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Abstract

Multi-instance learning (MIL) is an effective paradigm
for whole-slide pathological images (WSIs) classification to
handle the gigapixel resolution and slide-level label. Pre-
vailing MIL methods primarily focus on improving the fea-
ture extractor and aggregator. However, one deficiency of
these methods is that the bag contextual prior may trick the
model into capturing spurious correlations between bags
and labels. This deficiency is a confounder that limits the
performance of existing MIL methods. In this paper, we
propose a novel scheme, Interventional Bag Multi-Instance
Learning (IBMIL), to achieve deconfounded bag-level pre-
diction. Unlike traditional likelihood-based strategies, the
proposed scheme is based on the backdoor adjustment to
achieve the interventional training, thus is capable of sup-
pressing the bias caused by the bag contextual prior. Note
that the principle of IBMIL is orthogonal to existing bag
MIL methods. Therefore, IBMIL is able to bring consis-
tent performance boosting to existing schemes, achieving
new state-of-the-art performance. Code is available at
https://github.com/HHHedo/IBMIL.

1. Introduction

The quantitative analysis of whole-slide pathological im-
ages (WSIs) is essential for both diagnostic and research
purposes [ 13]. Beyond complex biological structures, WSIs
are quite different from natural images in the gigapixel res-
olution and expensive annotation, which is thus formulated
as a multi-instance learning (MIL) [9] problem: treating
each WSI as a labeled bag and the corresponding patches
as unlabeled instances. Such a de facto paradigm has been
demonstrated in extensive tasks on WSIs, e.g., classifica-
tion [7, 15, 18, 46], regression [40, 41, 48] and segmenta-
tion [37]. The prevailing scheme for WSI classification —
bag-level MIL — is depicted in Fig. 1a. Given the patchified
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Figure 1. (a) Traditional scheme and our interventional training.
(b) Dataset bias. (c) Unreasonable attention maps with right pre-
dictions.

images as instances, each instance is embedded in vectors
by a feature extractor in the first stage. Second, for each
bag, their corresponding instance features are aggregated as
a bag-level feature for classification.

More and more new frameworks are proposed to im-
prove the two stages following this scheme [19,28,31,44]. Tt
is convinced that learning better instance features and mod-
eling more accurate instance relationships can bring better
performance of MIL. While we have witnessed the great
efforts, they still leave the “bag contextual prior” issue un-
solved: the information shared by bags of the same class
but irrelevant to the label, which may affect the final predic-
tions. For example, in Fig. 1b, due to the dataset bias, most
of the instances in the positive bags are stained pink but pur-
ple in the negative bags. The co-occurrence of specific color
patterns and labels may mislead the model to classify bags
by color statistics instead of the key instances — the more
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pink instances a bag contains, the more likely it is a posi-
tive bag. Fig. lc illustrates another example: even if the
prediction is correct, the underlying visual attention is not
reasonable, where the high attention scores are put on the
disease-irrelevant instances outside the blue curves in the
bags. From the causal lens, the bag contextual prior is a con-
founder that opens up a backdoor path for bags and labels,
causing spurious correlations between them. To suppress
such a bias, we need a more efficient mechanism for the
actual causality between bags and labels, i.e., the bag pre-
diction is based on the bag’s content (e.g., key instances),
which can not be fully achieved only by above mentioned
new frameworks.

In fact, it is challenging to achieve unbiased bag pre-
dictions as such a bias happens in the data generation —
the tissue preparations, staining protocols, digital scan-
ners, etc. In this paper, we propose a novel MIL scheme,
Interventional Bag Multi-Instance Learning (IBMIL), to
tackle this challenge. In particular, we propose a structure
causal model (SCM) [24] to analyze the causalities among
bag contextual prior, bags and labels. The key difference
of IBMIL is that it contains another stage of interventional
training (see Fig. la right). Given the aggregator trained in
the second stage, instead of directly using it for inference
via likelihood: P(Y|X), we apply it for the approxima-
tion of confounders. With the confounders observed, we
eliminate their effect via the backdoor adjustment formu-
lation [23], where the intuitive understanding is: if a WSI
model can learn from “purple” and “pink” positive/negative
bags, respectively, then the bag context of color will no
longer confound the recognition. Therefore, our IBMIL is
fundamentally different from the existing scheme as we use
a causal intervention: P(Y'|do(X)) for bag prediction.

We conduct experiments on two public WSI datasets,
i.e., Camelyon16 [1] and TCGA-NSCLC. Experimental re-
sults show that IBMIL is agnostic to both feature extractors
and aggregation networks, i.e., it brings consistent perfor-
mance boosting to all compared state-of-the-art MIL meth-
ods in the WSI classification tasks. Further ablation studies
and analyses demonstrate the effectiveness of interventional
training.

2. Related Work
2.1. Instance-level MIL on WSIs

Instance-level MIL represents each instance by a score
and aggregates instance scores into a bag score. One widely
used baseline is SimpleMIL [5, 8], which directly propa-
gates the bag label to its instances. When applying Sim-
pleMIL for WSIs, the unbalanced dataset could result in
noisy instance-level supervision since a WSI (e.g., Came-
lyon16) might only contain a small portion of a disease-
positive tissue in clinic [19]. The following works in

this line improve this baseline via various modifications.
Cleaner annotations: SemiMIL [34] directly introduces
cleaner annotations for partial instances with the help of
pathologists, where these annotated regions are assigned
with larger weights as they carry higher confidence. In-
stance selection: PatchCNN [15] selects instances via a
delicate thresholding scheme at both WSI and class levels.
Similarly, Top-k MIL [6] only uses the top-k instances for
each bag, but the fixed number of selected instances fails
to make a trade-off between preserving clean instances and
discarding noisy instances. RCEMIL [2] proposes rectified
cross-entropy (RCE) loss to select instances in a softer man-
ner, while the loss requires statistics of possible abnormal
tissues among all WSIs. More recently, IMIL [20] sum-
marizes the previous works from a causal lens and propose
IMIL to select instance via causal intervention and effect.
However, the performance of instance-level MIL methods
is usually inferior to bag-level counterparts [35].

2.2. Bag-level MIL on WSIs

The instances are represented as embedding vectors and
classified by bag-to-bag distance/similarity or a bag classi-
fier [35]. Conducting bag-level MIL on WSI is non-trivial,
because the intermediate results of all patches still need
to be stored in memory for backpropagation. Therefore,
some recently proposed frameworks separate the training of
instance-level feature extractors and aggregation networks,
resulting in a two-stage modeling approach [19,28,31,44].
They contribute differently at both stages. For the feature
extractor, they introduce different architectures from con-
volutional neural networks (CNNs) to transformer-based
models [26], and training paradigms from ImageNet pre-
training [27,40,41] to self-supervised learning [21,31,46].
Simultaneously, many works pay attention to new designs
of aggregation networks, from non-parametric poolings,
e.g., max/mean-poolings [35], to learnable ones, e.g., graph
convolution networks [460] and attention mechanisms [17,

,28,44]. Our work lies in this line but aims at empow-
ering these existing methods. Thus the contributions are
orthogonal.

2.3. Causal Inference in Computer Vision

Causal inference, a general framework, has been intro-
duced to various computer vision tasks, including classi-
fication [16, 30, 42], semantic segmentation [4, 43], unsu-
pervised representation learning [22, 32, 33] and so on. In
MIL problems, StableMIL [45] takes “adding an instance
to a bag” as a treatment for bag-level prediction, while
IMIL [20] uses inverse probability weighting and causal ef-
fects for instance-level tasks. Unlike them, our IBMIL is
based on backdoor adjustment formulation and works as a
general framework to empower existing bag-level MIL for
WSI classification tasks.



3. Method
3.1. Preliminaries

MIL formulation. Due to the gigapixel resolution and
lacking fine-grained labels, performing downstream tasks
on WSIs is formulated as an MIL problem, such that each
WS is treated as a labeled bag with corresponding patches
as unlabeled instances. Take binary classification as an
example, let X = {(x1,91),..., (Tn,yn)} be a WSI bag,
which contains n instances of x;. The instance-level labels
{Yi, .., Yn} are unavailable. Under the standard MIL as-
sumption, the bag label Y is further given by:

o fo

otherwise

which can be modelled by max-pooling [15]. A general
three-stage approach goes like 1) Instance transformation:
a feature extractor f(-) is trained for instance-wise features
b, 2) Instance combination: the pooling operation o(-) is
targeted for bag feature B, 3) Bag transformation: a down-
stream classifier g(-) is used for prediction, which can be
formulated as:

bi = f(z:),B=o0(b1, -
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where the pooling o(+) should be a permutation-invariant
function [17] for the spatial-invariant MIL. method. Some
works further absorb the classifier g(-) into the pooling
operation o(-), referred to as aggregator/aggregation net-
works. When applying the MIL methods for WSIs, it should
be noted that 1) the diagnosis for WSI analysis can be based
on different tissue regions with multiple concepts — the
collective MIL assumption, 2) the bag length n for a WSI
can be extremely large, e.g., about 8,000 on average [19].
Therefore, the bag MIL methods for WSIs are with learn-
able aggregators and trained in a two-stage procedure, i.e.,
training the feature extractor and aggregator stage by stage.
Current works mainly follow this formulation and improve
the framework from both feature extractor and aggregator,
while our proposed method aims to empower existing works
from a causal perspective.

Analysis MIL through causal inference. As shown
in Fig. 2a, we formulate the MIL framework as a causal
graph (a.k.a, Pearl’s structural causal model or SCM [24]),
which contains three nodes: X: whole-slide pathological
image (bag), Y: bag label, C: bag contextual information.

X — Y: This path indicates that the MIL model can
learn to predict the bag label on the bag content, e.g., key
instances.

C — X: This path indicates the generation of the
whole-slide pathological image. Due to the differences in
tissue preparations, staining protocols and digital scanners,
the appearance of WSIs can be significantly affected, po-
tentially introducing biases.

(a) Causal graph

(b) P(Y|do(X))

Figure 2. An illustration of causal graph for bag MIL framework.

C — Y: This path indicates that the bag prediction is
affected by the contextual prior information in the training
dataset. For example, in Fig. 1b, an MIL model predicts
all bags with purple color as positive regardless of content
information related to the real label.

In the causal graph, C' confounds X and Y via the back-
door path X — C' — Y and causes a spurious correla-
tion between them, which prevents learning robust bag MIL
models. For example, the model may wrongly predict the
bags when the data are out-of-distribution, ¢.e., with differ-
ent context prior. An ideal MIL method should capture the
true causality between X and Y, but the conventional cor-
relation of P(Y'|X) fails to do so, as such a spurious corre-
lation is inevitable. Therefore, we instead seek to use the
causal intervention P(Y'|do(X)), where the do-operation
do(-) means forcibly assigning a specific value to the vari-
able X. As shown in Fig. 2b, it can be considered as a mod-
ification of the graph — cutting off the backdoor path, thus
mitigating the bias caused by confounders. The ideal way
of do(+) is the random controlled trials [25] — enumerating
each bag with all possible contexts, which is impossible in
practice. Next, we propose a practical intervention method
to remove the confounding effect caused by the bag contex-
tual prior.

3.2. Interventional Bag Multi-Instance Learning

We propose to use the backdoor adjustment formulation
to achieve the causal intervention: P(Y|do(X)) for bag-
level prediction. Formally, we have the backdoor adjust-
ment for the graph in Fig. 2a as:

P(Y [ do(X)) = ZP(Y | X, h(X, c))P(ei),  (3)

where ¢; loops over the confounder set and A(-) is a func-
tion defined later in Eq. (5). Different from Bayes rule, in
Eq. (3), ¢; is no longer affected by X but subject to its prior
P(c;), since the causal intervention forces X to incorporate
each ¢; fairly. Now, we are ready to introduce our inter-
ventional bag multi-instance learning stage by stage. Fig. 3
illustrates the overview of IBMIL.
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Figure 3. Overview of our proposed Interventional Bag Multi-Instance Learning (IBMIL). Our contribution is to introduce interventional

training to the traditional two-stage scheme.

Stage 1: Training feature extractors. We learn a
feature extractor f(-) on the patchified images of WSIs
{z1, ...,z }, aiming at encoding each instance as a discrim-
inative feature vector.

Stage 2: Training aggregators. Given the features of in-
stances {b1,...,b,}, the aggregator employs MIL pooling
o(+) to assemble them into a bag feature B sequentially or
simultaneously, and a classifier g(-) for discrimination. For-
mally, the loss for training aggregator is defined as:

N
£=—;,;mlogﬁﬂl—mlog(l—ﬁ), (4)

where IV is number of bags in the training set. Note our IB-
MIL is no not limited to specific feature extractor or aggre-
gators, including the architectures and training paradigms.
Please refer to Sec. 4 for our choices.

Stage 3: Causal intervention via backdoor adjustment.
The traditional two-stage bag MIL stops at stage 2 and uses
the trained models for inference directly. Instead, we intro-
duce another stage of interventional training, which needs
the practical implementation of Eq. (3). Note that back-
door adjustment assumes that we can observe and stratify
the confounders of a bag context. Thanks to the powerful
ability of deep MIL models, context information is natu-
rally encoded in the higher-level layers [20, 43]. To con-
stitute the confounder set, we use a confounder dictionary
C = lc1,...,ck] for approximation, as collecting all con-
founders is impossible. Given the trained feature extrac-
tor and aggregator, we use K -means over all the bag fea-
tures in the training set, partitioning the bags into clusters.
We average the bag features of each cluster to represent

a confounder stratum c;, resulting in a confounder dictio-
nary with the shape of d x K, where d is the dimension
of bag features. Note that our approximation is reasonable
in that these global clusters are susceptible to the visual bi-
ases [29], which is exactly the confounders. Then, we de-
fine:

h(X, Ci) = ;G4

[aq,--- ,aK]:softmax( 7

(WlB)T(WQC)) )
where B = o(f(X)) is the bag feature, Wy, Wy € R*4
are two learnable projection matrices to project bag feature
B and confounder C' into a joint space, and v/ is used for
feature normalization [33]. Since the prediction comes from
both bag X and confounder C' (see Fig. 2a), we further de-
fine
PY [ X,h(X,¢c;)) = P(Y | B&h(X,ci)),  (6)
where @ denotes vector concatenation, and other imple-
mentations can be found in ablation studies. We assume
P(c;) is a uniform prior of 1/K for a safe estimation, and
a more reasonable assumption, e.g., incorporating expert
knowledge, will be our future work. Plugging Eq. (5),
Eq. (6) and defined P(c;) into Eq. (3), we are ready to calcu-
late P(Y'|do(X)) via passing the network multiple times. In
practice, to avoid the expensive cost, we further apply Nor-
malized Weighted Geometric Mean [38] to move the outer
sum into the Softmax:
& > - (D

PY | do(X)) ~
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Thus, backdoor adjustment can be achieved by one feed-
forward of the network.

3.3. Justification

In our implementation of the causal intervention, there
are some aspects we need to discuss further.

Compatible with large-scale unlabelled datasets. We
constitute the confounder set in an unsupervised fashion.
One alternative implementation is to use the available bag
labels for guidance, preserving the intra-class variation and
capturing the class-relevant characteristics . There are two
main reasons for our choice. 1) The unsupervised fashion
makes our scheme compatible with large-scale unlabelled
datasets, e.g., The Cancer Genome Atlas (TCGA), for bet-
ter approximation of confounders. 2) The confounder could
be irrelevant to the class identity, e.g., the stain color of pos-
itive and negative instances can be the same. We explore the
other implementations in Sec. 4.3.

One possible more elegant scheme. As we need the
trained aggregator to generate the bag features (the stage 2),
one more stage is needed to retrain the aggregator (the stage
3). We are thus motivated to further simplify our scheme to
avoid extra computational cost. Specifically, we can achieve
the bag features by applying the traditional non-parametric
aggregators, e.g., max/mean-pooling, to the instances in a
bag. It is inspired by the fact that these non-parametric ag-
gregators serve as strong baselines, and we conjecture that
statistic bag information they provide can be used for a rea-
sonable approximation of confounders. Therefore, we can
omit the stage 2. The experiment results in Sec. 4.3 support
that our scheme can be more elegant.

Connection to other methods. Embedding-based MIL:
As we approximate the confounder set based on bag fea-
tures, these confounders can be seen as a denoised abstrac-
tion of bag features. From this perspective, we share the
same spirit with the embedding-based MIL [35], i.e., ex-
ploring the relations between bags. That means our IBMIL
also explains the effectiveness of embedding-based MIL.
Color Normalization: Some works [47] propose color nor-
malization methods for H&E stained WSIs. However, color
is just one of the confounders, and some confounders are
even unobserved. Our method does not focus on color only,
and thus is the more reasonable partially observed chil-
dren of the unobserved confounder [ 1 1]; Instance augmen-
tation: IMIL [20] uses strong instance augmentation to train
the feature extractor for instance prediction. However, the
augmentation may affect the statistical information in the
bag. Therefore, our method is more suitable for bag MIL.
Remix [39] proposes data augmentations for MIL by ex-
ploring the relations of instances, but our method explores
the bag-level relations based on the causal theory.

4. Experiments

Dataset and evaluation protocol. We conduct the experi-
ments on two public WSI datasets, i.e., Camelyon16 [1] and
TCGA-NSCLC. Camelyonl6 is a dataset of H&E stained
slides for metastasis detection in breast cancer, consisting
of 399 WSIs. Following [20], we crop each WSI into 256 x
256 non-overlapping patches, and remove the background
region. There are roughly 2.8 million patches at 20x mag-
nification in total, with about 7,200 patches per bag. TCGA-
NSCLC includes two subtypes in lung cancer, ¢.e., Lung
Squamous Cell Carcinoma (LUSC) and Lung Adenocarci-
noma(LUAD). The dataset consists of 1,054 WSIs. We di-
rectly used the patches released by [19], which are about
5.2 million patches at 20x magnitude, with an average of
5000 patches for each bag. Following the evaluation pro-
tocol of [19], we use 270 training images and 129 test im-
ages for Camelyon16, and 836 training images and 210 test
images for TCGA-NSCLC(some corrupted slides are dis-
carded). We report the class-wise precision, recall, accuracy
and area under the curve (AUC) scores.

Feature extractor. We adopt different network architec-
tures with different training paradigms to thoroughly eval-
uate our IBMIL. ResNet-18 [14] is a widely used CNN-
based model in our community, and we adopt the ImageNet
pre-trained one released by PyTorch. ViT-small [10] is a
typical transformer-based model, which is good at modeling
the long-range dependencies in the data. CTransPath [36]
is a hybrid CNN and transformer architecture, customized
for WSIs. We adopt the ViT pre-trained with MoCo V3 [3]
and CTransPath pre-trained with semantically-relevant con-
trastive learning (SRCL), where the used data is about 15
million images from 9 datasets [36]. Please refer to the Sup-
plementary for more details.

Aggregators for MIL models. We build our proposed
method upon 4 SOTA methods. ABMIL [17] is a classic
attention-based MIL, where the attention scores are pre-
dicted by a multi-layer perceptron (MLP). DSMIL [19],
a dual-stream framework, jointly learns an instance and a
bag classifier. The highest-score instance is further used
to re-calibrate other instances into a bag feature. Trans-
MIL [28] is a correlated MIL framework built on trans-
former to explore both morphological and spatial infor-
mation, where self-attention is used for bag aggregation.
DFTD-MIL [44] proposes to virtually enlarge the number
of bags by introducing the concept of pseudo-bags, result-
ing in a double-tier MIL framework. To align with DSMIL,
we use the maximum attention score selection (MaxS) for
the feature distillation strategy. For more results of DTFD-
MIL (MaxMinS), please refer to the Supplementary.

We use DSMIL’s code base for implementation and eval-
uation, and build other models based on their officially re-
leased codes. Since the feature extractors we use are all
pre-trained, we can directly transform instances into feature



Table 1. Main results (%) on Camelyon16 and TCGA-NSCLC.

W Camelyon16 TCGA-NSCLC
Method Precision Recall Accuracy AUC Precision Recall Accuracy AUC
86.71 81.71 84.50 84.07 82.75 85.84 81.43 88.95
ABMIL +IBMIL 88.58 87.14 88.37 90.43 85.42 85.17 85.24 91.26
2 A +1.87 +5.43 +3.87 +6.36 +2.67 -0.67 +3.81 +2.31
g 84.56 82.95 84.50 87.16 80.56 85.78 77.62 86.88
Zi % DSMIL +IBMIL 90.17 86.20 88.37 87.69 81.98 86.25 80.00 87.19
3 & A +5.61 +3.25 +3.87 +0.53 +1.42 +0.47 +2.38 +0.31
:QZG 2 85.43 81.06 83.72 81.29 85.46 85.31 85.24 90.70
& o TransMIL +IBMIL 83.14 82.93 83.72 88.71 85.80 87.06 85.24 92.54
g A -2.29 +1.87 0.00 +7.42 +0.34 +1.75 0.00 +1.84
- 84.85 80.09 82.95 82.77 82.29 83.77 81.90 88.91
D?f/{]i)—(l;/l)lL +IBMIL 89.53 86.51 88.37 89.51 83.25 82.96 82.86 90.50
A +4.68 +6.42 +5.42 +6.74 +0.96 -0.81 +0.96 +1.59
91.84 89.09 90.70 92.33 90.76 90.40 90.48 95.87
ABMIL +IBMIL 95.29 92.31 93.80 93.83 91.92 91.93 91.90 96.91
A +3.45 +3.22 +3.10 +1.50 +1.16 +1.53 +1.42 +1.04
89.24 88.10 89.15 93.26 92.11 92.79 90.95 97.13
S DSMIL +IBMIL 91.05 91.30 91.47 95.20 92.05 93.82 91.43 97.51
Qé d A +1.81 +3.20 +2.31 +1.94 -0.06 +1.03 +0.48 +0.38
E & 95.83 93.27 94.57 95.88 92.05 93.82 91.90 95.55
@] TransMIL +IBMIL 96.48 95.50 96.12 97.00 93.94 93.76 93.81 97.24
A +0.35 +2.33 +1.55 +1.12 +1.89 -0.06 +1.91 +1.69
95.87 94.54 95.35 96.18 90.41 88.40 88.57 94.88
D"f;{]i}-(l;/l)IL +IBMIL 96.95 95.19 96.12 96.28 91.17 90.89 90.95 96.57
A +1.08 +0.65 +0.77 +0.10 +0.76 +2.49 +2.38 +1.69
89.95 83.97 86.82 83.94 88.72 88.51 88.57 92.71
ABMIL +IBMIL 87.94 86.18 87.60 91.31 89.09 89.02 89.05 93.53
A -2.01 +2.86 +0.78 +7.37 +0.37 +0.51 +0.48 +0.82
86.72 77.24 81.40 82.27 90.26 91.37 90.00 95.40
2 DSMIL +IBMIL 85.08 78.82 82.17 83.77 91.52 90.42 90.48 96.20
= o A -1.64 +1.58 +0.77 +1.50 +1.26 -0.95 +0.48 +0.80
> % 94.21 92.93 93.80 94.38 94.26 93.83 93.81 96.67
= TransMIL +IBMIL 93.84 93.24 93.80 95.20 94.34 95.25 94.29 97.98
A -0.37 +0.31 0.00 +0.82 +0.08 +1.42 +0.48 +1.31
DTED-MIL 90.71 88.44 89.92 90.96 89.45 90.89 89.05 94.95
(MaxS$) +IBMIL 92.65 92.91 93.02 96.35 90.34 89‘792 90.00 96.35
A +1.94 +4.47 +3.10 +5.39 +0.89 -0.97 +0.95 +1.40

vectors. For stages 2 and 3, all MIL models are optimized
for 50 epochs with learning rate of 0.0001, and other set-
tings are followed their official code. We set the number of
confounder K = 8 and project dimension [ = 128 by de-
fault for all the main experiments. See Supplementary for
more details.

4.1. Experimental Results

We present the results on two benchmark WSI datasets,
Camelyonl6 and TCGA-NSCLC, covering binary class
MIL with unbalanced bags and multiple class MIL with bal-
anced bags, respectively. By “unbalanced”, it means only
a small portion of positive instances in positive bags, e.g.,
roughly <10% in Camelyonl6 [19]. From Tab. 1, we ob-
serve that 1) IBMIL consistently improves all feature ex-
tractors with all aggregators (12 possible combinations) on

both datasets, which suggests that IBMIL is agnostic to
feature extractors, aggregators and datasets. 2) In particu-
lar, we find the improvement on the ImageNet pre-trained
ResNet is larger than others. For example, the average
gain of AUC is 5.4% in Camelyonl6 and 1.5% in TCGA-
NSCLC. This is mainly because ResNet is more likely to
learn context patterns as it is supervised trained on Ima-
geNet [12], while the other two are self-supervised trained
with strong data augmentations — the “physical interven-
tion”. 3) Our IBMIL improves more on Camelyonl6 than
TCGA-NSCLC in most cases. The main reason is that the
former is a binary class MIL with unbalanced bags, which
suffer more severe bag contextual prior — learning the key
instances is much harder than context information. Note
that the performance could be further improved by tuning
the number of confounders for each setting.
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and (d) Means to achieve bag features. “Default” in (d) denotes our default 3-stage scheme.

4.2. Ablation on Model Design Variants

In Sec. 4.2 and Sec. 4.3, experiments are conducted on
TCGA-NSCLC dataset with feature extractor of ResNet-18
and aggregator of ABMIL, unless specified otherwise.

Size of confounder dictionary. We ablate size K of the
confounder dictionary on three feature extractors, includ-
ing ResNet-18, CTransPath and ViT. From Fig. 4a, the per-
formance of IBMIL is relatively robust to the size of con-
founder dictionary. Therefore, we need not elaborately tune
this hyper-parameter and an arbitrary size within a wide
range is able to boost the performance.

Dimension of joint feature space. As mentioned above,
the confounders and bag features are projected into a joint
feature space with a dimension of [ and attention scores are
calculated subsequently. We ablate dimension [ on three
feature extractors. The results in Fig. 4b reveal that per-
formance does not improve monotonically with increased
dimension and is saturated at [ = 256. We choose a dimen-
sion of 128 as the default configuration.

Learnable vs. unlearnable confounders. We explore the
effect of learnable and unlearnable confounders. For the
former, we update them in an end-to-end manner via back-
propagation.

Learnable Precision Recall Accuracy AUC
v 83.81 83.82 83.81 90.82
X 8542 8517 8524 9126

As can be seen, both of them outperform the baseline accu-
racy of 81.43%. However, freezing confounders during in-
terventional training beats learnable confounders by 1.43%
on accuracy. The reason may be that it is challenging to
learn both confounders and interventional training with only
bag-level labels, and introducing context-level supervision
could be a solution [33]. We set confounders unlearnable as
the default configuration.

Implementation of backdoor adjustment. We study the
effect of different implementations of backdoor adjust-
ment. Given a bag feature B € R? and the combina-
tion of confounders Zf{:l a;c;P(c;) € R?, we explore
three variants to combine them, i.e. B % Zf{:l a;c; P(e;)

and x € {®,+,—}, where +/— is element-wise addi-
tion/subtraction.

Method Precision Recall Accuracy AUC
S3] 85.42 85.17 85.24 91.26
+ 84.99 84.68 84.76 89.28
— 84.70 84.18 84.29 90.14

We observe all these implementations can lead to perfor-
mance improvements, which demonstrates the stability and
effectiveness of the proposed intervention.

4.3. Analysis and Discussion.

Do improvements come from more epochs? Note that
our proposed method requires an extra stage to train the
aggregator. A natural question is whether we can improve
baseline performance by training the baseline methods for
as many epochs as the extra stage. Fig. 4c displays that
more epochs do not bring about performance improvement,
showing that our proposed method could empower baseline
methods by backdoor adjustment rather than more training
epochs. In most cases, training longer even brings perfor-
mance degradation, which can be caused by the over-fitting
problem in MIL [44].

Is stage 2 necessary? Recent MIL methods aggregate the
instance features into a bag feature via the weighted av-
erage operator. The weights, also referred to as attention
scores, are generated by parametric networks, which need
an extra stage of training aggregators. Alternatively, we turn
to three non-parametric settings to skip this stage and effi-
ciently achieve the bag features. We consider:

e “Mean” / “Max” denotes a bag feature is obtained
through a mean-pooling / max-pooling layer among
a bag of instance features, which is inspired by the
strong baseline of non-parametric MIL method [35].

» “Instance” denotes that K -means is directly performed
over all the instance features in training set, since each
instance can be regarded as a bag with length of one.

Then, interventional training is applied to baseline meth-
ods (including ABMIL and DSMIL) and we report the re-
sults in Fig. 4d. Notably, even with such simple aggregation



100 92
Class Specific

98 mmm Class Agnostic

- 100
Baseline

TCGA
88 mmm TCGA+C16
86

Y84

AUC (%)
©
=

-
70 %

Accuracy (%)

<
92 82 60 -~ Baseline
90 80 —=— IBMIL
78 505 4

88 ResNet CTrans viT Mean

(a) (b)

©

100

—a— 5 —=a —
90 95 95

g0~ ~Wemmr g nendhenons g
- X

90" ’*“1“::::_':’."—""*‘“"'2’-1’—'*’ =

Accuracy (%)
Accuracy (%)

- T .
o 85 85
--m-- Top 1 -=-- Baseline - Top 1 80 "~ Baseline --@- Top 1
—&- Top3 —%— IBMIL —*- Top 3 —e— IBMIL —e- Top 3
8 16 52 4 8 16 [ 4 8 16
(d) (e

Figure 5. (a) Constitution of confounder set: class-specific vs. class-agnostic. (b) Confounder set from TCGA vs. TCGA+Camelyonl16.
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Table 2. Performance of non-parametric aggregators.

Aggregator K  Precision Recall Accuracy AUC
/ 77.59 77.35 70.95 82.23

2 81.58 73.54 72.38 83.44

Max 4 78.34 79.17 76.67 84.71
8 80.41 78.72 78.10 84.95

16 82.32 71.06 70.48 83.79

/ 77.13 71.60 71.43 80.68

Mean 2 81.97 81.49 81.43 85.81
4 82.04 81.56 81.43 87.10

8 84.50 80.46 80.48 89.14

16 85.13 78.16 78.10 89.00

strategy, IBMIL still outperforms the baseline, and remains
competitive or even better compared to “Default” setting,
which indicates stage 2 in our scheme is unnecessary. By
omitting stage 2, our scheme can be more elegant without
performance degradation in most cases.

Can IBMIL improve non-parametric baselines? Besides
using non-parametric aggregators to generate bag features
for confounder set, we further take them as baselines and
verify whether IBMIL is also able to improve them (i.e.,
max/mean-pooling). Surprisingly, in Tab. 2, IBMIL brings
significant improvements under all settings, where the best
performance is even comparable to these attention-based
aggregators. It indicates that IBMIL is indeed compati-
ble with all compared MIL methods, including the non-
parametric ones.

Constituting confounder set w/ or w/o bag labels? Given
bag labels, we explore the class-specific K-means. In par-
ticular, we apply K-means to each class respectively, pre-
serving the intra-class variation and class-relevant charac-
teristics. From Fig. 5a, we observe no obvious performance
gap between class-specific and class-agnostic K-means.
We conjecture that 1) the confounders could be indepen-
dent of the class identity, and 2) bag features are already
separable by classes. We will explore the way of incorpo-
rating bag labels in future work. On the other hand, the
unsupervised fashion makes our scheme compatible with
large-scale unlabelled datasets. We explore more unlabelled
bags via combining the bags of TCGA and Camelyonl6,

and constituting the confounder set via the non-parametric
aggregators. From Fig. 5b, we observe a clear improve-
ment on AUC under both max- and mean-poolings. That
indicates, with more bags, our implementation can achieve
better approximation of confounders.

Is IBMIL just post-processing? Since our proposed IB-
MIL shares some commonalities with the embedding-based
MIL [35], one may ask: Do the improvements only come
from exploring the bag relations? To answer this question,
we make minor modifications on ABMIL. Instead of in-
terventional training with confounders, we obtain the con-
founder dictionary via the class-specific K-means and treat
it as a KNN classifier for evaluation. As can be seen, it
brings limited improvements or even degrades the perfor-
mance, verifying the improvements comes from interven-
tional training, which is not just post-processing.

5. Conclusions

The vast majority of recent efforts in this field seek to
enhance the feature extractor and aggregator. This paper
addresses MIL from a novel perspective via analyzing the
confounders between bags and labels. This leads to the
proposed novel Interventional Bag Multi-Instance Learn-
ing IBMIL), a new deconfounded bag-level prediction ap-
proach to suppress the bias caused by the bag contextual
prior. IBMIL introduces a structure causal model to reveal
the causalities and eliminates their effect through the back-
door adjustment with practical implementations. Compre-
hensive experiments have been conducted on various MIL
benchmarks and the results show that IBMIL can boost ex-
isting methods significantly. In future, we plan to approxi-
mate confounder set in a more efficient and elegant manner.
As a general method to use causal intervention for bag-level
prediction, IBMIL provides fresh insight into MIL problem.
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