradigm.

(3) We conduct extensive experiments on five datasets
spanning four different yet widely-used medical imaging
modalities. Our in-depth analytical study demonstrates the
effectiveness and generalizability of MKCNet.

2. Related Work

Disease diagnosis. Many deep-learning methods have
been developed to diagnose diseases [19–25]. For example,
He et al. [19] proposed CABNet for learning discrimina-
tive features associated with different severities of diabetic
retinopathy (DR), and Liu et al. [20] developed a convo-
lutional graph networks-based method to explore potential
relationships among grades of DR. However, these methods
may not perform well when dealing with image degrada-
tions as they do not consider image quality issues [9]. By
contrast, MKCNet leverages LQ images and quality labels
to achieve a more robust and accurate diagnosis.

Quality assessment and image enhancement. Aim-
ing at avoiding the effect of LQ images, several methods
have been proposed to assess image quality to select rel-
atively HQ images [7, 11, 14]. For example, Fu et al. [7]
selected usable samples and rejected nearly 20% of images
as unsuitable for model learning. However, these images
would still be diagnosable for physicians. Rejecting diag-
nostically valuable LQ images is wasteful, since LQ images
are not only useful in model generalization ability improve-
ment in training [15,26], but also effective in evaluating the
robustness of models in testing [27, 28]. Another solution
is to leverage generative models to enhance the quality of
LQ images [29–32]. For example, Shen et al. [10] improve
the quality of LQ fundus images by generating degradations
on images to simulate pseudo-paired samples. However, it
is costly to train such generative models, which requires a
large number of images for desirable performance [32]. Ad-
ditionally, the simulation may only represent a partial dis-
tribution of realistic degradation [33], and it is rarely help-
ful in improving recognition performance [34]. Meanwhile,
capturing real pairs with different image qualities proves to
be extremely challenging [35]. Instead of requiring a high
cost, MKCNet leverages the multi-task learning framework
to tackle the IQAD problem in a less costly and more effec-
tive manner.

Multi-task learning. It has been shown that multi-task
learning is an effective method for training a generalized
model that can simultaneously handle multiple tasks [18].
In the medical domain, many studies have used it to im-
prove the performance of models by exploring internal rela-
tionships among diseases [36–40], as well as utilizing auxil-
iary tasks to assist primary tasks [41,42]. However, most of
these works ignore the potential benefits of quality informa-
tion on diagnosis, which is critical for the IQAD problem.
Among them, Zhou et al. [16] treated quality assessment as
an auxiliary task. However, they did not obtain a significant
performance boost due to the absence of an explicit mech-
anism for utilizing quality information. By contrast, MKC-
Net explicitly models and explores the potential assistance
of quality information in diagnosis.
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Figure 2. The overview of MKCNet with two subnets (Task Net Mθ and Meta Learner Mϕ). In the first stage, Mθ learns to construct fω
θ

by leveraging yω . Simultaneously, it adopts global attention to learn an informative and generalizable Fθ , while it explicitly utilizes fω
θ

and fd
θ to make diagnoses. In the second stage, Mϕ learns to provide yω with desired knowledge of image quality and disease diagnosis.

Mϕ ensures the effectiveness of fω
θ while constraining its semantics by utilizing the joint-encoding masking and meta-optimization.

3. Methodology

This section first provides an introduction to IQAD and
presents a preliminary experiment, as well as highlights the
challenges involved. We then introduce our proposed solu-
tion, MKCNet, which explicitly addresses these challenges.
Figure 2 shows an overview of MKCNet.

3.1. Image Quality-aware Diagnosis

Preliminaries. Given an image x ∈ X , yd ∈ YD and
yq ∈ YQ denote the corresponding disease diagnosis and
image quality labels, respectively. The target of IQAD is to
train a model F : X → YD to achieve robust and accurate
diagnosis by leveraging both HQ and LQ images together
with corresponding diagnosis and quality labels.

Intuitively, treating image quality assessment (IQA) as
an auxiliary branch in a multi-task learning framework may
seem like a straightforward solution. Thus, to explore
this approach, we conduct a preliminary experiment on a
VGG16 model (denoted as Vanilla) to assess the impact of
learning LQ images and leveraging quality labels, as shown
in Figure 3. As expected, leveraging LQ images is bene-
ficial for model learning. Unexpectedly, however, we ob-
served that incorporating quality labels only marginally en-
hances or even hinders the diagnostic performance, despite
the fact that these labels may imply false abnormalities and
provide extra useful diagnostic information. It suggests that
effectively leveraging quality labels is non-trivial.

Challenges. In the context of multi-task learning, we
argue that the challenges of IQAD are two-fold. The first
challenge arises from the non-direct relationship between

image quality and diagnosis, which makes it difficult for
models to associate them without an explicit mechanism.
Generally, models trained for disease diagnosis focus on le-
sion areas and anatomical structures, while image quality
assessment requires models to capture image degradations.
This discrepancy in the task focus necessitates a specialized
design that enables models to effectively leverage quality
information. To address this challenge, we design Task Net,
which includes an explicit utilization mechanism to lever-
age knowledge co-embedding features for diagnosis. The
second challenge arises due to the limited granularity of bi-
nary or multi-class quality annotations, which fail to capture
the diverse types and degrees of image degradations [9,10].
It results in a lack of detailed information that can guide the
model and makes it challenging to establish fixed patterns
of how image quality affects disease diagnosis [43]. Addi-
tionally, determining image-level label criteria to associate
quality and diagnosis is complex, and annotating images
with pixel-level information of degradations is costly [13].
Due to label limitations, even if an explicit utilization mech-
anism exists, the model may not effectively leverage quality
information. To tackle this issue, we adopt a meta-learning
paradigm, where the Meta Learner is trained to provide aux-
iliary label embeddings that present adaptive correlations
between image quality and disease diagnosis labels, allow-
ing the model to effectively utilize quality information.

3.2. Meta-knowledge Co-embedding Network

As shown in Figure 2, MKCNet is composed of two sub-
nets, Task Net denoted as Mθ with parameter θ, and Meta
Learner denoted as Mϕ with parameter ϕ. Given an image
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Figure 3. Influence of LQ images and an IQA module. It is useful
for Vanilla to leverage LQ images, but the IQA module improves
only marginally or harms performance. MKCNet can leverage LQ
images and quality labels more effectively than Vanilla.

x and its corresponding image quality and disease diagnosis
labels yq and yd, we obtain an auxiliary label embedding yω
from the output vector Mϕ(x) of Meta Learner. The cor-
responding predictions of Task Net for yq , yd, and yω are
denoted as Mq

θ(x), Md
θ(x), and Mω

θ (x), respectively.
Inspired by the recent success of meta-learning [44, 45],

we adopt a two-stage learning paradigm to optimize MKC-
Net. In the first stage, Task Net is trained with yq , yd,
and yω , and it explicitly leverages knowledge co-embedding
features to improve diagnosis performance. In the second
stage, Meta Learner learns to provide yω via meta-learning,
to optimize knowledge co-embedding features in Task Net.
The two stages are iterative during each training epoch,
leading to end-to-end interaction between the two subnets.

3.2.1 Task Net for Quality-aware Diagnosing

To address the first challenge discussed earlier, Task Net
is designed to construct knowledge co-embedding features
while explicitly exploring their potential usefulness in im-
proving diagnosis. To achieve this, we design the global
attention block (GAB) in Task Net to extract task-specific
features and the meta-knowledge assistance block (MAB)
to explicitly explore their potential benefits in diagnosis. In
Task Net, we denote the feature map from the backbone as
Fθ, the features from three GABs as fq

θ , fd
θ , and fω

θ , and
the feature from the MAB for final diagnosis as fd∗

θ .
Knowledge co-embedding feature. Task Net constructs

the knowledge co-embedding feature fω
θ by learning yω ,

which contains the desired information beneficial for both
image quality and disease diagnosis. To achieve this, it first
needs to learn informative and generalizable Fθ, encom-
passing comprehensive semantics, and then to construct the
fω
θ with applicable information for quality-aware diagnosis

from Fθ. Therefore, We designed three learning branches
with GAB in Task Net, which receive supervision signals

yq , yd, and yω , respectively. Intuitively, learning yq and
yd helps Task Net to learn a joint feature space of image
quality and disease diagnosis, leading to more informative
Fθ with multiple semantics [46]. Additionally, we adopt
GAB to conduct both channel- and spatial-wise attention to
highlight the potentially correlated features from Fθ to each
supervision signal [47]. GABs extract features specific to
yq and yd to encourage the construction of generalizable
Fθ [36], while filtering irrelevant channels and spatiality to
capture desired fω

θ correlated with yω . Finally, Task Net
obtains fd

θ and fω
θ containing diagnosis-related information

and desired knowledge of image quality and disease diag-
nosis, respectively, for further explicit utilization.

Meta-knowledge assistance block. In addition, we de-
signed the MAB to explicitly explore the potential assis-
tance of fω

θ for disease diagnosis, where fω
θ learns joint

semantics of disease diagnosis and image quality. MAB
first filters channels of fω

θ uncorrelated with disease diagno-
sis via a channel-wise attention block to ensure the desired
functionality of fω

θ . It then utilizes the concatenated feature
fd∗

θ of fd
θ and a filtered fω

θ for the diagnosis. This “filter and
utilize” pattern is critical for quality-aware diagnosis since
fω
θ may contain undesired or even misleading information.

Furthermore, the explicit utilization encourages the models
to be aware of the potential benefits and assistance of image
quality in the diagnosis. Finally, the objective function Lθ

of Task Net Mθ is denoted as

Lθ = LD(Md
θ(x), yd) + LQ(Mq

θ(x), yq)

+LΩ(Mω
θ (x), yω),

(1)

where LD, LQ and LΩ represent the loss functions for dis-
ease diagnosis, image quality prediction, and knowledge
co-embedding learning, respectively. We would like to clar-
ify that our focus is on the design philosophy rather than
specific implementation details, and our proposed design is
compatible with any attention modules such as [48,49]. We
argue that a practical and appropriate design is the key to
solving the IQAD problem. In this paper, we adopt a clas-
sic attention module CBAM [47] rather than other modern
attention modules to demonstrate the effectiveness of our
design. Additionally, we conduct experiments to explore
the significance of the design of Task Net, i.e., the existence
of GAB and MAB, in the experiment section.

3.2.2 Meta Learner to Co-embed Knowledge

As discussed in Section 3.1, the current quality labels do not
capture the diversity of degradations and their correspond-
ing impact on diagnostic semantics. We overcome this limi-
tation by Meta Learner, which constrains the semantics and
ensures the effectiveness of fω

θ via joint-encoding masking
and meta-auxiliary learning.

Joint-encoding masking. We design the joint-encoding
masking approach to ensure the effectiveness and semantic



constraints of fω
θ by constraining Meta Learner to provide

a discriminative yω for both quality and diagnosis labels.
To achieve this, we select yω from Mϕ(x) based on a joint
encoding yd,q of yd and yq , and create a binary mask Byd,q
that assigns a value of 1 to positions related to yd,q and 0
to others. Consider the case that both yq and yd ∈ {0, 1},
and the length of Mϕ(x) is 4. In this case, the joint label
encoding will be yd,q ∈ {00, 01, 10, 11}, and Byd,q

will be
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1], respectively.
Further, yω is derived from Mϕ(x) as follows:

yω = Byd,q
(Mϕ(x)). (2)

At each optimization step, the Meta Learner optimizes
Mϕ(x) using a specific slice yω , encouraging the construc-
tion of a discriminative auxiliary embedding among differ-
ent label combinations. This mechanism ties fω

θ to the joint
semantic information of image quality and disease diagno-
sis. By working in conjunction with meta-auxiliary learn-
ing, it contributes to adaptively and effectively capturing the
interplay between image quality and disease diagnosis, ul-
timately leading to improved model performance.

Meta-auxiliary learning. Meta Learner is designed to
optimize Task Net to construct fω

θ effectively for diagnostic
purposes. This is essentially a “learning-to-learn” problem,
for which we adopt meta-auxiliary learning to optimize the
effectiveness of fω

θ by providing a beneficial and desired
yω [45]. The idea is that training Task Net on yω should
result in improved performance. Therefore, Meta Learner
Mϕ should optimize ϕ in the direction that minimizes the
objective function Lθ of Task Net Mθ, i.e., argminϕ Lθ.
To accomplish this, we first perform a one-step pseudo up-
date with learning rate α to simulate the effect of yω on θ as

θ̃ := θ − α∇θ

[
LD

(
Md

θ(x), yd
)
+ LQ

(
Mq

θ(x), yq
)

+LΩ

(
Mω

θ (x), yω
)]

.
(3)

Then, we use the second derivative trick to update ϕ, similar
to [50, 51]:

ϕ := ϕ− β∇ϕ

[
LD

(
Md

θ̃
(x), yd

)
+ LQ

(
Mq

θ̃
(x), yq

)
+R

(
Byd,q

(Mϕ(x))
)]

,
(4)

where β is the learning rate of Meta Learner, and R(·) is a
regularization term to avoid auxiliary label embedding col-
lapse by increasing the entropy of Mϕ(x) [45, 52].

Meta Learner leverages gradient information to adap-
tively generate Mϕ(x) to assist Task Net in constructing
fω
θ . Minimizing Lθ allows Meta Learner to provide use-

ful Mϕ(x) for solving diagnosis and quality assessment
tasks [51], which in turn ensures that fω

θ contains the de-
sired semantic information derived from learning yω . Fur-
thermore, this meta-optimization procedure takes into ac-
count the MAB where fω

θ is utilized for diagnosis, which
further enhances the effectiveness of fω

θ .

4. Experiment

4.1. Dataset and Implementation Details

Dataset. We employ five widely-used public datasets
from four imaging modalities for three diagnosis tasks.
In the data preprocessing step, all images were resized to
256 × 256 and then individually normalized to zero mean
and unit variance in intensity values. Table 1 presents the
statistics of the datasets, and their settings are briefly de-
scribed as follows: DRAC [59]: OCTA images are graded
into three levels, standing for no DR, non-proliferative DR
(NPDR), and proliferative DR (PDR), respectively. Each
image is annotated with HQ or LQ. DeepDR [5]: Same with
DRAC, fundus images are graded into three levels of DR
and two levels of image quality. EyeQ [7]: The diagnosis
annotation of fundus images is the same as DeepDR, while
the quality of images is labeled as good (HQ), usable (LQ-
U), and poor (LQ-P). CT-IQAD: We combine computed
tomography images from COVID-X [60] and SARS [61] to
make up this dataset. Since COVID-X images are collected
in the wild, e.g., downloaded from papers, their quality can-
not be guaranteed, and thus we label these images LQ and
others are HQ. CXR-IQAD: This dataset is sampled from
child chest X-ray images of CXR-P [62] and adult CXR
images of CXR14 [63]. The diagnosis label is Normal and
Pneumonia. We downsample images with a bicubic ker-
nel to simulate low-dose CXR images [64]. Thus, images
have three parts, i.e., child images (HQ), low-dose child im-
ages (LQ-C), and low-dose adult images (LQ-A). During
training, we use the original data splits for DeepDR and
DRAC. We split EyeQ into three parts: 60% for training,
10% for validation, and 30% for testing. As for the rest
of the datasets, we divide them into 70% for training, 10%
for validation, and 20% for testing. To evaluate the perfor-
mance fairly, we used three metrics: the area under the ROC
curve (AUC), accuracy (ACC), and macro F1-score (F1).

Implementation. We adopt VGG16 [65] as backbones
in the experiment, and the focal loss [66] and entropy loss
for training. The learning rate and weight decay are kept the
same for all datasets at 0.01 and 0.0005, respectively, and
we adopt SGD as the optimizer. The number of training
epochs is set as 100 for EyeQ and 200 for the rest of the
others. We followed the train-validation-test paradigm to
report results for all datasets except DRAC, i.e., we selected
the best models in validation and evaluated them on the test
set. For DRAC, we reported the last epoch result because its
official data split does not include a validation set. Further
details about this sub-section can be found in the appendix.

4.2. Comparison with Other Methods

Experiment setting. We compare MKCNet with recent
state-of-the-art methods from three groups: ophthalmic dis-
ease diagnosis (ODS) methods [19, 20, 53, 54], multi-task



Table 1. Statistics for lung disease diagnosis datasets (left group) and ophthalmic disease diagnosis datasets (right group).
Dataset CT-IQAD CXR-IQAD DRAC DeepDR EyeQ
Label ALL HQ LQ ALL HQ LQ-C LQ-A Label ALL HQ LQ ALL HQ LQ ALL HQ LQ-U LQ-P

Normal 1,149 800 349 2,582 792 791 999 NoDR 545 444 101 914 532 382 20,680 12,308 4,553 3,747
Covid-19 1,197 800 397 - - - - NPDR 344 303 41 974 506 468 7,533 4,405 1,690 1,438

Pneumonia - - - 5,704 2,137 2,136 1,431 PDR 108 93 15 112 50 62 558 104 191 353
ALL 2,346 1,600 746 8,286 2,929 2,927 2,430 ALL 997 840 157 2,000 1,088 912 28,789 16,817 6,434 5,538

Table 2. Comparison with state-of-the-art approaches in disease diagnosis.
Dataset CT-IQAD CXR-IQAD DRAC DeepDR EyeQ Avg.
Metrics AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

MMCNN [53] 86.57 86.54 86.51 89.13 89.07 91.82 82.41 77.20 66.18 76.39 79.50 54.40 69.36 73.22 35.48 80.77 81.11 66.88
BIRA-Net [54] 88.46 88.46 88.21 89.88 90.76 93.23 84.00 77.46 67.00 80.67 78.50 64.10 80.13 72.50 56.42 84.63 81.54 73.79
GREEN [20] 92.54 92.52 92.44 90.06 91.30 93.67 84.37 73.83 63.03 81.14 76.50 64.88 81.23 77.21 59.08 85.87 82.27 74.64
CABNet [19] 91.01 91.03 90.79 88.38 89.73 92.51 81.94 72.28 59.07 82.39 77.75 55.97 79.21 76.95 53.48 84.59 81.55 70.36
Mixstyle [55] 91.06 91.03 90.99 88.85 90.52 93.14 85.03 73.32 60.91 81.89 73.50 60.34 82.10 74.92 61.25 85.79 80.66 73.33
AugMix [56] 89.17 89.10 89.26 88.21 89.79 92.58 84.94 70.47 57.66 84.79 80.00 54.74 77.38 77.00 44.26 84.90 81.27 67.70
DDAIG [57] 92.72 92.74 92.54 88.19 90.28 93.00 84.95 77.72 62.91 79.40 75.75 51.66 70.71 74.64 37.84 83.19 82.23 67.59
Mixup [58] 92.12 92.10 92.04 88.98 90.70 93.28 82.41 72.80 62.84 81.69 76.00 63.57 82.35 77.74 63.07 85.51 81.87 74.89
QGNet [16] 92.71 92.74 92.50 89.51 90.70 93.22 84.38 63.73 47.80 84.21 73.50 64.66 82.40 74.73 60.36 86.64 79.08 71.71
MAXL [45] 93.35 93.38 93.16 87.99 89.86 92.66 87.24 77.72 69.20 81.59 71.25 57.58 80.64 73.10 58.81 86.16 81.06 74.28
CANet [36] 93.36 93.38 93.19 90.51 91.49 93.78 86.70 75.13 64.38 81.83 77.50 62.74 81.89 77.20 60.26 86.86 82.94 74.87
MT-Net [39] 92.56 92.52 92.51 90.07 90.58 93.05 84.63 73.06 61.89 82.40 76.75 64.51 82.66 75.97 59.92 86.46 81.78 74.38

MTMR-Net [38] 94.46 94.44 94.37 89.69 91.61 93.96 85.79 76.42 65.12 82.30 63.75 53.61 79.71 76.57 60.50 86.39 80.56 73.51
DETACH [37] 92.53 92.52 92.41 89.52 90.64 93.16 84.81 76.94 65.24 83.61 71.75 62.14 81.68 74.80 59.64 86.43 81.33 74.52

MKCNet (Ours) 95.73 95.73 95.65 90.71 91.91 94.12 88.68 82.38 73.87 86.58 80.00 54.73 83.83 78.01 59.68 89.11 85.61 75.61

and auxiliary learning (MTAL) methods [16,36–39,45], and
other adoptable methods [55–58]. The chosen methods can
be adopted in IQAD without or with only simple modifica-
tions, and their brief descriptions are in the appendix.

Comparison of results. Columns 3-5 of Table 2 show
the quantitative results of ophthalmic disease diagnosis.
MKCNet outperforms other methods in overall perfor-
mance and improves at least two of the AUC, ACC, and
F1 metrics on all datasets. Typically, ODS methods do
not consider using image quality information and only de-
sign modules for achieving good performance on HQ im-
ages. Thus, most of them perform non-ideally on the IQAD
problem, where numerous LQ images exist. For example,
GREEN [20] considers relationships among categories to
achieve a robust diagnosis, yet it suffers in IQAD. It is be-
cause image degradations significantly disturb the model to
construct the foundations of relationship exploration among
categories, i.e., correlations between images and labels. We
modified methods from the MTAL set to learn image qual-
ity information as an auxiliary task. As observed in the last
column of Table 2, a rough sense is that the average per-
formance of MTAL methods outperforms OSD methods.
Such advance illustrates the importance of image quality
information in the IQAD problem. Nevertheless, MKC-
Net outperforms these MTAL methods due to its explicit
image quality-assist modules and meta-learning techniques
that bypass the problem of coarse quality labels and pro-
vide sufficient information to diagnose problems. It is worth
mentioning that CANet explicitly explores the internal rela-
tionships between two diseases, and we modified it to ex-
plore the assistance of quality assessment in diagnosis. Al-

though the coarse quality label only contributes scant infor-
mation, CANet still surpasses other methods, demonstrat-
ing the importance of explicit utilization mechanisms. We
also tested MKCNet on two different lung disease diagnosis
tasks on two different imaging modalities to verify its gener-
alization ability. Columns 1-2 of Table 2 present the quanti-
tative results of lung disease diagnosis. As expected, MKC-
Net significantly outperforms other methods even when fac-
ing diagnosis tasks on another organ with different imag-
ing modalities, owing to its unique modeling for the IQAD
problem. MKCNet outperforms the methods ranked second
with a significant margin, achieving an average AUC, ACC,
and F1 improvement of 2.25%, 2.67%, and 0.72%, respec-
tively, highlighting its effectiveness.

4.3. Ablation Study

Contribution of each component. We first validate the
effects of the two critical components in our method by re-
moving Meta Learner (denoted as w/o Meta, which will
leverage fq

θ to assist diagnosis) and removing the explicit
quality information utilization mechanism (denoted as w/o
MAB, where Meta Learner will still optimize Task Net).
We also include a baseline model with the same basic ex-
perimental setting as ours, denoted as Vanilla. As shown in
Figure 4, removing either component results in decreased
performance of MKCNet on all three metrics, but the per-
formance is still better than Vanilla. This result is reason-
able and suggests that these two components play comple-
mentary roles in addressing the IQAD problem.

Influence of LQ images. We evaluated the effectiveness
of MKCNet in handling different numbers of LQ images



Ablation Study on DRAC

M
et

ri
c 

Sc
or

e

MKCNet
w/o MAB
w/o Meta

Vanilla

88.68
87.8

87.08

84.76

82

84

86

88

90
82.38

81.61 81.35

74.87

68

72

76

80

84
73.87

73.07

71.15

64.89

60

64

68

72

76

AUC ACC F1

Figure 4. Ablation study for the effect of proposed components.
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Figure 5. Performance of MKCNet and Vanilla on different ratios
of LQ images used in training on CT-IQAD and CXR-IQAD.

during training to demonstrate its generalization ability, as
illustrated in Figure 5. To conduct this experiment, we di-
vided LQ images into four equal parts and trained Vanilla
and MKCNet with 0%, 25%, 50%, 75%, and 100% of LQ
images while retaining the same number of HQ images.
As expected, the performance of both Vanilla and MKC-
Net increased with the addition of LQ images, but the per-
formance gap between the two methods became more pro-
nounced. Furthermore, we compared the performance of
MKCNet with Vanilla on LQ images. As shown at the top
of Figure 6, MKCNet achieved a significant performance
improvement over Vanilla. These experiments highlight the
importance of learning from LQ images and demonstrate
that MKCNet can more effectively leverage LQ images by
utilizing quality labels compared to Vanilla.

Effect of designs in Task Net. We conducted an in-
depth analysis to demonstrate the effectiveness of designs
in Task Net. First, we discussed modifications to investi-
gate the need for the GAB and the way of explicit utilization
mechanism. We replaced the GAB with fully connected
layers and kept other components unchanged, denoted as
MKCNet-FC. Additionally, we designed MKCNet-Con,
which diagnosed based on the concatenation of fd

θ and
the entire meta co-embedding feature fω

θ , without filtering
diagnosis-irrelevant channels. As shown in the middle of
Figure 6, the performance drop of these variants indicates
the effectiveness and necessity of these designs. The results
suggest two critical issues: a) the GAB contributes to de-
sired feature representation construction, and b) designing
a practical utilization mechanism is crucial for IQAD.

Analysis of Meta Learner. We first conducted exper-
iments to verify the effectiveness of joint-encoding mask-
ing, which is used to select the auxiliary label embedding
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Figure 6. Histogram of AUC score analysis on four datasets. Top:
Comparison on LQ images. Middle: The influence of Task Net
design. Bottom: The impact of different quality information.

yw. We compared the results of using different masking
strategies and found that only using the image quality label
for masking decreased performance significantly, as shown
at the bottom of Figure 6. This illustrates the importance
of joint-encoding masking, which uses joint label encoding
to ensure that the semantics of yω correlate with both im-
age quality and disease diagnosis. We further analyzed the
cosine similarity among the auxiliary label embedding loss
gradient (AuxGrad), diagnosis loss gradient (D-Grad), and
quality assessment loss gradient (IQ-Grad) on the shared
backbone in Task Net. Figure 7 shows that yω provides in-
formation related to both diagnosis and image quality, while
there is little similarity among the loss gradients of the dis-
ease diagnosis and image quality assessment branch. We
also observed that the label type used in the embedding
masking affects the auxiliary loss gradient and its correla-
tion with the corresponding task. If we use the diagnosis
label to obtain yω , the gradient of that learning branch will
be highly related to disease diagnosis but uncorrelated with
image quality assessment, and vice versa. These analysis
support the effectiveness of knowledge co-embedding fea-
tures, which contain the desired knowledge correlated with
both quality assessment and disease diagnosis.

Importance of auxiliary label embedding yω . We con-
ducted t-SNE analysis on the output vector Mϕ(x) of Meta
Learner and the final diagnosis feature fd∗

θ to visually un-
derstand the effect of auxiliary label embedding. As shown
in Figure 8, Task Net successfully learned discriminative
features for disease diagnosis, and these features tended to
be clustered based on image quality and disease diagnosis
categories. However, Vanilla only focused on diagnosis la-
bels and obscured features of images with different image
qualities. This indicates the effectiveness of MKCNet in
leveraging diagnosis and quality labels, i.e., it comprehen-



Figure 7. Gradient cosine similarity analysis on Task Net.
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sively considers both diagnosis and quality information to
diagnose. From the visualization of Mϕ(x), we can ob-
serve two facts: a) these output vectors are clustered by the
joint encoding of image quality and diagnosis, and b) fea-
ture points are dispersed inside each cluster. The first fact
illustrates the justification of Meta Learner, which learns
fused and discriminative information regarding image qual-
ity and disease diagnosis. The latter fact illustrates that the
auxiliary label embedding is diverse with images and may
provide adaptively helpful information to fω

θ .
Qualitative analysis. Finally, we performed class ac-

tivation mappings (CAMs) using [67] to qualitatively in-
vestigate how MKCNet performs on DARC with varying
image qualities. The results, shown in Figure 9, demon-
strate that both Vanilla and MKCNet effectively attend to
the HQ images. However, Vanilla fails to deal with degra-
dations in the images, resulting in misleading signs. In the
second row of the figure, for instance, Vanilla focuses on
the fake vessel disappearing in the low-signal area caused
by threshold degradation. In the third row, it focuses on the
false abnormality of the optic disc due to segment degra-
dation and low-signal area. In contrast, MKCNet is more
robust in dealing with such degradations and ignores mis-

Original Image CAM of Vanilla CAM of MKCNet CAM Discrepancy CAM of 𝒇𝜽𝒅 CAM of 𝒇𝜽𝝎 CAM of 𝒇𝜽
𝒒
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Figure 9. Qualitative analysis via CAM visualization.

leading clues while capturing the foveal avascular zone or
vessel density as desired. Moreover, the CAM visualization
of features in MKCNet demonstrates how quality informa-
tion can assist in diagnosis. In the second and third rows,
fd
θ initially perceives the area of interest as similar to the

area of interest of fq
θ ; i.e., focuses on degradations, which

indicates that it has been misled. However, after leveraging
information from fω

θ , it refocuses on the vessel area density
or foveal avascular zone. This illustrates the importance of
quality information and the effectiveness of our model in
providing assistance or calibration to the diagnosis.

5. Conclusion
In this paper, we address the significant yet often over-

looked problem of IQAD by reconsidering the value of LQ
images and quality labels. To achieve this, we propose a
novel MKCNet consisting of two subnets. Task Net ex-
plicitly explores the potential benefits of quality labels in
diagnosis by leveraging knowledge co-embedding features,
while Meta Learner learns to optimize these features to en-
sure their desired effectiveness and semantics. The experi-
ments show the superior performance of our method on five
datasets spanning four widely used medical imaging modal-
ities. Our method effectively overcomes the challenges of
leveraging quality labels, offering a more practical and cost-
effective solution than conventional approaches. By assess-
ing the value of LQ images and quality labels, we high-
light their importance in diagnosis tasks. Furthermore, it is
expected to pave the way for future research in leveraging
quality labels and LQ images, stimulating the development
of robust, accurate, and practical diagnostic models that can
effectively handle real-world challenges in clinical settings.
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