2212.14258v3 [cs.CV] 10 Apr 2023

arxXiv

HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization

Sungyeon Kim!
Dept. of CSE, POSTECH!

Boseung Jeong!
Graduate School of AI, POSTECH?

Suha Kwak!?

{sungyeon.kim, boseung0l, suha.kwak}@postech.ac.kr

http://cvlab.postech.ac.kr/research/HIER

Abstract

Supervision for metric learning has long been given in
the form of equivalence between human-labeled classes. Al-
though this type of supervision has been a basis of metric
learning for decades, we argue that it hinders further ad-
vances in the field. In this regard, we propose a new regular-
ization method, dubbed HIER, to discover the latent seman-
tic hierarchy of training data, and to deploy the hierarchy
to provide richer and more fine-grained supervision than
inter-class separability induced by common metric learn-
ing losses. HIER achieves this goal with no annotation for
the semantic hierarchy but by learning hierarchical proxies
in hyperbolic spaces. The hierarchical proxies are learn-
able parameters, and each of them is trained to serve as
an ancestor of a group of data or other proxies to approxi-
mate the semantic hierarchy among them. HIER deals with
the proxies along with data in hyperbolic space since the
geometric properties of the space are well-suited to repre-
sent their hierarchical structure. The efficacy of HIER is
evaluated on four standard benchmarks, where it consis-
tently improved the performance of conventional methods
when integrated with them, and consequently achieved the
best records, surpassing even the existing hyperbolic metric
learning technique, in almost all settings.

1. Introduction

Learning a discriminative and generalizable embedding
space has been a vital step within many machine learning
tasks including content-based image retrieval [18, 26, 36,

], face verification [20, 33], person re-identification [0,

], few-shot learning [29, 35, 39], and representation
learning [ 18, 45, 53]. Deep metric learning has aroused lots
of attention as an effective tool for this purpose. Its goal
is to learn an embedding space where semantically simi-
lar samples are close together and dissimilar ones are far
apart. Hence, the semantic affinity between samples serves
as the main supervision for deep metric learning, and has
long been given in the form of equivalence between their
human-labeled classes.

Figure 1. Motivation of HIER. HIER aims to discover an in-
herent but latent semantic hierarchy of data (colored dots on the
boundary) by learning hierarchical proxies (larger black dots) in
hyperbolic space. The semantic hierarchy is deployed to provide
rich and fine-grained supervision that cannot be derived only by
human-labeled classes.

Although this type of supervision has been a basis of
metric learning for decades, we argue that it now hinders
further advances of the field. The equivalence of human-
labeled classes deals with only a tiny subset of possible re-
lations between samples due to the following two reasons.
First, the class equivalence is examined at only a single
fixed level of semantic hierarchy, although different classes
can be semantically similar if they share the same super-
class. Second, the equivalence is a binary relation that ig-
nores the degree of semantic affinity between two classes.
It is difficult to overcome these two limitations since the se-
mantic hierarchy of data is latent and only human-labeled
classes are available from existing datasets in the standard
metric learning setting. However, once they are resolved,
one can open up the possibility of providing rich supervi-
sion beyond human-labeled classes.

In this regard, we propose a new regularization method,
called HIErarchical Regularization (HIER), to discover and
deploy the latent semantic hierarchy of training data for
metric learning. Since the semantic hierarchy can capture
not only the predefined set of classes but also their sub-
classes, super-classes, and affinities between them, our reg-
ularizer is expected to provide richer and more fine-grained
supervision beyond inter-class separability induced by com-
mon metric learning losses. However, it is challenging
to establish such a semantic hierarchy of data given their
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human-labeled classes only due to the absence of annota-
tion for the semantic hierarchy.

HIER tackles this challenge by learning hierarchical
proxies in hyperbolic space. The hierarchical proxies are
learnable parameters, and each of them is trained to serve
as an ancestor of a group of data or other proxies to approx-
imate the semantic hierarchy. Also, HIER deals with the
proxies in hyperbolic space since the space is well-suited
to represent hierarchical structures of the proxies and data.
It has been reported in literature that Euclidean space with
zero curvature is not optimal for representing data exhibit-
ing such a semantic hierarchy [16]. In contrast, hyperbolic
space with constant negative curvature can represent the se-
mantic hierarchy of data effectively using relatively small
dimensions since its volume increases exponentially as its
Poincaré radius increases [31, 32].

To be specific, HIER is designed as a soft approxima-
tion of hierarchical clustering [7, 25, 43], where similar data
should be near by one another in a tree-structured hierarchy
while dissimilar ones should be placed in separate branches
of the hierarchy (See Figure 1). During training, HIER con-
structs a triplet of samples or proxies, in which two of them
are similar and the other is dissimilar based on their hyper-
bolic distances. Then, the proxy closest to the entire triplet
is considered as the lowest common ancestor (LCA) of the
triplet in a semantic hierarchy; likewise, we identify another
proxy as the LCA of only the similar pair in the same man-
ner. Given the triplet and two LCAs (proxies), HIER en-
courages that each of the LCAs and its associated members
of the triplet are close together and that the dissimilar one of
the triplet is far apart from the LCA of the similar pair. This
allows the hierarchical proxies to approximate a semantic
hierarchy of data in the embedding space, without any off-
the-shelf module for pseudo hierarchical labeling [51].

The major contribution of our work from the perspective
of conventional metric learning is three-fold:

* We study a new and effective way of providing seman-
tic supervision beyond human-labeled classes, which
has not been actively studied in metric learning [!3,
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* HIER consistently improved performance over the
state-of-the-art metric learning losses when integrated
with them, and consequently achieved the best records
in almost all settings on four public benchmarks.

* By taking advantage of hyperbolic space, HIER sub-
stantially improved performance particularly on low-
dimensional embedding spaces.

Also, when regarding our work as a hyperbolic metric learn-
ing method, a remarkable contribution of HIER is that it al-
lows taking full advantage of both hyperbolic embedding

space and the great legacy of conventional metric learn-
ing since it can be seamlessly incorporated with any metric
learning losses based on spherical embedding spaces. The
only prior studies on hyperbolic metric learning [ 1, 51] are
not compatible with conventional losses for metric learn-
ing since they learn a distance metric directly on hyperbolic
space, in which, unlike the spherical embedding spaces,
norms of embedding vectors vary significantly.

2. Related Work
2.1. Deep Metric Learning

Deep metric learning aims to learn an embedding space
where data points of the same class are close to each other,
and those of different classes are far apart. To this end,
a number of studies have proposed various loss functions,
which can be categorized into two ways, pair-based and
proxy-based losses. Pair-based losses handle the relations
between pairs of data points. Contrastive loss aims to min-
imize the distance between positive pairs and maximize the
distance between negative pairs. Triplet loss [33, 44] em-
ploys a triplet of anchor, positive and negative samples, and
optimizes the embedding space by enforcing the constraint
that the distance between the positive pair is smaller than
that between the negative pair with a pre-defined margin.
Higher-order variants of these losses have also been pro-
posed to capture more complex relations between embed-
ding vectors [36, 37, 46, 47]. On the other hand, proxy-
based losses consider the relations between data points and
proxies, where the proxy is an additional learnable embed-
ding vector that represents the class of training data. Proxy-
NCA [26] associates a data point with proxies and pulls the
positive pair of a data point and proxy closer while push-
ing away the negative pair. Proxy-Anchor [17] associates a
proxy with all data points in a batch, allowing it to consider
rich relations between data points while reflecting their rel-
ative hardness through gradients.

Recently, loss functions that leverage the underlying hi-
erarchical relations of data beyond class equivalence re-
lations have been proposed for metric learning, such as
hierarchical triplet loss [13] and hierarchical proxy-based
loss [52]. These methods predefine the hierarchy of data,
and adjust the distances between data points to fit the dis-
crete hierarchy. In contrast, HIER aims to learn contin-
uous hierarchical representations in a data-driven man-
ner without the need for prior knowledge of the hierar-
chy or pre-existing algorithms [51]. This is a significant
advantage over existing hierarchical metric learning meth-
ods [13, 51, 52], which have a discrete nature and require
the number of hierarchy levels and clusters per level to be
specified. Our method allows for a more robust and adapt-
able method for hierarchical clustering, automatically ad-
justing to the latent semantic hierarchy of the data.



2.2. Hyperbolic Embedding

Learning hyperbolic embedding has drawn the attention
of many research fields because it can encode data such as
text or images into hyperbolic space with semantically rich
representation due to its high capacity and tree-like prop-
erty. Since learning embedding in the hyperbolic space for
natural language processing [27] has been successful, there
are some attempts to learn hyperbolic embeddings for com-
puter vision tasks such as few-shot learning [12, 16] and
deep metric learning [11, 51]; they have demonstrated that
hyperbolic embeddings are able to improve the model per-
formance. Instead of building complex network architec-
tures whose all layers operate in hyperbolic space, they pro-
posed hybrid architectures where only the last layer maps
inputs in Euclidean space to the hyperbolic embedding vec-
tors, and the remainders still operate in Euclidean space.
Yan et al. [51] proposed the unsupervised hyperbolic metric
learning framework by conducting hierarchical clustering
with pre-defined hierarchy thresholds. Ermolov et al. [11]
utilized the pairwise cross-entropy loss with hyperbolic dis-
tances through joint use of vision transformers [3, 9, 41].

Unfortunately, these approaches do not fully take advan-
tage of hyperbolic space for the following reasons. First,
a pre-defined set of hierarchy thresholds restricts the hier-
archical property of hyperbolic space. Second, the learned
embedding space is less generalizable since the latent se-
mantic hierarchy of data in hyperbolic space, which can
provide more fine-grained supervision and allow a more
generalizable embedding space to be learned, is not con-
sidered. Contrary to the existing hyperbolic metric learn-
ing methods, our loss can preserve the heritage of metric
learning as well as fully take advantage of hyperbolic space
thanks to HIER.

2.3. Hierarchical Clustering

Hierarchical clustering is a recursive grouping of a
dataset into clusters with an increasingly finer granularity.
It has usually been used for data analysis [38, 55], visual-
ization [34], and mining fine-grained relations of data [1].
Recently, cost function based methods [7, 25, 43] have been
developed.

Dasgupta [7] first proposed a cost function based
method, where the cost function is optimized by pairwise
similarities between data points and the leaves of the lowest
common ancestor (LCA). Wang and Wang [43] have im-
proved the cost function of [7] by introducing a triplet man-
ner that determines the weights of the costs according to
the triplet relations. However, These cost functions cannot
be optimized by the stochastic gradient descent method due
to its inherent discrete nature. As an effort to overcome this
limitation, Monath et al. [25] proposed a gradient-based hy-
perbolic hierarchical clustering (gHHC) that can be applied
to continuous tree representations in hyperbolic space, and

improved computational cost by approximating a distribu-
tion over LCA for two or three data points.

The aforementioned works have enabled hierarchical
clustering for both discrete and continuous trees, but they
have the limitation of requiring a ground-truth weighted
graph. Therefore, they are not suitable for hyperbolic met-
ric learning benchmarks, where the ground-truth weighted
graph is absent. HIER can overcome this problem by lever-
aging virtual ancestors of data points, named as hierarchical
proxies, while still allowing for stochastic gradient descent
optimization.

3. Proposed Method

This section first presents preliminaries to our work, the
Poincaré ball model and hierarchical clustering. Then, the
objective of HIER is elaborated on.

3.1. Preliminary
3.1.1 The Poincaré ball Model

Hyperbolic space means a Riemannian manifold with neg-
ative curvature, which has multiple conformal models [2].
In this work, we use the Poincaré ball, which is a popu-
lar and well-studied space in hyperbolic geometry. The n-
dimensional Poincaré ball model (D7, g) is defined by the
manifold D? = {x € R" : ¢||x|| < 1} and Riemannian
metric g° = A2¢g”, where c is a curvature hyperparame-
ter, A\, = ﬁ is the conformal factor, and gE =1,1s
Euclidean metric tensor.

An output of a conventional embedding network, lying
in Euclidean space, can be transformed into a point on
a Poincaré ball by a mapping function called exponential
map. The common form of the exponential map is given by
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One of the important properties of hyperbolic space is that
it is not a vector space, so vectors can be calculated alge-
braically only by introducing gyrovector spaces [42], a gen-
eralized notion of vector spaces. The addition operation in
gyrovector spaces, called Mobius addition, between a pair
of vectors u € D7 and v € D7 is defined as

expy(v) = tanh /c||v]| (1)

(1+2c{u,v) +c||[v|*)u + (1 — cf[u][*)v

udp.v =
1+ 2c(u,v) + ¢*[[u][?[|v][]?

In the Poincaré ball, the hyperbolic distance between the
two vectors u and v is then formulated as

2
dy(u,v) = %arctanh(ﬁH —ud®.vl|). 3)
As the curvature ¢ of Eq. (3) approaches to 0, the hyper-
bolic distance becomes equal to the Euclidean distance. As
the norm of vectors increases, the hyperbolic distance grows



much faster than the Euclidean distance that increases lin-
early. Thanks to its inherent characteristic, when the radius
of the Poincaré ball increases, its volume increases expo-
nentially and thus enables to represent the semantic hier-
archy of data even with low dimensions [31, 32]. How-
ever, at the same time, this property leads to serious op-
timization issues when the hyperbolic distance is incorpo-
rated with existing metric learning losses. Specifically, the
range of hyperbolic distances is not bounded, and accord-
ingly their scales vary significantly by norms of embedding
vectors. Thus, the use of hyperbolic distance makes the cri-
teria of conventional metric learning losses futile. One ten-
tative solution is to normalize the embedding vectors and
utilize an existing metric learning loss. However, such a
naive method cannot encode hierarchical structures, which
is the main reason for adopting hyperbolic space.

3.1.2 Conventional Hierarchical Clustering

Hierarchical clustering is an algorithm that builds a hier-
archy of clusters in a tree-like structure by grouping data
with a progressively finer granularity. Intuitively, the op-
timal clustering constructs a tree where similar data points
are close to each other and dissimilar data points are located
in separate branches. The Dasgupta cost [7] is an objective
function that measures the quality of hierarchical clustering
based on this property, and is formulated as follows:

C:= Zwi,jﬂeaves(i Vil 4)
]

where w; ; is the ground-truth weight indicating similarity
between two nodes 7 and j, ¢ V j denotes their lowest com-
mon ancestor (LCA), and leaves(k) is a set of leaves of the
sub-tree whose root is node k. To minimize the Dasgupta
cost, the higher the ground-truth weight between two nodes,
the smaller the number of descendants of their LCA should
be. This means that similar nodes should be located close
to each other at leaves of the tree structure.

Unfortunately, this cost function cannot be optimized by
stochastic gradient descent because of its discrete nature.
Its extensions [4, 25] enable gradient-based optimization for
clustering, but they still have limitations in that they demand
the ground-truth weighted graph, which is not available in
metric learning datasets. For these reasons, the Dasgupta
cost and its extensions are not directly applicable to deep
metric learning.

3.2. Our Hierarchical Metric Learning Objective

We proposes HIER, a novel regularization method that
discovers and deploys the latent semantic hierarchy of data
in hyperbolic space. Since the semantic hierarchy is ex-
pected to capture not only predefined classes but also their
sub-classes, super-classes, and affinities between these no-
tions, our regularizer provides more fine-grained supervi-

sion beyond inter-class separability induced by common
metric learning losses. Also, it is designed to be incorpo-
rated with any conventional metric learning losses based on
the spherical embedding.

3.2.1 HIER

To produce rich supplementary supervision as a regularizer,
HIER aims to discover the latent semantic hierarchy of data
with no additional annotation for the hierarchy. Specifically,
it is built upon an extension of the Dasgupta cost [25], but is
reshaped for unsupervised clustering with no ground-truth
weighted graph. The key idea of HIER is to employ hier-
archical proxies as learnable ancestors of data points in the
hierarchy.

Given a triplet {z;, z;, z}, in which z; and x; are re-
lated to each other and xj is irrelevant, HIER encourages
that the pair of related samples have the same LCA and
the rest has a different LCA. Note that we do not consider
class labels of data when sampling such a triplet since the
goal of HIER is to discover the latent semantic hierarchy
beyond the predefined classes. Instead, we employ the re-
ciprocal nearest neighbor to ensure the relevance relations
of a triplet. To be specific, the set of feasible triplets, de-
noted by 7, is estimated as follows:

T ={(wi,zj,xr) | (z; € Ric (i) A (w1 & Ric(w4))}
where Ry (z) = {2'|(z' € Nk (x)) A (x € Nk (2'))},
)

where z € D7 denotes an embedding vector in hyperbolic
space, Nk (z) is the K -nearest neighbors of z, and Rk (z)
stands for the K-reciprocal nearest neighbors of x. The
probability that a hierarchical proxy p € P is the LCA of
embedding vectors x; and x; is given by

mij(p) = exp ( —max {dg (i, p), dH(xj,p)}), (6)

where dy is the hyperbolic distance defined in Eq. (3).
Then, the most likely LCA of x; and z; is sampled from
the probability distribution 7;; by the Gumbel-max trick as
follows:
pij = arg max(mj (p) + gij), @)
P

where g;; is an i.i.d. sample drawn from Gumbel(0, 1); the
Gumbel noise g;; allows to avoid falling into local optima.
In the same way of Eq. (6) and (7), p;;i that is likely to be
the LCA of the entire triplet {x;, x;, z1} is sampled from
the hierarchical proxy set P except for p;;.

Using the hyperbolic distances between a sampled triplet
and their LCAs, our objective for hierarchical regularization
is implemented as a stack of three triplet losses:

Luier (t) = [du (@i, pij) — du (@i, pij) + 6]+
+[du (s, pij) — du(zj, pijr) + 6]+ (®)
+ [dH(xkapijk) - dH(xk,Pij) + 6]+,
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Figure 2. A conceptual illustration of the learning objective in Eq. (8). Each hierarchical proxy is colored in black and different colors
indicate different classes. The associations defined by the losses are expressed by edges, where the red solid line means the pulling and the
blue dotted line is the pushing. Relevant pairs are pulled into their LCA, and the remaining sample is pulled into LCA of the entire triplet.

where § is a margin hyperparameter. Figure 2 illustrates the
behavior of HIER in terms of the relations between a triplet
and their LCAs. HIER forces the relevant samples z; and
x; to be close to p;;, but encourages them to increase the
distance from p; ;;, by the margin. Meanwhile, the opposite
signal is applied to the irrelevant sample x;. These opera-
tions encourage p;;, to be relatively close to the center of
the Poincare ball and p;; to be away from the center. Con-
sequently, they become representatives of higher and lower
levels of the semantic hierarchy, respectively. In addition,
relevant samples are clustered, while unrelated samples are
branched out from them. As a result, x; and z; belong to
a child of p;;, and x;, becomes a child of p;;;, forming a
tree-like hierarchical structure.

3.2.2 Total Objective

Although HIER provides rich and fine-grained supervision
induced by the approximate semantic hierarchy of training
data, a metric learning loss still plays crucial roles as its
supervisory signals are reliable thanks to the use of ground-
truth labels while HIER relies on self-supervised hierarchi-
cal clustering. The final loss function for metric learning is
thus a linear combination of the two terms as follows:

L=Ly+ A Z Luer (), )
te{T2,Tp}

where )\ is a weight hyperparameter, Ly is a metric learn-
ing loss, and 7 and 7, are sets of triplets of samples and
hierarchical proxies that satisfy the condition in Eq. (5), re-
spectively. By feeding both samples and proxies as input
to the loss, we imply Lyigr to encourage hierarchical rela-
tions between ancestors (i.e., proxies) as well as individual
samples.

For the metric learning objective Ly, either those based
on cosine (Euclidean) distances or those of hyperbolic dis-
tances can be incorporated. When using a metric learning
loss based on spherical embedding, the loss is calculated
through the Euclidean metric with ¢, normalized embed-
ding vectors. In this case, the metric learning loss only con-
trols the angles between the normalized embedding vectors
and HIER adjusts their hyperbolic distances based on their
positions and norms.

4. Experiments

In this section, we evaluate our method on four bench-
mark datasets for deep metric learning and compare it with
the state of the art.

4.1. Experimental Setup

Datasets. On four benchmark datasets, namely CUB-200-
2011 (CUB) [49], Cars-196 (Cars) [19], Stanford Online
Product (SOP) [37], and In-shop Clothes Retrieval (In-
Shop) [21], models are evaluated and compared. We split
the datasets into train and test sets, directly following the
standard protocol presented in [17].

Evaluation metric. We measure the performance on the
datasets by Recall@£k, the fraction of queries that have at
least one relevant sample in their k-nearest neighbors on a
learned hyperbolic embedding space.

Embedding network architectures. For fair comparisons
with previous work, we utilize ResNet50 [14] and vision
transformer architecture with three types of pretraining
scheme (ViT-S [9], DeiT-S [41] and DINO [3]). All en-
coder is pretrained for ImageNet classification [8]. In ViT
variants, the linear projection layer for patch embedding is
frozen during training. We adjust the size of the last FC
layer according to the dimensionality of embedding vectors.
We note that Lo, normalization is not used for hyperbolic
embedding. Instead, the exponential mapping layer (See
Eq. (1)) is appended to the last embedding layer.

Implementation details. Our embedding models are opti-
mized by AdamW [22] with the learning rate value 10~° for
ViT-S and DeiT-S, and 5 x 10~ for DINO models. For ex-
periments using ResNet50, we follow the training setting of
[17]. Training images are randomly resized and cropped to
224 x 224 and randomly flipped horizontally while test im-
ages are resized to 256 x 256 and then center cropped. For
hyperbolic embedding, we use curvature parameter ¢ = 0.1
and clipping radius r = 2.3 following previous work [ 1].
In proxy anchor loss, we use a high learning rate for prox-
ies by scaling 1 x 10* times. For all of our experiments,
we maintain a consistent set of hyperparameters, including
K = 20 for the number of nearest neighbors, |P| = 512
for the number of hierarchical proxies, A = 1 for the loss



CUB Cars SOP In-Shop

Methods Arch. R@1 R@2 R@4 R@] R@ R@4 R@l R@I0 R@I100 R@l R@10 R@20
Backbone architecture: CNN

NSoftmax [54] R128 56.5 69.6 79.9 81.6 88.7 93.4 752 88.7 95.2 86.6 96.8 97.8
MIC [30] R128 66.1 76.8 85.6 82.6 89.1 93.2 77.2 89.4 94.6 88.2 97.0 -
XBM [48] R128 - - - - - - 80.6 91.6 96.2 91.3 97.8 98.4
XBM [48] B512 65.8 75.9 84.0 82.0 88.7 93.1 79.5 90.8 96.1 89.9 97.6 98.4
HTL [13] B512 57.1 68.8 78.7 81.4 88.0 92.7 74.8 88.3 94.8 80.9 94.3 95.8
MS [46] B512 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0 89.7 97.9 98.5
SoftTriple [28] B512 65.4 76.4 84.5 84.5 90.7 94.5 78.6 86.6 91.8 - - -
PA[17] B512 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2 91.5 98.1 98.8
NSoftmax [54] R512 61.3 73.9 83.5 84.2 90.4 94.4 78.2 90.6 96.2 86.6 97.5 98.4
TProxyNCA++[40] R512 69.0 79.8 87.3 86.5 2.5 95.7 80.7 92.0 96.7 90.4 98.1 98.8
Hyp [11] R512 65.5 76.2 84.9 81.9 88.8 93.1 79.9 91.5 96.5 90.1 98.0 98.7
HIER (ours) R512 70.1 79.4 86.9 88.2 93.0 95.6 80.2 91.5 96.6 92.4 98.2 98.8
Backbone architecture: ViT

IRTR [10] Del28 72.6 81.9 88.7 - - - 83.4 93.0 97.0 91.1 98.1 98.6
Hyp [11] Del28 74.7 84.5 90.1 82.1 89.1 93.4 83.0 93.4 97.5 90.9 97.9 98.6
HIER (ours) Del28 75.2 84.2 90.0 85.1 91.1 95.1 82.5 92.7 97.0 91.0 98.0 98.6
Hyp [11] DN'28 783 86.0 91.2 86.0 91.9 95.2 84.6 94.1 97.7 92.6 98.4 99.0
HIER (ours) DN!28 785 86.7 91.5 88.4 93.3 95.9 84.9 94.2 97.5 92.6 98.4 98.9
Hyp [11] vi28 84.0 90.2 94.2 82.7 89.7 93.9 85.5 94.9 98.1 92.7 98.4 98.9
HIER (ours) yi28 84.2 90.1 93.7 86.4 91.9 95.1 85.6 94.6 97.8 92.7 98.4 98.9
IRTg [10] De384 76.6 85.0 91.1 - - - 84.2 93.7 97.3 91.9 98.1 98.9
DeiT-S [41] De384 70.6 81.3 88.7 52.8 65.1 76.2 58.3 73.9 85.9 37.9 64.7 72.1
Hyp [11] De384 77.8 86.6 91.9 86.4 92.2 95.5 83.3 93.5 97.4 90.5 97.8 98.5
HIER (ours) De384 78.7 86.8 92.0 88.9 93.9 96.6 83.0 93.1 97.2 90.6 98.1 98.6
DINO [3] DN384 708 81.1 88.8 429 53.9 64.2 63.4 78.1 88.3 46.1 71.1 71.5
Hyp [11] DN384 809 87.6 92.4 89.2 94.1 96.7 85.1 94.4 97.8 92.4 98.4 98.9
HIER (ours) DN384 g1 88.2 93.3 91.3 952 97.1 85.7 94.6 97.8 925 98.6 99.0
VIiT-S [9] 384 83.1 90.4 94.4 478 60.2 72.2 62.1 71.7 89.0 432 70.2 76.7
Hyp [11] V384 85.6 91.4 94.8 86.5 92.1 95.3 85.9 94.9 98.1 925 98.3 98.8
HIER (ours) 384 85.7 91.3 94.4 88.3 93.2 96.1 86.1 95.0 98.0 92.8 98.4 99.0

Table 1. Performance of metric learning methods on the four datasets. Their network architectures are denoted by abbreviations, R—

ResNet50 [14], B-Inception with BatchNorm [15], De-DeiT [

], DN-DINO [3] and V-ViT [9]. Note that ViT [9] is pretrained on

ImageNet-21k [8]. Superscripts denote their embedding dimensions and t indicates models using larger input images.

weight of HIER, and 6 = 0.1 for the margin.
4.2. Quantitative Results

We compare the performance of the proposed method
with the existing state of the arts on four standard datasets.
In these experiments, we adopt proxy anchor loss [17] as a
metric learning objective L. For a fair comparison with
other methods, we divide the previous work in terms of
backbone architecture and embedding dimension, which is
summarized in Table 1.

The experimental results demonstrate the effectiveness
of our proposed method. Compared with existing CNN-
based methods, our method using ResNet50 as the back-
bone achieves superior performance on all datasets except
for SOP. Specifically, it outperforms ProxyNCA++ by a sig-
nificant margin of 1.7% on the Cars dataset and 2% on
the In-Shop dataset. Furthermore, we reimplement Hyp
using ResNet50 and observe that its performance lags be-
hind ours. For ViT-based models, HIER consistently out-

performs the state of the art in terms of R@1 for almost
all settings. Specifically, our method with 128 embedding
dimensions achieves a large margin improvement of 3.7%,
2.4%, and 3.0% in R@1 for V128, DN'28 and De!?® mod-
els on the Cars dataset, respectively, and surpasses the per-
formance of 512-dimensional CNN-based methods. These
improvements suggest that our method allows the embed-
ding space to be more discriminative and generalized with
smaller dimensionality, thanks to utilizing hyperbolic space
and considering latent semantic hierarchy.

4.3. Qualitative Results

To demonstrate that HIER actually represents a latent
semantic hierarchy of data, we visualize the learned em-
bedding vectors which are projected to a 2-dimensional
Poincaré ball. For visualization, we use UMAP [23] with
hyperboloid distance metric as a dimensional reduction
technique. Figure 3 shows that a tree-like hierarchical struc-
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Figure 3. UMAP visualization of our embedding space learned on the train split of Cars, CUB, SOP, and In-shop. Pink ones indicate
hierarchical proxies and other colors represent distinct classes. The gray lines are the ancestor-descendant relations between data points.
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Figure 4. Class-to-class affinity matrices of proxy anchor and ours on the CUB (a) and Cars (b) datasets, which show the inter-class
similarity. The different colors (13 colors of CUB and 9 colors of Cars) of the sidebar indicate distinct actual super-classes at the order

level referring to the hierarchy labels of [5].

ture between data and hierarchical proxies is constructed in
the embedding space learned by HIER. The middle figures
are enlarged figures of part of the embedding space, which
shows that samples in a sub-tree share common semantics,
although not of the same class. This visualization proves
that HIER discovers and deploys latent and meaningful hi-
erarchies between data in the embedding space.

4.4. Analysis on Semantic Hierarchy of HIER

To demonstrate that HIER can capture a meaningful se-
mantic hierarchy, we perform two qualitative experiments
that can show whether the embedding space reflects the
super-class and sub-class relations between data.

In Figure 4, we present the affinity matrix between
classes on the embedding space trained with our method,
and compare it with that of the proxy anchor loss [17].
The similarity measures of affinity matrices for proxy an-
chor loss and ours are set to cosine similarity and nega-
tive hyperbolic distance, respectively. Since classes with
the same super-class share common attributes, they have
a high degree of similarity in both methods. However, in
the case of proxy anchor loss, classes belonging to different
super-classes often have high similarity, whereas HIER can
clearly distinguish between classes sharing the same super-
class and classes that are not.

In addition, to investigate the sub-class characteristics,

we present the nearest neighbor samples of hierarchical
proxies that are close to the boundary of the Poincare ball
(i.e., representing a relatively low level of semantic hierar-
chy). As shown in Figure 5, each hierarchical proxy on the
CUB dataset is associated with pose variation of birds and
backgrounds of images (e.g., a bird floating on water, a bird
flying in the sky, and a bird standing on a branch). On the
Cars dataset, hierarchical proxies represent the viewpoints
of the cars. (e.g., front, half side, and side views of the car).
These results suggest that HIER also captures sub-class re-
lations, thereby enabling the model to learn intra-class vari-
ation and features shared across different classes.

4.5. Ablation Studies

Impact of HIER and hyperbolic space. We investigate
the effect of HIER loss and hyperbolic space by comparing
the performance of three models trained using two differ-
ent metric learning losses as Ly, in Eq. (9): without HIER
loss and with HIER loss in spherical space (i.e., HIER ),
and with HIER loss in hyperbolic space (i.e., HIER (ours)).
The results are summarized in Table 2. Overall, using
the HIER loss leads to performance improvements across
four datasets regardless of the kinds of metric learning loss.
However, in spherical space, the improvement is not signif-
icant, possibly due to the limitations of spherical space in
effectively representing the continuous latent semantic hi-



Figure 5. Top-4 neighbors of hierarchical proxies that are close
to the boundary of the Poincare ball on the CUB (a) and Cars (b)
datasets. The samples in each row are the nearest neighbors of a
hierarchical proxy.

erarchy of data discovered by the HIER loss. In contrast,
applying the HIER loss in hyperbolic space results in signif-
icant performance improvements across all datasets. These
results demonstrate that the HIER loss can effectively dis-
cover and deploy the latent semantic hierarchy of data in
hyperbolic space.

Impact of embedding dimension. The embedding dimen-
sion is a seminal hyperparameter in image retrieval bench-
marks due to the trade-off between efficacy and efficiency.
Therefore, we examine the effect of the dimension of em-
bedding vectors in our method, compared to Hyp [11]. To
this end, we evaluate our method on the In-shop [2 1] dataset
with ViT [9] with d-dimensional embedding vectors, where
d € {32,64,128,256,384}. Figure 6 demonstrates that our
method consistently outpaces Hyp with diverse embedding
dimensions. It is worth noting that the performance of our
method increases consistently and stably according to the
growth of the embedding dimension, while the performance
of Hyp drops when the dimension is higher than 128.
Impact of hyperparameters. We investigate the im-
pact of four hyperparameters on the performance of our
method. These hyperparameters include the number of
nearest neighbors K in Eq. (5), the number of hierarchical
proxies |P|, the loss weight of HIER \ in Eq. (9), and the
margin ¢ in Eq. (8). We use the DeiT backbone and measure
the performance on the Cars dataset. As shown in Figure 7,
the results demonstrate that remarkably robust to changes in
these hyperparameters, suggesting that it can perform well
regardless of their specific values.

Methods CUB Cars SOP In-Shop
PA 74.7 84.3 82.3 90.4
PA + HIER,,;, 75.1 84.8 82.4 90.6
PA + HIER (ours) 75.2 85.1 82.5 91.0
MS 75.4 83.5 80.0 88.1
MS + HIER 5, 75.6 83.6 80.0 88.0
MS + HIER (ours) 75.8 84.3 80.0 88.2

Table 2. Accuracy in Recall@1 of ours with two metric learning
losses [17, 46], and their variants on the four datasets. The net-
work architecture is DeiT [41] with 128 embedding dimensions.
HIER,,, denotes HIER over spherical space.

—8— HIER (ours)
-4~ Hyp

32 64 128 256 384
Embedding Dimension

Figure 6. Comparison HIER and Hyp [I!] varying embedding
dimension on the In-shop dataset using ViT as backbone network.
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Figure 7. Recall@1 versus four hyperparameters of HIER on the
Cars dataset using DeiT [41] with 128 dimensions. Note that A =
0 denotes not using HIER loss.

5. Conclusion

In this paper, we have presented HIER, a regularization

method for deep metric learning. HIER discovers the la-
tent semantic hierarchy of training data in a self-supervised
learning fashion, and deploys the hierarchy to provide richer
and more fine-grained supervision that the inter-class sepa-
rability induced by common metric learning losses based on
human-labeled classes. HIER consistently improve the per-
formance of existing techniques when integrated with them,
and consequently achieved the best records, surpassing even
the prior art of hyperbolic metric learning. Further, since
it can be seamlessly incorporated with any existing metric
learning losses, HIER enables taking full advantage of both
recent hyperbolic embedding and the great legacy of hyper-
spherical embedding.
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A. Appendix

This supplementary material provides further analyses, addi-
tional experimental results, and implementation details that are left
out from the main paper due to the space limit.

A.1. Effect of Deploying Semantic Hierarchy

In this section, we investigate the effect of deploying semantic
hierarchies by utilizing proxies. In particular, we quantitatively
compare our method with SoftTriple loss [28] which can model
intra-class variance of data by utilizing multiple proxies per class.
Table 4 shows the performance of two proxy-based methods and
the number of proxies they used. In SoftTriple loss, 10 proxies are
assigned per class, and our method uses 512 hierarchical proxies
in addition to proxies for proxy anchor loss.

The result shows that SoftTriple loss lags significantly in per-
formance despite using a much larger amount of proxies compared
to our method. The main difference between these methods is how
they handle proxies. SoftTriple assigns multiple proxies per class,
so their proxies can only represent sub-classes of data and model
intra-class variance. On the other hand, proxies in our method
can represent sub-classes or super-classes as well as predefined
classes, thus allowing more flexibility in modeling more complex
relations of data beyond intra-class variance.

A.2. Embedding Space Visualization

We further visualize the embedding space at the beginning of
training, such as Epoch 1, 3, 5, 7, and 10. The results of visualiza-
tion presented in Figure 8 show that the earlier embedding space
does not construct a hierarchical structure between the embedding
vectors and hierarchical proxies, while this structure is gradually
constructed as the training epoch grows. Specifically, as training
progresses, the hierarchical proxies have ancestor-descendant rela-
tions between sample or other proxies, where these proxies can be
regarded as predefined classes, sub-classes, and super-classes. As
a consequence, our method can discover the latent semantic hierar-
chy of training data, which provides rich and granular supervision
beyond human-labeled classes.

A.3. More Qualitative Results

We further verify the effect of HIER in a qualitative perspec-
tive. To this end, we present the qualitative results of our method,
compared to those of a model optimized by only a metric learn-
ing loss, Lm. in Eq. (9) of the main paper. We take proxy anchor
loss [17] as the metric learning loss. Figure 9 presents the qual-
itative results for the four public benchmark datasets, CUB [49],
Cars [19], SOP [37] and In-Shop [21]. These results demonstrate
that our method is robust against small inter-class variance (CUB
and SOP), viewpoint variation and distinct color (Cars), and large
intra-class variations and viewpoint changes (In-Shop) by discov-
ering and deploying a latent semantic hierarchy of data, while the
proxy anchor still suffers from those problems.

We note that all the results in the figure are obtained from the
fully unseen class samples. It implies that it allows the proposed
hierarchical regularizer to discover the latent semantic hierarchy of
data with no additional annotation for the hierarchy; our method
allows the embedding space to be generalized well.
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Hyperparameters CUB Cars SOP In-Shop
total epochs 50 50 150 150
warm-up epochs 1 1 5 5
LR of the last layer | x1 x1  x10%2  x10?
weight decay le—2 le—2 1le—4 le—4
margin § 0.1 0.1 0.1 0.1

Table 3. Additional details of hyperparameters for network opti-
mization. LR denotes the learning rate, and its value denotes how
many times higher than the original learning rate.

A.4. Additional Implementation Details

Since each dataset that we utilize to evaluate our method has a
different characteristic, we set different hyperparameters for net-
work optimization according to each dataset. The summary of
the settings of hyperparameter for four datasets are presented in
Table 3. For all backbone network variants (i.e., ViT-S [9], DeiT-

S [41], and DINO [3]), our model is trained with 50 epochs on
CUB [49] and Cars [19], and 150 epochs on SOP [37] and In-
Shop [21]. As a warm-up strategy, the last layer which consists of

a linear layer followed by the exponential mapping layer is only
trained, while the pretrained backbone network is not updated; the
warm-up strategy is applied for 1 epoch on CUB and Cars, and 5
epochs on SOP and In-Shop. On the other hand, we use a high
learning rate for the last layer (i.e., embedding layer) by scaling
10? times for SOP and In-Shop. Furthermore, we set the weight
decay factor as 1e—2 for CUB and Cars, and 1e—4 for SOP and
In-Shop. In all experiments, the margin parameter § of HIER loss
in Eq. (8) is fixed at 0.1.



CUB Cars SOP In-Shop
Methods #Proxies R@1 R@2 #Proxies R@1 R@2 #Proxies R@1 R@10 #Proxies R@1 R@10

SoftTriple [28] 1,000 72.7 82.7 980 83.2 90.2 113,180 80.9 91.3 39,970  88.5 97.3
PA + HIER (ours) 612 75.2 84.2 610 85.1 91.2 11,830 825 92.7 4,509 91.0 98.0

Table 4. Comparison between methods using proxies in terms of performance and the number of proxies on the four benchmark datasets.
In these experiments, the backbone network is initialized by weights of DeiT [41].

Epoch 1 Epoch 3 Epoch 5 Epoch 7 Epoch 10
Figure 8. UMAP visualizations of our embedding space learned on the train split of the Cars dataset at different epochs. Pink points

indicate hierarchical proxies, and other colors represent distinct classes. The gray line indicates the ancestor-descendant relation between
the hierarchical proxy and data points.
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Figure 9. Qualitative results of ours and proxy anchor on the four public benchmark datasets, CUB (a), Cars (b), SOP (c), and In-Shop (d).
Queries and the top 4 retrieval results of our method are presented. The true and false matches are colored in green and red, respectively.

12



	1 . Introduction
	2 . Related Work
	2.1 . Deep Metric Learning
	2.2 . Hyperbolic Embedding
	2.3 . Hierarchical Clustering

	3 . Proposed Method
	3.1 . Preliminary
	3.1.1 The Poincaré ball Model
	3.1.2 Conventional Hierarchical Clustering

	3.2 . Our Hierarchical Metric Learning Objective
	3.2.1 HIER
	3.2.2 Total Objective


	4 . Experiments
	4.1 . Experimental Setup
	4.2 . Quantitative Results
	4.3 . Qualitative Results
	4.4 . Analysis on Semantic Hierarchy of HIER
	4.5 . Ablation Studies

	5 . Conclusion

	A . Appendix
	A.1 . Effect of Deploying Semantic Hierarchy
	A.2 . Embedding Space Visualization
	A.3 . More Qualitative Results
	A.4 . Additional Implementation Details


