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Abstract

In a multi-task learning (MTL) setting, a single model
is trained to tackle a diverse set of tasks jointly. Despite
rapid progress in the field, MTL remains challenging due
to optimization issues such as conflicting and dominating
gradients. In this work, we propose using a condition num-
ber of a linear system of gradients as a stability criterion
of an MTL optimization. We theoretically demonstrate that
a condition number reflects the aforementioned optimiza-
tion issues. Accordingly, we present Aligned-MTL, a novel
MTL optimization approach based on the proposed crite-
rion, that eliminates instability in the training process by
aligning the orthogonal components of the linear system
of gradients. While many recent MTL approaches guaran-
tee convergence to a minimum, task trade-offs cannot be
specified in advance. In contrast, Aligned-MTL provably
converges to an optimal point with pre-defined task-specific
weights, which provides more control over the optimization
result. Through experiments, we show that the proposed ap-
proach consistently improves performance on a diverse set
of MTL benchmarks, including semantic and instance seg-
mentation, depth estimation, surface normal estimation, and
reinforcement learning. The source code is publicly available
at https://github.com/SamsungLabs/MTL.

1. Introduction

In a multi-task learning (MTL), several tasks are solved
jointly by a single model [2,|/10]. In such a scenario, infor-
mation can be shared across tasks, which may improve the
generalization and boost the performance for all objectives.
Moreover, MTL can be extremely useful when computa-
tional resources are constrained, so it is crucial to have a
single model capable of solving various tasks [[17,/19[30]. In
reinforcement learning [39,/50]], MTL setting arises naturally,
when a single agent is trained to perform multiple tasks.

Several MTL approaches [[15,[24128L29}/31}/35,/42] focus
on designing specific network architectures and elaborate
strategies of sharing parameters and representations across
tasks for a given set of tasks. Yet, such complicated and

powerful models are extremely challenging to train.

Direct optimization of an objective averaged across tasks
might experience issues [54] related to conflicting and domi-
nating gradients. Such gradients destabilize the training pro-
cess and degrade the overall performance. Accordingly, some
other MTL approaches address these issues with multi-task
gradient descent: either using gradient altering [9,27,148}54]
or task balancing [16}[25]28]. Many recent MTL meth-
ods [27,[37,/48]] guarantee convergence to a minimum, yet
task trade-offs cannot be specified in advance. Unfortunately,
the lack of control over relative task importance may cause
some tasks to be compromised in favor of others [37].

In this work, we analyze the multi-task optimization chal-
lenges from the perspective of stability of a linear system of
gradients. Specifically, we propose using a condition number
of a linear system of gradients as a stability criterion of an
MTL optimization. According to our thorough theoretical
analysis, there is a strong relation between the condition
number and conflicting and dominating gradients issues. We
exploit this feature to create Aligned-MTL, a novel gradi-
ent manipulation approach, which is the major contribu-
tion of this work. Our approach resolves gradient conflicts
and eliminates dominating gradients by aligning principal
components of a gradient matrix, which makes the training
process more stable. In contrast to other existing methods
(e.g. [2737,/48.54])), Aligned-MTL has a provable guarantee
of convergence to an optimum with pre-defined task weights.

We provide an in-depth theoretical analysis of the
proposed method and extensively verify its effectiveness.
Aligned-MTL consistently outperforms previous methods
on various benchmarks. First, we evaluate the proposed ap-
proach on the problem of scene understanding; specifically,
we perform joint instance segmentation, semantic segmenta-
tion, depth and surface normal estimation on two challenging
datasets — Cityscapes [6] and NYUv2 [36]. Second, we apply
our method to multi-task reinforcement learning and con-
duct experiments with the MT10 dataset [55]]. Lastly, in order
to analyze generalization performance, Aligned-MTL has
been applied to two different network architectures, namely
PSPNet [48]] and MTAN [28]], in the scene understanding
experiments.


https://github.com/SamsungLabs/MTL

< g <

5 *r 5 * 5
. . -

0 0 . ! 0

-5 L3 -5 -5

N <
% % %
5 5
L] L ]

L ] 0 0 L ]

. -5 -5 .
“10 -10
_1s -15
-20 -20

-20 -15 -10 -5 0 5 L1 -20 -15 -10 -5 0 5 L1

(a) Uniform

(b) CAGrad (c = 0.4)

(c) IMTL

0 5 L -20 -15 -10 -5 0 5 e -20 =15 -10 =5 0 5 L

10

(d) Nash-MTL (e) Aligned-MTL (ours)

Figure 1. Comparison of MTL approaches on a challenging synthetic two-task benchmark . We visualize optimization trajectories
w.r.t. objectives value (£, and L2, top row), and cumulative objective w.r.t. parameters (61 and 62, bottom row). Initialization points are
marked with e, the Pareto front is denoted as =—. Other MTL approaches produce noisy optimization trajectories (Figs. 1a]to[Id)
inside areas with conflicting and dominating gradients . In contrast, our approach converges to the global optimum (3 ) robustly.
Approaches aiming to find a Pareto-stationary solution (such as[Fig. Tc|and [Fig. Td) terminate once the Pareto front is first reached, as a
result, they might provide a suboptimal solution. Differently, Aligned-MTL drifts along the Pareto front and provably converges to the

optimum w.r.t. pre-defined tasks weights.

2. Related Work

A multi-task setting is leveraged in computer vi-

sion [[1}[16|[19138/56], natural language processing [5,/11,32],
speech processing [47]], and robotics applications.
Prior MTL approaches formulate the total objective as a
weighted sum of task-specific objectives, with weights be-
ing manually tuned [17,21]34]. However, finding opti-
mal weights via grid search is computationally inefficient.
Kendall et al. overcame this limitation, assigning task
weights according to the homoscedastic uncertainty of each
task. Other recent methods, such as GradNorm [3] and
DWA [28],, optimize weights based on task-specific learning
rates or by random weighting [25]].

The most similar to Aligned-MTL approaches (e.g. [}
261271[371/54]) aim to mitigate effects of conflicting or domi-
nating gradients. Conflicting gradients having opposing di-
rections often induce a negative transfer (e.g. [22]])). Among
all approaches tackling this problem, the best results are
obtained by those based on an explicit gradient modula-
tion where a gradient of a task which conflicts
with a gradient of some other task is replaced with a mod-
ified, non-conflicting, gradient. Specifically, PCGrad [54]
proposes a “gradient surgery” which decorrelates a system of
vectors, while CAGrad aims at finding a conflict-averse
direction to minimize overall conflicts. GradDrop [4]] forces
task gradients sign consistency. Other methods also address
an issue of dominating gradients. Nash-MTL leverages
advances of game theory [37], while IMTL searches

for a gradient direction where all the cosine similarities are
equal.

Several recent works investigate a multiple-
gradient descent algorithm (MGDA [9,[12,45]]) for MTL:
these methods search for a direction that decreases all ob-
jectives according to multi-objective Karush—-Kuhn-Tucker
(KKT) conditions [20]]. Sener and Koltun propose ex-
tending the classical MGDA [9] so it scales well to high-
dimensional problems for a specific use case. However, all
the described approaches converge to an arbitrary Pareto-
stationary solution, leading to a risk of imbalanced task
performance.

3. Multi-Task Learning

Multi-task learning implies optimizing a single model
with respect to multiple objectives. The recent works [9l[16]
[39,/54]] have found that this learning problem is difficult to
solve by reducing it to a standard single-task approach. In
this section, we introduce a general notation and describe
frequent challenges arising in gradient optimization in MTL.

3.1. Notation
In MTL, there are 1" > 1 tasks. Each task is associated

with an objective £;(6) depending on a set of model param-
eters 6 shared between all tasks. The goal of MTL training



Figure 2. Synthetic two-task MTL benchmark [26,/37]]. Loss land-
scapes w.r.t. individual objectives are depicted on the right side.
The cumulative loss landscape (on the left side) contains areas with
conflicting and dominating gradeints.

is to find a parameter € that minimizes an average loss:

RO ST

N

T
0" = arg 9%1]1%{1“ {EO(B) &t Z
i=1

We introduce the following notation: g; = VL£;(0) — in-
dividual task gradients; £o(6) — a cumulative objective;
G = {91, - ,gr} — a gradient matrix; w; o % — pre-
defined task weights. The task weights are supposed to be
fixed. We omit task-specific parameters in our notation, since
they are independent and not supposed to be balanced.

3.2. Challenges

In practice, directly solving a multi-objective optimiza-
tion problem via gradient descent may significantly compro-
mise the optimization of individual objectives [54]. Simple
averaging of gradients across tasks makes a cumulative gra-
dient biased towards the gradient with the largest magnitude,
which might cause overfitting for a subset of tasks. Conflict-
ing gradients with negative cosine distance complicate the
training process as well; along with dominating gradients,
they increase inter-step direction volatility that decreases
overall performance (Fig. T). To mitigate the undesired ef-
fects of conflicting and dominating gradients in MTL, we
propose a criterion that is strongly correlated with the pres-
ence of such optimization issues. This measure is a condition
number of a linear system of gradients.

4. Stability

The prevailing challenges in MTL are arguably task domi-
nance and conflicting gradients, accordingly, various criteria
for indicating and measuring these issues have been formu-
lated. For instance, a gradient dominance can be measured
with a gradient magnitude similarity ( [54] Def. 2). Similarly,

gradient conflicts can be estimated as a cosine distance be-
tween vectors ( [54] Def. 1, [26]). However, each of these
metrics describes a specific characteristic of a linear system
of gradients, and cannot provide a comprehensive assess-
ment if taken separately. We show that our stability criterion
indicates the presence of both MTL challenges (Fig. 4);
importantly, it describes a whole linear system and can be
trivially measured on any set of gradients. Together with
magnitude similarity and cosine distance, this criterion accu-
rately describes the training process.

4.1. Condition Number

Generally, the stability of an algorithm is its sensitivity to
an input perturbation, or, in other words, how much the out-
put changes if an input gets perturbed. In numerical analysis,
the stability of a linear system is measured by a condition
number of its matrix. In a multi-task optimization, a cu-
mulative gradient is a linear combination of task gradients:
g = Gw. Thus, the stability of a linear system of gradients
can be measured as the condition number of a gradient ma-
trix G. The value of this stability criterion is equal to the
ratio of the maximum and minimum singular values of the
corresponding matrix:

K(G) = Tmaz 2)

Omin

Remark. A linear system is well-defined if its condition
number is equal to one, and ill-posed if it is non-finite. A
standard assumption for multi-task optimization is that a
gradient system is not ill-posed, i.e. task gradients are lin-
early independent. In this work, we suppose that the linear
independence assumption holds unless otherwise stated.

4.2. Condition Number and MTL Challenges

The dependence between the stability criterion and MTL
challenges is two-fold. Let us consider a gradient system
having a minimal condition number. According to the singu-
lar value decomposition theorem, its gradient matrix G with

k(G) = 1 must be orthogonal with equal singular values:

G=UZV', where T =0l 3)
Moreover, since U, V' matrices are orthonormal, individual
task gradients norms are equal to . Thus, minimizing the
condition number of the linear system of gradients leads to
mitigating dominance and conflicts within this system.

On the other hand, if an initial linear system of gradients
is not well-defined, reducing neither gradient conflict nor
dominance only does not guarantee minimizing a condition
number. The stability criterion reaches its minimum iff both
issues are solved jointly and gradients are orthogonal. This
restriction eliminates positive task gradients interference (co-
directed gradients may produce x > 1), but it can guarantee
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Figure 3. Geometric interpretation of our approach on a two-task MTL. Here, individual task gradients g; and g» are directed oppositely
(conflict) and have different magnitude (dominance) (Fig. 3a). Aligned-MTL enforces stability via aligning principal components w1, ug of
an initial linear system of gradients. This can be interpreted as re-scaling axes of a coordinate system set by principal components, so that
singular values of gradient matrix o1 and o2 are rescaled to be equal to the minimal singular value (o2, in this case). The aligned gradients
g1, g2 are orthogonal (non-conflicting) and of equal magnitude (non-dominant) (Fig. 3b). Finally, the aligned gradients are summed up with
pre-defined tasks weights w and 1 — w, resulting in a cumulative gradient go (Fig. 3¢).

the absence of negative interaction, which is essential for
a stable training. Noisy convergence trajectories w.r.t. ob-
jectives values top row) indicate instability of the
training process.

To demonstrate the relation between MTL challenges
and our stability criterion, we conduct a synthetic experi-
ment as proposed in [26}|37]. There are two objectives to
be optimized, and the optimization landscape contains ar-
eas with conflicting and dominating gradients. We compare
our approach against recent approaches that do not handle
stability issues, yielding noisy trajectories in problematic
areas. By enforcing stability, our method performs well on
the synthetic benchmark.

5. Aligned-MTL

We suppose that multi-task gradient optimization should
successfully resolve the main MTL challenges: conflicts
and dominance in gradient system. Unlike existing ap-
proaches [51,[54] that focus on directly resolving the op-
timization problems, we develop an algorithm that handles
issues related to the stability of a linear system of gradi-
ents and accordingly addresses both gradient conflicts and
dominance.

Specifically, we aim to find a cumulative gradient gg, so
that ||go — go||3 is minimal, while a linear system of gradients
is stable (x(G) = 1). This constraint is defined up to an
arbitrary positive scaling coefficient. Here, we assume o = 1
for simplicity. By applying a triangle inequality to the initial
problem, we derive [|go—go||3 < |G —G||%||w||3. Thereby,
we consider the following optimization task:

min||G-G|% st. GTG=1I (4)
G

The stability criterion, a condition number, defines a lin-
ear system up to an arbitrary positive scale. To alleviate this
ambiguity, we choose the largest scale that guarantees con-
vergence to the optimum of an original problem (Eq. (T)):
this is a minimal singular value of an initial gradient matrix

0 = omin(G) > 0. The final linear system of gradients
defined by G satisfies the optimality condition in terms of a
condition number.

5.1. Gradient Matrix Alignment

The problem [Eq. (4)]can be treated as a special kind of
Procrustes problem [46]]. Fortunately, there exists a closed-
form solution of this task. To obtain such a solution, we
perform a singular value decomposition (SVD) and rescale
singular values corresponding to principal components so
that they are equal to the smallest singular value.

Technically, the matrix alignment can be performed in the
parameter space or in the task space; being equivalent, these
options have different computational costs. This duality is
caused by SVD providing two different eigen decomposi-
tions of Gram matrices G ' G and GG " :

G=ocUV' =cUS 'UTG=0GVE'VT (5

Parameter space Task space

We perform the gradient matrix alignment at each op-

timization step. Since the number of tasks 7" is relatively
small compared to the number of parameters, we operate in
a task space. This makes a gradient matrix alignment more
computationally efficient as we need to perform an eigen
decomposition of a small 7' x T matrix. [Fig. 3| provides a
geometric interpretation of our approach, while pseudo-code
is given in[Alg. 1]
Remark. If an initial matrix G is singular (gradients are
linear dependent), then the smallest singular value is zero.
Fortunately, the singular value decomposition provides a
unique solution even in this case; yet, we need to choose the
smallest singular value greater than zero as a global scale.

5.2. Aligned-MTL: Upper Bound Approximation

The major limitation of our approach is the need to run
multiple backward passes through the shared part of the
model to calculate the gradient matrix. The backward passes



Algorithm 1 Gradient matrix alignment

Require: G € RI?IXT _ gradient matrix,
w € RT — task importance
/* Compute task space Gram matrix */
M+ G'G
/* Compute eigenvalues and eigenvectors of M */

(M V) < eigh(M)

! < diag (,//\%,---,/)%R)

/* Compute balance transformation */
B« VArVETIVT

o +— Bw
return Go

are computationally demanding, and the training time de-
pends linearly on the number of tasks: if it is large, our
approach may be non-applicable in practice.

This limitation can be mitigated for encoder-decoder net-
works, where each task prediction is computed using the
same shared representation. We can employ the chain rule

trick [48] to upper-bound an original objective (Eq. (4)):

oH||?

7112
Here, H stands for a hidden shared representation, and Z
and Z are gradients of objective w.r.t. a shared represen-
tation of the initial and aligned linear system of gradients,
respectively. Thus, the gradient alignment can be performed
for a shared representation:

IG -Gl <

min||Z - Z|% st Z'Z=1I (7)
V4

Aligning gradients of shared representation does not re-
quire additional backward passes, since matrix Z is com-
puted during a conventional backward pass. We refer to such
an approximation of Aligned-MTL as to Aligned-MTL-UB.
With O(1) time complexity w.r.t. the number of tasks, this
approximation tends to be significantly more efficient than
the original Aligned-MTL having O(T") time complexity.

5.3. Convergence Analysis

In this section, we formulate a theorem regarding the con-
vergence of our approach. Similar to single-task optimiza-
tion converging to a stationary point, our MTL approach
converges to a Pareto-stationary solution.

Definition 1 A solution 8* € O is called Pareto-stationary
iff there exists a convex combination of the gradient-vectors
that is equal to zero. All possible Pareto-stationary solutions
form a Pareto set (or Pareto front).

The overall model performance may vary signifi-
cantly within points of the Pareto front. Recent MTL ap-
proaches [27,|37] that provably converge to an arbitrary

Pareto-stationary solution, tend to overfit to a subset of tasks.
In contrast, our approach converges to a Pareto-stationary
point with pre-defined tasks weights, thus providing more

control over an optimization result|Eq. (1)

Theorem 1 Assume Lo(0), ..., L1 (0) are lower-bounded
continuously differentiable functions with Lipschitz continu-
ous gradients with A > 0. A gradient descent with aligned
gradient and step size o < % converges linearly to a Pareto
stationary point where V Ly (0) = 0.

A similar theorem is valid for aligning gradients in the
shared representation space (Aligned-MTL upper-bound ap-
proximation is described in[Sec. 5.2)). Mathematical proofs
of both versions of this theorem versions are provided in
supplementary materials.

6. Experiments

We empirically demonstrate the effectiveness of the pro-
posed approach on various multi-task learning benchmarks,
including scene understanding, multi-target regression, and
reinforcement learning.

Competitors. We consider the following MTL approaches:
(1) Linear Scalarization (LS, Uniform baseline): optimiz-
ing a uniformly weighted sum of individual task objectives,
i.e. -5, L4; (2) Dymanic Weight Average (DWA) [28]:
adjusting task weights based on the rates of loss changes
over time; (3) Uncertainty [|16] weighting; (4) MGDA [9]:
a multi-objective optimization with KKT [20] conditions;
(5) MGDA-UB [48]: optimizing an upper bound for the
MGDA optimization objective; (6) GradNorm [3]: normal-
izing the gradients to balance the learning of multiple tasks;
(7) GradDrop [4]: forcing the sign consistency between
task gradients; (8) PCGrad [54]: performing gradient pro-
jection to avoid the negative interactions between tasks gra-
dients; (9) GradVac [51]: leveraging task relatedness to
set gradient similarity objectives and adaptively align task
gradients, (/0) CAGrad [26]: finding a conflict-averse gra-
dients; (/1) IMTL [27]: aligning projections to task gradi-
ents; (12) Nash-MTL [37]: utilizing a bargaining games
for gradient computation, and (/3) Random loss weight-
ing (RLW) [25] with normal distribution. The proposed
approach and the baseline methods are implemented using
the PyTorch framework [40]. The technical details on the
training schedules and a complete listing of hyperparameters
are provided in supplementary materials.

Evaluation metrics. Besides task specific metrics we follow
Maninis et al. [33] and report a model performance drop rela-
tive to a single task baseline averaged over tasks: Amyq s, =
A e (= 1) (Mo 41 — Mo i) /Mi i — or over
metrics: AMpetric = % Zthl(—l)‘” (Mt — My 1)/ Mp s
Here, M,, .1 denotes the performance of a model m on a
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Figure 4. Empirical evaluation of a stability criterion. We plot a condition number , gradient magnitude similarity [|54], and minimal
cosine distance during training on the CITYSCAPES three-task benchmark. This benchmark suffers from high dominance since instance
segmentation loss is of much larger scale than the others. The most intuitive way to define the dominance is the maximum ratio of task
gradients magnitudes. The condition number coincides with this definition in a nearly orthogonal case, as in this benchmark [Fig. 4c] However,
gradient magnitude similarity measureproposed in [54] does not reveal much correlation with a condition number(and, accordingly,
with a maximal gradients magnitude ratio) so we assume it does not represent dominance issues comprehensively. From the empirical
point of view the value of a target metric is more correlated with the condition number, than with the gradient magnitude similarity.

task ¢, measured with a metric k. Similarly, My ¢, is a per-
formance of a single-task ¢ baseline; n; denotes number of
metrics per task t. oy, = 1 if higher values of metric is
better, and oy, = 0 otherwise. We mostly rely on the task-
weighted measure since the metric-weighted criterion tends
to be biased to a task with high number of metrics.

6.1. Synthetic Example

To illustrate the proposed approach, we consider a syn-
thetic MTL task introduced in [26]] (a formal defini-
tion is provided in the supplementary material). As shown
in[Fig. T we perform optimization from five initial points
tagged with e. IMTL [27], and Nash-MTL [37] aims at find-
ing Pareto-stationary solution (Def. T)). As a result, they ter-
minate optimization once they reach a solution in the Pareto
front. Accordingly, the final result strongly depends on an
initialization point, and the optimization may not converge
to the global optimum % in some cases (Fig. 1c|and|Fig. 1d).
Meanwhile, Aligned-MTL provides a less noisy and more
stable trajectory, and provably converges to an optimum.

6.2. Scene Understanding

The evaluation is performed on NYUV2 [36] and
CITYSCAPES [6,/7] datasets. We leverage two network archi-
tectures: Multi-Task Attention Network (MTAN) [28]] and
Pyramid Scene Parsing Network (PSPNet) [48,57] on scene
understanding benchmarks. MTAN applies a multi-task spe-
cific attention mechanism built upon MTL SegNet [16]. PSP-
Net features a dilated ResNet [[14] backbone and multiple
decoders with pyramid parsing modules [57]]. Both networks
were previously used in MTL benchmarks [48]].

Table 1. Scene understanding (CITYSCAPES: three tasks). We
report PSPNet [48./57] model performance averaged over 3 random
seeds. The best scores are provided in gray .

Segmentation T Instance | Disparity | | Am% |

Method mloU [%] L1 [px] MSE

Single task baselines | 66.73 10.55 033 | -
Baseline:Uniform 52.98 10.89 0.39 14.30
RLW [25] 51.26 10.25 0.41 15.58
DWA (28] 53.15 10.22 0.40 13.20
Uncertainty [16] 60.12 9.87 0.33 1.53
MGDA [9] 66.72 17.02 0.33 20.62
MGDA-UB [43] 66.37 18.63 0.32 25.05
GradNorm [3]] 57.24 10.29 0.35 6.55
GradDrop [4] 52.98 10.09 0.40 12.50
PCGrad [54] 54.06 9.91 0.38 10.00
GradVac [51] 54.07 10.39 0.40 12.99
CAGrad [26] 64.33 10.15 0.34 1.46
IMTL [27] 65.13 11.58 0.32 3.10
Nash-MTL [37] 64.84 11.90 0.37 9.38
Aligned-MTL (ours) 67.06 10.63 0.33 —0.02
Aligned-MTL-UB (ours) 66.07 10.54 0.32 —0.35

NYUV2. Following Liu et al. [2628])37], we evaluate the
performance of our approach on the NYUv2 [36] dataset by
jointly solving semantic segmentation, depth estimation, and
surface normal estimation tasks. We use both MTAN [28]]
and PSPNet [48]] model architectures.

For MTAN, we strictly follow the training procedure de-
scribed in [26},37]): training at 384 x 288 resolution for 200
epochs with Adam [18]] optimizer and 10~* initial learn-
ing rate, halved after 100 epochs. The evaluation results
are presented in[Table 2] We report metric values averaged
across three random initializations as in previous works. We
calculate both metric-weighted measure to compare with



Table 2. Scene understanding (NYUV2, three tasks). We report MTAN [28] model performance averaged over 3 random seeds. The best

scores are provided in gray .

Segmentation 1T Depth | Surface normals |
Angle Dist. |, Within ¢° 1 Am% | Am% |

Method mloU Pix Acc  Abs. Rel. Mean Median 11.25 225 30 | Metric-weighted Task-weighted
Single task baselines | 38.30 63.76 0.68 0.28 25.01 19.21 30.14 57.20 69.15 | - -
Baseline: Uniform 39.29 65.33 0.55 0.23 28.15 23.96 22.09 47.50 61.08 5.46 —1.07
RLW [25] 37.17 63.77 0.58 0.24 28.27 24.18 22.26 47.05 60.62 7.67 2.00
DWA [28] 39.11 65.31 0.55 0.23 27.61 23.18 24.17 50.18 62.39 3.49 —2.06
Uncertainty [[16] 36.87 63.17 0.54 0.23 27.04 22.61 23.54 49.05 63.65 4.01 —0.97
MGDA [48] 30.47 59.90 0.61 0.26 24.88 19.45 29.18 56.88 69.36 1.47 1.79
GradNorm [3]| 20.09 52.06 0.72 0.28 24.83 18.86 30.81 57.94 69.73 7.22 11.51
GradDrop [4] 39.39 65.12 0.55 0.23 27.48 22.96 23.38 49.44 62.87 3.61 —2.03
PCGrad [54] 38.06 64.64 0.56 0.23 27.41 22.80 23.86 49.83 63.14 3.83 —1.33
GradVac [51] 37.53 64.35 0.56 0.24 27.66 23.38 22.83 48.66 62.21 5.44 0.01
CAGrad [26] 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 0.29 —4.18
IMTL [27] 39.35 65.60 0.54 0.23 26.02 21.19 26.20 53.13 66.24 —0.59 —4.76
Nash-MTL [37]] 40.13 65.93 0.53 0.22 25.26 20.08 28.40 55.47 68.15 —4.04 —7.56
Aligned-MTL (ours) 40.82 66.33 0.53 0.22 25.19 19.71 28.88 56.23 68.54 —4.93 —8.40
Aligned-MTL-UB (ours) | 43.11 67.22  0.55 0.22 25.67 20.57 27.58 54.37 67.12 —3.48 —7.83

Table 3. Scene understanding (NYUV2, three tasks). We report PSPNet [48}/57|] model performance averaged over 3 random seeds. The

best scores are provided in gray .

Segmentation 1 Depth | Surface normals |
Angle Dist. | Within ¢° 1 Am% | Am% |

Method mloU Pix Acc  Abs. Rel. Mean Median 11.25 22.5 30 | Metric-weighted Task-weighted
Single task baselines |49.37 72.03 0.52 0.24 2297 16.94 0.34 0.62 0.73] - -
Baseline:Uniform 45.21 69.70 0.49 0.21 26.10 21.08 0.26 0.52 0.66 8.97 4.72
RLW [25] 46.19 69.71 0.46 0.19 26.09 21.09 0.27 0.53 0.66 6.67 1.73
DWA [28] 45.83 69.65 0.50 0.22 26.10 21.27 0.26 0.52 0.66 9.64 5.61
MGDA [48] 40.96 65.80 0.54 0.22 23.36 17.45 0.33 0.61 0.72 3.54 4.24
MGDA-UB [48] 41.15 65.10 0.53 0.22 2342 17.60 0.32 0.60 0.72 4.02 4.40
GradNorm [3|] 45.63 69.64 0.48 0.20 25.46 20.06 0.28 0.55 0.67 5.88 2.18
GradDrop [4] 45.69 70.13 0.49 0.20 26.16 21.21 0.26 0.52 0.65 8.60 3.92
PCGrad [54] 46.37 69.69 0.48 0.20 26.00 21.05 0.26 0.53 0.66 7.78 3.17
GradVac [51] 46.65 69.97 0.49 0.21 25.95 20.88 0.27 0.53 0.66 7.89 3.75
CAGrad [26] 45.46 69.35 0.47 0.20 24.28 18.73 0.30 0.58 0.70 2.66 0.13
IMTL [27] 44.02 68.56 0.47 0.19 23.69 18.03 0.32 0.59 0.72 0.76 —1.02
Nash-MTL [37] 47.25 70.38 0.46 0.20 23.95 18.83 0.31 0.59 0.71 1.13 —1.48
Aligned-MTL (ours) 46.70 69.97 0.46 0.19 24.19 18.77 0.30 0.58 0.71 1.44 —1.55
Aligned-MTL-UB (ours) | 46.47 69.92 0.48 0.20 24.37 18.88 0.30 0.58 0.70 2.70 0.07

previous works alongside a task-weighted Am modifica-
tion. We claim the latter measure to be more important, as
it is not biased towards surface normal estimation, thereby
assessing overall performance more fairly. Accordingly, it
exposes inconsistent task performance of GradNorm [3|] and
MGDA [48]], which are biased towards surface normal esti-
mation task and perform poorly on semantic segmentation.
Although the MTAN model is not encoder-decoder architec-
ture, our Aligned-MTL-UB approach outperforms all previ-
ous MTL optimization methods according to task-weighted
Am. Our original Aligned-MTL approach improves model
performance even further in terms of both metrics.

We report results of PSPNet (Table 3), trained on
NYUv2 [36] following the same experimental setup. PSP-
Net architecture establishes much stronger baselines for all
three tasks than vanilla SegNet. As a result, most of MTL
approaches fail to outperform single-task models. According
to the task-weighted metric, only two previous approaches

provide solutions better than single-task baselines, while our
Aligned-MTL approach demonstrates the best results.
CITYSCAPES: two-task. We follow Liu et al. [26] ex-
perimental setup for Cityscapes [6]], which implies jointly
addressing semantic segmentation and depth estimation with
a single MTAN [28]] model. According to it, the original
19 semantic segmentation categories are classified into 7
categories. Our Aligned-MTL approach demonstrates the
best results according to semantic segmentation and overall
Am metric. Our upper bound approximation of our Aligned-
MTL again achieves a competitive performance, although
MTAN does not satisfy architectural requirements.
CITYSCAPES: three-task. We adopt a more challenging
experimental setup [16}/48]], and address MTL with disparity
estimation and instance and semantic segmentation tasks.
The instance segmentation is reformulated as a centroid re-
gression [[16], so that the instance objective has a much larger
scale than others. In this benchmark, we utilize the training



setup proposed by Sener and Koltun [48]]: 100 epochs, Adam
optimizer with learning rate 10~%. Input images are rescaled
to 256 x 512, and a full set of labels is used for semantic
segmentation. While many recent approaches experience a
considerable performance drop (Table ), our method per-
forms robustly even in this challenging scenario.

6.3. Multi-task Reinforcement Learning

Following 2637754, we consider an MTL reinforcement
learning benchmark MT10 in a MetaWorld [55]] environment.
In this benchmark, a robot is being trained to perform ac-
tions, e.g. pressing a button and opening a window. Each
action is treated as a task, and the primary goal is to suc-
cessfully perform a total of 10 diverse manipulation tasks.
In this experiment, we compare against the optimization-
based baseline Soft Actor-Critic (SAC) [13]] trained with
various gradient altering methods [261(37,54]. We also con-
sider MTL-RL [[49]-based approaches: specifically, MTL
SAC with a shared model, Multi-task SAC with task encoder
(MTL SAC + TE) [55]], Multi-headed SAC (MH SAC) with
task-specific heads [55]], Soft Modularization (SM) [53|] and
CARE [49]. The Aligned-MTL method has higher success
rates, superseding competitors by a notable margin.

6.4. Empirical Analysis of Stability Criterion

In this section, we analyze gradient magnitude similar-
ity, cosine distance, and condition number empirically. We
use CITYSCAPES three-task benchmark for this purpose,
which suffers from the dominating gradients. According to
the gradient magnitude similarity measure, PCGrad [54],
Uniform, and CAGrad [26] tend to suffer from gradient
dominance. For PCGrad and Uniform baseline, imbalanced
convergence rates for different tasks result in a suboptimal
solution (Table TJ). Differently, a well-performing CAGrad is
misleadingly marked as problematic by gradient magnitude
similarity. In contrast, the stability criterion — condition num-
ber — reveals domination issues for PCGrad and Uniform
baselines and indicates a sufficient balance of different tasks
for CAGrad (x = 5). Thus, the condition number exposes the
training issues more evidently (Fig. 4a). The experimental
evaluation shows that with x < 10, model tends to converge
to an optimum with better overall performance.

7. Discussion

The main limitation of Aligned-MTL is its computational
optimization cost which scales linearly with the number
of tasks. The upper-bound approximation of the Aligned-
MTL method can be efficiently applied for encoder-decoder
architectures using the same Jacobian over the shared repre-
sentation. This approximation reduces instability, yet, it does
not eliminate it since the Jacobian cannot be aligned. For
non-encoder-decoder networks, upper-bound approximation

Table 4. Scene understanding (CITYSCAPES: two tasks).
MTAN [28] model performance is reported as average over 3 ran-
dom seeds. The best scores are provided in gray .

Segmentation Depth A%

mloU [%] 1 Pix. Acct AbsErr| RelErr ||

Single task baselines ‘ 74.01 93.16 0.0125 27.77 ‘ -

Baseline: Uniform 75.18 93.49 0.0155 46.77 22.60
RLW [25] 74.57 93.41 0.0158 47.79 24.37
DWA [28] 75.24 93.52 0.0160 44.37 21.43
Uncertainty [[16] 72.02 92.85 0.0140 30.13 5.88
MGDA [48] 68.84 91.54 0.0309 33.50 44.14
GradNorm [3] 73.72 93.04 0.0124 34.11 5.63
GradDrop [4] 75.27 93.53 0.0157 47.54 23.67
PCGrad [54] 75.13 93.48 0.0154 42.07 18.21
CAGrad [26] 75.16 93.48 0.0141 37.60 11.58
IMTL [27] 75.33 93.49 0.0135 38.41 11.04
Nash-MTL [37] 75.41 93.66 0.0129 35.02 6.72
Aligned-MTL (ours) 75.77 93.69 0.0133 32.66 5.27
A-MTL-UB* (ours) 74.89 93.46 0.0131 33.92 6.37

Table 5. Reinforcement learning (MT10). Average success rate
on validation over 10 seeds.

| Success = SEM

STL SAC ‘ 0.90 £ 0.032
MTL SAC 0.49 £ 0.073
MTL SAC + TE 0.54 £ 0.047
MH SAC 0.61 £0.036
SM 0.73 £0.043
CARE 0.84 £0.051
PCGrad 0.72 £ 0.022
CAGrad 0.83 £0.045
Nash-MTL 0.91 £0.031

Ours, Aligned-MTL | 0.97 % 0.045

has no theoretical guarantees but still can be leveraged as a
heuristic and even provide a decent performance.

8. Conclusion

In this work, we introduced a stability criterion for multi-
task learning, and proposed a novel gradient manipulation
approach that optimizes this criterion. Our Aligned-MTL ap-
proach stabilize the training procedure by aligning the prin-
cipal components of the gradient matrix. In contrast to many
previous methods, this approach guarantees convergence to
the local optimum with pre-defined task weights, providing
a better control over the optimization results. Additionally,
we presented a computationally efficient approximation of
Aligned-MTL. Through extensive evaluation, we proved
our approach consistently outperforms previous MTL opti-
mization methods on various benchmarks including scene
understanding and multi-task reinforcement learning.
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A. Convergence Analysis

Synopsis. In these theorems, we prove that the worst
case performance of Aligned-MTL and Aligned-MTL-UB
approaches is no worse than of standard gradient descent.
The constraints mentioned in convergence theorems below
are mild enough to be satisfied in practice. Our approach
converges to a Pareto-stationary point with pre-defined tasks
weights, thus providing more control over an optimization
result.

Lemma 1 Assume L(0) to be continuously differentiable
and VL(0) to be Lipschitz continuous with A > 0. Then,
the following restriction holds for a gradient descent with a
step size o and an update rule r:

a®A
L(68;) = L(Or11) > a(VL(O,),m) — ——7]*. (¥
Proof Let us consider a gradient descent 0,1 = 0, + 9,
where 8 = —ar. From the fundamental theorem of calculus,
we derive:

L(6, +8) — L(6,) = /1<vc(9t +58),8)ds.  (9)
0

By adding and subtracting the value (VL(6),0)
fol (VL(6),0)ds, we obtain:

L(O111) — L(60:) = (VL(6:),6) + (10

1
0

Since the gradient satisfies the Lipschitz condition
IVL(O: + s6) — VL(O:)|| < Al|0; + s6 — 0| and due
to inequality (xz,y) < ||z||||yl|, we can transform the inte-
gral as following:

L(O4+41)

+/1<vc(0t +58) — VL(O,),5)ds <
0

— L(0;) = (VL(0:),d) +

(VL(0)), /A||af+s<s 0,][15]1ds <

(VL)) + A/ | = sarfls]| — arllads <
0

1
—a(VL(O),T) + a2A||r||2/ sds <
0

—a({VL(0,),7) + a®Al|r||?

Therefore, we obtain the final constraint:

£(0t+1) - E(@t) S —Q<V£(6t), 1'> + Oé2A||7'||2. (12)

12

Theorem 2 (Aligned-MTL) Assume Ly(0),...,L7(0)
are lower-bounded continuously differentiable functions
with Lipschitz continuous gradients with A > 0. A gradient
descent with an aligned gradient and a step size o < %
converges linearly to a Pareto-stationary point where

VLo(8) =0

Proof (Aligned-MTL) Given the aforementioned assump-

tions, the cumulative objective satisfies[Lemma I|with r =
Gw = QO and Vﬁo(e) =Gw = go-

T a’AL L,
L(6;) — L(0:11) > agg Go — THQOH - 313
According to SVD, G = Uuxv’, » =
diag{oy,...,0p} where R = rank G, and U "U = I. By

definition of the Aligned-MTL, we get:
9o go=0rw VU UV w =

R
ZURO'T(U)T’UT)2
r=1

=opw VIV w=

Similarly, E " 0% (w'v,)2 Since o < + and
w' v, > ¢, E (13)|can be further bounded:

J (wTvT)Q >

(2
r=1 R
>1
>||[Vw|?2>e2?
ac? e?
— 05
507
2 o

The dominance is always finite: 21+ > C. Moreover, o1 =

IG=]| HgoH
MaXg£0 [ , therefore o1 > w] "

Respectively:

ag?C?
‘C(at) _‘C(9t+1) > H ”2”90”2
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The sequence of L(0;) is monotonically decreasing and
bounded (under assumption), and hence converging. Then
L(0;) — L(0+1) — 0ift — oc. Thereby, we have a local
convergence of the gradient descent:

2[|w]|?
aC?e?

lgoll? < (qet)—g(am))w it oo

(15)
The same estimate appears in case of the gradient descent.

Accordingly, the convergence of Aligned-MTL is similar to
that of the gradient descent, i.e. linear — O( 7).

Theorem 3 (A-MTL-UB) Assume L(0),...,Lr(0) are
lower-bounded continuously differentiable functions with
Lipschitz continuous gradients with A > 0. Suppose J =



oH

59 10 be a full rank, ie. rankJ = min{|0|,|H|[}. A
gradient descent with an aligned gradient and a step size
a< % converges linearly to a Pareto-stationary point where

VLo(6) = 0.

Proof (Aligned-MTL-UB) Similarly to the[Theorem 2| un-
der the aforementioned assumptions, the cumulative ob-

Jjective satisfies with r orJZw = go and

V£0(9) =JZw = go-

T, QA
L£(0;) — L(Oi+1) > gy Go — T”Qo” . (16)

According to SVD, Z UxzvT, x
diag{cy,...,0p} where R =rank Z, and U "U = I. By
definition of the Aligned-MTL-UB, we get:

90 9o =orw ' VIU JTJUV Tw
Go Go = 02w VU JTJUV Tw

Since J is full rank, J T J is positive definite. Any positive
definite matrix is congruent to a diagonal (D) with positive
and ordered eigenvalues on the main diagonal. Thus, re-
placing all eigenvalues \? with the smallest one \3- does
not increase the inner product produced by this matrix:
xDx > Mgz x. By taking this into consideration, we

can bound the right side of[Eq. (16)}
« A A
L£(0:) — L(O111) = 5(290 —§o)"go >

%(QO'RwTVEUT — 2w VU ITIUV Tw >

R 2
oI Z <2§T — 1) ('wTvr)
r=1. R ,

>1
> Vwl|[2>e?
Thus:
22142
QE“THA
L(6;) — L(0141) = #U%/\% 17)
M
Following the assumption, ‘;—}f > C, and ”}\—If > Ch.
Moreover, 01 = maxg4g HHZJI” H”Zw“ﬂu and Ny = ||J|.

Therefore, we obtain the final bound:
ag?C2C3
2[|w]|?
ae2C2C?

2||w?
The sequence of L(0;) is monotonically decreasing and
bounded (under assumption), and hence converging. Then

L(6) — L(81+1) — 0 ift — oo. Thereby, we have a local
convergence of the gradient descent:

L£(0:) — L(0111) > IGzw|?|J|* >

lgol[*-

llgoll* <
(18)

2 2
ﬁ <£(0t)_£(0t+1)> —0 as t— oo.
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Uy A

a o1 = V2sin(a/2)| g1

oy = \/5005(04/2) Hgl H

o1

Figure 5. The condition number depends on the angle between gra-
dient vectors. Due to the symmetry one of the principal components
is a bisectrix of this angle.

B. Condition Number

The stability criterion is closely related to the dominance
and conflicts. We can find a functional dependence between
them for some special cases: a) gradients g; and g have
equal magnitude but not orthogonal, b) they are othogonal
but have different norms. To this end, we formulate the
following colloraries.

Collorary 1 Given g, 1 g2 condition number k is
{ lgill [lg=| }
ax ,
gzl llgnll
Proof By initial assumtions the Gram matrix G G is diag-
onal:

G'G = diag{|lg1[* llg=/*}

At the same time, this matrix can be factorized using eigen
decomposition:

G'G=Vv2*V', VvV'=1I 3 =diag{o,o2}

Thus, the singular values are proportional to the gradient
magnitudes up to a symmetric swap to keep ordering of singu-
lar values. The coefficient of proportionality is not valuable,
since the condition number is invariant to the global scale.

Therefore, we derive:
{ ||91|| HQZH }
ax ,
llg2| H!h”

Collorary 2 Given g1 and gs with equal magnitudes, i.e.

llg1ll = llgz2ll, and with o angle in between the condition
number K is
t 2 T<a/2< 3
o an(a/2) §<a/2<7F (19)
ctan(a/2) 0<a/2<7%

Proof The direct collorary of SVD states, that the princi-
pal components w; are direction with maximum norm of
projections over all gradients. Formally:

01 = max HGTQZH = HGTu1||
lzll=1
oz = m |G | = |G us
|lz||=1,2Lu,y



Since the gradients have the same length, one of the principal
components is the bisectrix of angle between them. For clar-
ity, we suppose, that the bisectrix is the second component.
Then, the singular values can be computed trivially (Fig. 5):

o1 = V2sin(a/2)||g:|
a2 = V2cos(a/2)||gi

Accroding to these expressions the condition number is tan-
gent or cotangent up to a symmetric swap to keep ordering
of singular values. In orthoginal case, the condition number
is unit.

C. Synthetic Example

The synthetic example is a two-task objective containing
areas with the presence of conflicting and dominating gradi-
ents between loss components. Formally, we use the same
objective as in previous works [26137]:

L1 =1c1(0)f1(8) + c2(0)g1(0)
Ly = c1(0)f2(0) + c2(0)g2(0)

6 € R?
where
@)= | =) o
ha(8) = ‘(_91;3) — tanh (—6,) + 2’
¢1(0) = max(tanh (922),0)
¢2(0) = max(tanh (‘292),0)
f1(8) = log max (h1(8),5-107°) + 6
f2(0) = logmax (h(6),5-107%) + 6
noy= 0= +100'1(_92 —8° 9
7(6) = (—0+7)2 +100.1(—92 -8)?% 50

We perform minimization starting from five initial points:
[—8.5,7.5],[0.0,0.0],[9.0,9.0], [—7.5,—0.5],[9, —1.0]. We
use Adam [18] optimizer with learning rate 10~ and opti-
mize for 35k iterations. We demonstrate that our method
is able to converge to the optimums with varying pre-
defined task weights in For this purpose we ex-
plore a number of task convex combinations, such that
Lo=ali+ (1 — O[)[,g
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D. Implementation details

CITYSCAPES three-task. Following MGDA-UB training
setup [48]], we train PSPNet [57]] model for 100 epochs using
Adam optimizer with learning rate 10—, Train batch size is
set to 8. Images from training set are resized into 512 x 256
resolution. We augment training set using random rotation
and horizontal flips. The performance is averaged across 3
random initializations.

CITYSCAPES two-task. We follow CAGrad [26] training
setup and train MTAN [28] model. Semantic labels are
groupped into 7 classes. Batch size is set to 8, learning rate
of Adam optimizer is set to 10~%. Models are trained for
200 epochs and learning rate is halved after 100 epochs. The
performance is averaged over last 10 epochs and 3 random
seeds.

NYUV2 three-task. [26,[28,37] We train both PSPNet mod-
els [48[57] and MTAN [28] models in our training setup
with the same hyperparameters set. We use Adam [18]] op-
timizer with learning rate 10~%. Models are trained for 200
epochs and batch size 2. Images from training set are ran-
domly scaled and cropped into 384 x 288 resolution. The
performance is averaged across 3 random seeds.
Reinforcement learning. We follow CAGrad [26] and
use the implementation originally proposed and developed
by [49]. The execution config was adapded from CA-
Grad [26]. The global evaluation pipeline is similar to pre-
vious works [26}/37]]. The performance is averaged over 10
random seeds.



Figure 6. Comparison of MTL optimization methods on synthetic two-task benchmark . We explore convergence of various methods
with varying pre-defined task weights. Methods that guarantee only Pareto-front convergence (such as IMTL and NashMTL [37]))
fail to achieve global optimum (defined by %) and converge to an arbitrary Pareto-front solution with unknown task balance. Unlike
previous methods, our Aligned-MTL approach respects pre-defined task weights and converges to the global optimum for all task weights
combinations and initialization points (e), except one extreme case. Moreover, our method provides stable and less noisy trajectories than
other methods.
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Figure 7. Empirical evaluation of a stability criterion. We plot a condition number, gradient magnitude similarity , minimal cosine
between gradient pairs (conflicts) and maximum gradient norm ratio, i.e. max;=;{|/g:||/||g;||}, during training of PSPNet and
MTAN [28] on the NYUV2 benchmark. Unlike Cityscapes with three tasks (figure from the main paper), on NYUv2 gradients do not differ
drastically in magnitudes but tend to have more conflicts (the cosine between gradients are negative, except for PCGrad). These figures
indicate a high correlation between condition number, gradient norm ratios and gradient magnitude similarity. Our Aligned-MTL approach
eliminates dominance (x = 1, r = 1, GM.S = 1) and conflicts (min;; cos(g:, g;) = 0) by design.
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