
Regularizing Second-Order Influences for Continual Learning

Zhicheng Sun1, Yadong Mu1,2*, Gang Hua3
1Peking University, 2Peng Cheng Laboratory, 3Wormpex AI Research

{sunzc,myd}@pku.edu.cn, ganghua@gmail.com

Abstract

Continual learning aims to learn on non-stationary data
streams without catastrophically forgetting previous knowl-
edge. Prevalent replay-based methods address this chal-
lenge by rehearsing on a small buffer holding the seen data,
for which a delicate sample selection strategy is required.
However, existing selection schemes typically seek only to
maximize the utility of the ongoing selection, overlooking
the interference between successive rounds of selection.
Motivated by this, we dissect the interaction of sequential
selection steps within a framework built on influence func-
tions. We manage to identify a new class of second-order
influences that will gradually amplify incidental bias in the
replay buffer and compromise the selection process. To reg-
ularize the second-order effects, a novel selection objective
is proposed, which also has clear connections to two widely
adopted criteria. Furthermore, we present an efficient im-
plementation for optimizing the proposed criterion. Exper-
iments on multiple continual learning benchmarks demon-
strate the advantage of our approach over state-of-the-art
methods. Code is available at https://github.com/
feifeiobama/InfluenceCL.

1. Introduction

The ability to continually accumulate knowledge is a
hallmark of intelligence, yet prevailing machine learning
systems struggle to remember old concepts after acquir-
ing new ones. Continual learning has hence emerged to
tackle this issue, also known as catastrophic forgetting,
and thereby enable the learning on long task sequences
which are frequently encountered in real-world applica-
tions [16, 18]. Amongst a variety of valid methods, the
replay-based approaches [34, 41] achieve evidently strong
results by buffering a small coreset of previously seen data
for rehearsal in later stages. Due to the rigorous constraints
on memory overhead, the replay buffer needs to be carefully
maintained such that only the samples deemed most critical

*Corresponding author.

Coreset

New data

Selection Selection

Influence

Coreset

New data

Coreset

New data

(a)

Greedy selectionDegraded selection

Regularize

Oracle selectionNow

(b)

Figure 1. (a) In continual learning, earlier coreset selection exerts
a profound influence on subsequent steps through the data flow.
(b) By ignoring this, a greedy selection strategy can degrade over
time. Therefore, we propose to model and regularize the influence
of each selection on the future.

for preserving overall performance are selected during the
learning procedure.

Despite much effort in sophisticated design of coreset
selection criteria [3,7,49,55], existing works are mostly de-
veloped for an oversimplified scenario, where each round
of selection is considered isolated and primarily focused on
refining single-round performance. For example, Borsos et
al. [7] greedily minimize the empirical risk on the currently
available subset of data. However, as shown in Fig. 1a, the
actual selection process within continual learning is rather
different in that each prior selection defines the input for
subsequent selection and therefore has an inevitable impact
on the later decision. Neglecting such interactions between
successive selection steps, as in previous practice, may re-
sult in a degraded coreset after the prolonged selection pro-
cess. To maximize overall performance, an ideal continual
learning method should take into account the future influ-
ence of each round of selection, which remains unresolved
due to the obscure role of intermediate selection results.

1

ar
X

iv
:2

30
4.

10
17

7v
1

 [
cs

.L
G

]
 2

0
A

pr
 2

02
3

https://github.com/feifeiobama/InfluenceCL
https://github.com/feifeiobama/InfluenceCL

This work models the interplay among multiple selection
steps with the classic tool of influence functions [22, 30],
which estimates the effect of each training point by perturb-
ing sample weights. Similarly, we begin by upweighting
two samples from consecutive time steps, and uncover that
the latter one’s influence evaluation is biased due to the con-
sequent perturbations in test gradient and coreset Hessian.
This gives rise to a new class of second-order influences
that interfere with the initial influence-based selection strat-
egy. To be specific, the selection tends to align across dif-
ferent rounds, favoring those samples with a larger gradient
projection along the previously upweighted ones. It further
suggests that some unintended adverse effects of the early
selection steps, such as incidental bias introduced into the
replay buffer, will be amplified after rounds of selection and
impair the final performance.

To address the newly discovered disruptive effects, we
propose to regularize each round of selection beforehand
based on its expected second-order influence, as illustrated
in Fig. 1b. Intuitively, the selection with a large magnitude
of second-order influence will substantially interfere with
future influence estimates, and therefore should be avoided.
However, the magnitude itself cannot be precalculated for
direct guidance of the selection, since it is related to some
unknown future data. We instead derive a tractable upper
bound for the magnitude which results in the form of ℓ2-
norm, and integrated it with the vanilla influence functions
to serve as the final selection criterion. The proposed regu-
larizer can be interpreted with clarity as it equates to a cou-
ple of existing criteria ranging from gradient matching to
diversity, under varying simplifications. Finally, we present
an efficient implementation that tackles the technical chal-
lenges in selecting with neural networks.

Our contributions are summarized as below:

• We investigate the previously-neglected interplay be-
tween consecutive selection steps within an influence-
based selection framework. A new type of second-
order influences is identified, and further analysis
states its harmfulness in continual learning.

• A novel regularizer is proposed to mitigate the second-
order interference. The regularizer is associated with
two other popular selection criteria and can be effi-
ciently optimized with our implementation.

• Comprehensive experiments on three continual learn-
ing benchmarks (Split CIFAR-10, Split CIFAR-100
and Split miniImageNet) clearly illustrates that our
method achieves new state-of-the-art performance.

2. Related works
Continual learning studies the training of models on a

sequence of tasks with potential data distribution shift. It
is known for suffering from catastrophic forgetting [35],

where the model abruptly forgets past knowledge after be-
ing updated on new tasks. To overcome this effect, three
main streams of methods have been developed: weight reg-
ularization [28, 33, 57], parameter isolation [2, 43, 45, 56]
and memory replay [34, 41, 46]. However, the first two
approaches exhibit over-regularization or unconstrained pa-
rameter growth on long task sequences [21]. In this work,
we focus on the replay-based approach, which stores a small
subset of previous data in a memory buffer, to be revisited
when learning new tasks.

One of the key components in replay-based methods is
the sample selection strategy, which undertakes the task of
summarizing representative data into the replay buffer. The
pioneering works [34, 41] featured a ring buffer for exem-
plar management, followed by reservoir sampling [42, 51]
and its class-balanced variants [14, 40]. More sophisti-
cated selection criteria have been proposed as well, such
as matching the overall gradient [4,49] or enhancing the di-
versity of samples [3, 5, 55]. Recently, Borsos et al. [7] and
Sun et al. [47] introduced influence functions [30] to contin-
ual learning, providing a fresh and interpretable perspective
on sample selection. Our method builds on an influence-
based framework but also has clear connections to gradient
matching and diversity.

Influence functions, known from robust statistics [22],
were recently advocated in machine learning by Koh and
Liang [30] to estimate the effect of upweighting a train-
ing sample to the model parameter and test loss. Since
then, influence functions have served as sample selection
criteria for various scenarios such as data-efficient learn-
ing [48, 53], class imbalanced learning [38] and noisy label
learning [31]. Typically, samples with the highest influence
scores are identified and then downweighted or discarded.
Closely related to our work are their applications in contin-
ual learning [7,47,61] and domain adaptation [15], but they
were still developed for the single-round selection scenario
described earlier and overlooked the high-order interactions
between multiple rounds of selection, leading to suboptimal
results in the continual learning setup.

There are also efforts made toward more accurate and
efficient calculation of influence functions. For example,
Basu et al. [6] introduced second-order approximations to
measure group effects [6, 29] of large, coherent groups
of training points. However, their analysis is limited to
jointly optimized samples and cannot be applied to con-
tinuously incoming data. In the other direction, various
speedup tricks [7, 20, 44, 59] have been proposed for over-
parameterized neural networks, among which a representa-
tive approach is to use neural tangent kernels [24] as the
proxy model [7, 59]. We adapt some of these techniques to
the proposed second-order influence functions and derive an
efficient selection criterion for continual learning.

2

3. Influence functions for continual learning
3.1. Problem formulation

We consider learning on a continuous stream of data
Z = {zi}ni=1 assuming that only a fraction of samples
Zt ⊂ Z can be accessed at each time step t. The main
challenge in such a learning paradigm is to retain perfor-
mance on the seen data Z1:t =

⋃t
i=1 Zi in later stages. To

achieve this, we adopt a most straightforward and effective
approach that stores a few samples Ct in a replay buffer as
the representatives of previous data Z1:t, where the memory
size |Ct| ≤ m and m ≪ n. In consequence, it is crucial to
maintain a high-quality subset throughout the training pro-
cess [3, 55]. Formally, let θ be the model parameters and
L(zi, θ) be the loss on training point zi. Then, our selection
goal is to preserve model performance on Z1:t by replaying
on Ct, which is formulated as:

min
Ct⊂Ct−1∪Zt,|Ct|≤m

∑
zi∈Z1:t

L(zi, θ̂)

s.t. θ̂ = argmin
θ

∑
zi∈Ct

L(zi, θ).
(1)

Though its main form is consistent with that of the well-
studied coreset selection problem [7], note that the outer
objective is intractable since Z1:t is partly unavailable.

In the following sections, we first present a baseline se-
lection strategy produced by the vanilla influence functions,
then showcase its limitation in handling continual selection
and propose our improved version.

3.2. Influence-based selection

Influence functions [30] provide an efficient approxima-
tion for solving the coreset selection problem by perturbing
sample weights, for which the previous exact solution re-
quires expensive leave-one-out retraining.

Before diving in, we first convert Eq. (1) into a tractable
problem by leveraging the empirical risk on Ct−1 ∪ Zt

1 as
a proxy for the original test loss on Z1:t, presuming a close
correlation between them:

min
Ct⊂Ct−1∪Zt,|Ct|≤m

∑
zi∈Ct−1∪Zt

L(zi, θ̂)

s.t. θ̂ = argmin
θ

∑
zi∈Ct

L(zi, θ).
(2)

Solving this involves uncovering the effect of selecting or
discarding some training sample z ∈ Ct−1 ∪ Zt, for which
a small weight ϵ is added to the interested sample, and then
the optimal point in the inner optimization becomes:

θ̂ϵ,z = argmin
θ

∑
zi∈Ct

L(zi, θ) + ϵL(z, θ). (3)

1The loss on Zt needs to be reweighted by a constant to balance with
the loss on Ct−1. We omit the weight for simplicity unless otherwise
stated.

Let θ̂t = θ̂ϵ,z|ϵ=0 denote the initial optimal parameters and
Hθ̂t

=
∑

zi∈Ct
∇2

θL(zi, θ̂t) denote the Hessian which by
assumption is positive definite. A classic result by Cook
and Weisberg [17] yields the change in model parameters as
dθ̂ϵ,z
dϵ

∣∣∣
ϵ=0

= −H−1

θ̂t
∇θL(z, θ̂t), from which we can derive

the influence of upweighting z on the outer loss in Eq. (2):

I(z) =
∑

zi∈Ct−1∪Zt

dL(zi, θ̂ϵ,z)

dϵ

∣∣∣
ϵ=0

= −
∑

zi∈Ct−1∪Zt

∇θL(zi, θ̂t)
⊤H−1

θ̂t
∇θL(z, θ̂t).

(4)

We denote the inverse Hessian-vector product therein as
st = H−1

θ̂t

∑
zi∈Ct−1∪Zt

∇θL(zi, θ̂t) for future use.

To minimize the outer loss, the coreset Ct should contain
the samples with the lowest negative influence scores. It can
be efficiently solved by a greedy strategy, which starts from
the full set Ct = Ct−1 ∪ Zt and discards the sample z with
the largest influence at each iteration until the memory con-
straint |Ct| ≤ m is met. While such a strategy is qualified
in a variety of evaluations [7, 52, 53, 61], we argue that it is
not the answer to continual learning by dissecting the joint
effect of influence-based selection in a sequence.

3.3. Second-order influences in continual selection

In continual learning, each prior selection determines the
input for subsequent steps and thus influences the effective-
ness of future selection, i.e., it may interfere with the later
evaluation of the selection criterion.

To model such an interaction, we consider two samples
z and z′ from consecutive steps t and t+1. With the previ-
ous sample z upweighted by ϵ, the next round of selection is
also affected, by a drift in the influence score of z′. Specifi-
cally, there are two cases depending on whether z and z′ are
jointly optimized in the following step:

(1) The samples z and z′ are not jointly optimized, mean-
ing that the previous sample z is excluded from the coreset
in the next round and only serves as a test point. As a result,
only the outer loss in Eq. (2) is affected, with the influence
score of the subsequent candidate z′ changed to:

Iϵ,z(z′) = −

(∑
zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1) + ϵ∇θL(z, θ̂t+1)

)⊤

H−1

θ̂t+1
∇θL(z

′, θ̂t+1).

(5)
By taking the derivative w.r.t. ϵ, it yields the influence of
upweighting z on the influence score of z′. Alternatively, it
can be viewed as the second-order influence of two samples

3

from consecutive selection steps on the outer loss:

I(2)(z, z′) =
dIϵ,z(z′)

dϵ

∣∣∣
ϵ=0

= −∇θL(z, θ̂t+1)
⊤H−1

θ̂t+1
∇θL(z

′, θ̂t+1).
(6)

We will soon analyze its effect using the geometric view of
projection.

(2) The samples z and z′ are jointly optimized by the in-
ner objective in Eq. (2). In this case, the inner Hessian is
also changed, in the direction of Hθ̂t+1,z

:= ∇2
θL(z, θ̂t+1).

Hence, the influence score of the following sample z′ is
modified to:

Iϵ,z(z′) = −

(∑
zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1) + ϵ∇θL(z, θ̂t+1)

)⊤

(Hθ̂t+1
+ ϵHθ̂t+1,z

)−1∇θL(z
′, θ̂t+1).

(7)
Similarly, the second-order influence of z′ and z can be ob-
tained as follows (see Supplementary for the derivation):

I(2)(z, z′) =
dIϵ,z(z′)

dϵ

∣∣∣
ϵ=0

= −(∇θL(z, θ̂t+1)−Hθ̂t+1,z
st+1)

⊤H−1

θ̂t+1
∇θL(z

′, θ̂t+1).

(8)
Compared to the first case, there is an additional term re-
lated to the Hessian perturbation, whose effect will be dis-
cussed in Sec. 3.5. Nevertheless, the prior term in Eq. (6) is
fully retained.

Second-order influences compromise sample diversity.
For an intuitive understanding of the new influences, let
⟨u, v⟩ = uTH−1

θ̂t+1
v define an inner product over the gradi-

ent space and induce the notion of projection. In both cases,
the sample z′ with a larger gradient projection onto the pre-
vious z is estimated with a lower influence and thus more
likely to be selected. This drives the influence-based selec-
tion strategy to include more similar samples to the buffer
and expel dissimilar ones, leading to a lack of diversity.

Second-order influences amplify memory bias. While
the above analysis is based on a real perturbation to sam-
ple weights, it could also be a simulated perturbation on
the gradient statistics of the coreset. Such perturbations are
common in the learning process, as each selection step may
introduce an incidental bias to the buffer. Like real samples,
they can produce the same second-order effect of attracting
similar ones into the buffer. Although these perturbations
are expected to have zero mean like white noises, the ear-
lier perturbations have taken a greater effect in accumulat-
ing memory bias, which results in inaccurate influence esti-
mates and degradation of future selection.

3.4. Regularizing second-order influences

To mitigate the harmful second-order effects without im-
posing additional memory overhead, we suggest regulariz-
ing each coreset selection step in advance, so that future
influence estimates will be less error-prone.

Suppose we are at the t-th step, the goal is to minimize its
interference with some sample z′ of the next step, namely
the total effect of discarding the subset Ct = Ct−1∪Zt−Ct,
which can be computed by summing Eq. (6) or Eq. (8)2.
However, it cannot be predetermined which equation to be
used, so a hyperparameter µ ∈ [0, 1] is introduced as the
ratio for the latter case, allowing us to consider a weighted
sum of the two second-order influences:

∆I(z′) ≈ −
∑
z∈Ct

I(2)(z, z′) · 1

=
∑
z∈Ct

(∇θL(z, θ̂t+1)− µHθ̂t+1,z
st+1)

TH−1

θ̂t+1
∇θL(z

′, θ̂t+1).

(9)
Ideally, the magnitude of total influence ∆I(z′) should

be very small so that future selection will receive less inter-
ference. However, this term is intractable since it is associ-
ated with an unknown sample z′, so we turn to optimize its
upper bound given by the Cauchy–Schwarz inequality:

|∆I(z′)| ≤

∥∥∥∥∥∑
z∈Ct

(∇θL(z, θ̂t+1)− µHθ̂t+1,z
st+1)

∥∥∥∥∥
×
∥∥∥H−1

θ̂t+1
∇θL(z

′, θ̂t+1)
∥∥∥,

(10)

We omit the second norm that depends mainly on the up-
coming data, and employ the first one to regularize the on-
going selection, during which the yet unknown θt+1 and
st+1 are approximated with θt and st, respectively:

R(Ct) =

∥∥∥∥∥∑
z∈Ct

(∇θL(z, θ̂t)− µHθ̂t,z
st)

∥∥∥∥∥. (11)

Proposed selection criterion. A weighted sum of the
first-order influence and second-order regularizer balanced
by a hyperparameter ν is adopted to guide the selection pro-
cess. The final objective at the t-th step is as follows:

min
Ct⊂Ct−1∪Zt,|Ct|≤m

∑
z∈Ct

I(z) + νR(Ct). (12)

Next, we will interpret it by unveiling its connection to two
widely adopted selection criteria, and then present an effi-
cient implementation for deep models in practical use.

2With first-order approximations here, the group effect [6] of dropped
datapoints can be fairly neglected.

4

Full gradient Feasible region, 𝜇 = 0Feasible region, 𝜇 > 0

𝑂

Figure 2. Geometric interpretation of our proposed regularizer.
As µ grows larger from zero, the regularizer shifts from the initial
gradient matching to introducing more gradient diversity along the
predominant direction.

3.5. Connection to gradient matching and diversity

The following case studies of Eq. (11) allow to establish
clear connections between the proposed regularizer and two
commonly used selection criteria: gradient matching [4,27,
60] and sample diversity [3, 5, 55].

Start by setting µ = 0, which corresponds to having full
confidence that the currently discarded samples will not be
favored in the future, and then the regularizer becomes:

R(Ct) =

∥∥∥∥∥ ∑
z∈Ct−1∪Zt

∇θL(z, θ̂t)−
∑
z∈Ct

∇θL(z, θ̂t)

∥∥∥∥∥. (13)

It turns out to minimize the Euclidean distance between the
full gradient and the coreset gradient, which is equivalent
to gradient matching. For an intuitive look, we consider a
hard constraint R(Ct) < δ and mark the feasible region of
the coreset gradient with light blue in Fig. 2.

In the more general case µ > 0, we temporarily ignore
the sample information carried in Hessian for simplicity, by
assuming that the Hessian is identical for all training sam-
ples. Then there is:

R(Ct) =

∥∥∥∥∥(1− αµ)
∑

z∈Ct−1∪Zt

∇θL(z, θ̂t)−
∑
z∈Ct

∇θL(z, θ̂t)

∥∥∥∥∥,
(14)

where α is a coefficient related to the coreset size only. As
illustrated in Fig. 2, the feasible region is moved in the op-
posite direction of the total gradient. This promotes samples
whose gradients are less aligned or even conflicting with the
main direction to be included in the coreset, thus encourag-
ing diversity. In a holistic view, the hyperparameter µ plays
the role of balancing gradient matching and diversity.

While these simplifications equate our proposed regular-
izer to a couple of intuitive criteria, the original form excels
in the additional incorporation of Hessian-related informa-
tion, which will be empirically demonstrated in the experi-
ments.

3.6. Implementation for neural networks

This section presents an efficient implementation of op-
timizing the selection criterion with deep neural networks.
Since similar issues for the vanilla influence functions have
been intensively addressed [7, 30, 47], the focus here is on
the optimization of the newly proposed regularizer.

A key difference of our second-order regularizer is that it
cannot be partitioned into independent terms associated to
different samples, which hinders application of the afore-
mentioned greedy selection strategy. We overcome this
challenge by leveraging the first-order Taylor expansion of
the regularizer. To this end, the original variable Ct is
replaced by a continuous vector wt, where each element
wt,i = 1(zi ∈ Ct) indicates whether the corresponding
sample is included in the coreset. After that, the regular-
izer can be transformed into an equivalent form:

R(wt) =

∥∥∥∥∥ ∑
zi∈Ct−1∪Zt

(1− wt,i)(∇θL(zi, θ̂t)− µHθ̂t,zi
st)

∥∥∥∥∥,
(15)

whose first-order Taylor approximation w.r.t. wt is a linear
combination of uncorrelated terms (see Supplementary for
details) and can therefore be addressed with greedy heuris-
tics. We then implement an iterative optimization algorithm
for selection that starts from an exterior point wt = 1, and
modifies wt during each iteration to drop the sample zi with
the largest I(zi) + ν∇wt,i

R(wt), until the memory con-
straint ∥wt∥0 ≤ m is satisfied. Such a strategy of greedily
minimizing the proposed criterion is found to be sufficient
in later experiments.

To further enable efficient inference on non-convex
and over-parameterized deep neural networks, we are in-
spired by Borsos et al. [7] and employ neural tangent ker-
nels [24] as the proxy model for computing the regularizer
in Eq. (15). The inverse Hessian-vector product st therein
can be effectively computed using the conjugate gradient
method, with a small damping term added to the Hessian to
ensure that it is positive definite.

Computational cost. The performance bottleneck lies in
computing the inverse Hessian-vector product st, for which
the conjugate gradient method takes O(m′p2) time to yield
an exact solution [30], where m′ = |Ct−1 ∪Zt| and p is the
number of parameters. Since this part of cost is shared with
the first-order influence function, our regularizer introduces
only a small overhead of O(m′p) in evaluating the Hessian-
vector product Hθ̂t,zi

st each time. In addition, the adopted
neural tangent kernel approximation significantly eases the
burden by reducing the number of parameters.

Our computational efficiency will be further verified by
the runtime comparison in Sec. 4.3 and the per-step over-
head analysis in the supplementary material.

5

Method
Class-incremental Task-incremental

m = 300 m = 500 m = 300 m = 500

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Non-IF

GEM [34] 37.51 -70.48 36.95 -69.76 89.34 -9.09 90.42 -7.88
A-GEM [13] 20.02 -95.68 20.01 -95.69 85.52 -14.07 86.45 -12.83
ER [14] 34.19 -78.18 40.45 -70.36 88.97 -9.95 90.60 -7.74
GSS [3] 35.89 -75.80 41.96 -68.24 88.05 -10.63 90.38 -7.73
ER-MIR [1] 38.53 -72.72 42.65 -67.50 88.50 -10.33 90.63 -7.62
GDUMB [40] 36.92 - 44.27 - 73.22 - 78.06 -
HAL [12] 24.45 -83.56 27.94 -80.01 79.90 -14.39 81.84 -12.73
GMED [25] 38.12 -73.16 43.68 -66.21 88.91 -9.76 89.72 -8.75

IF
Vanilla IF 41.76 -68.59 47.14 -62.20 90.67 -7.65 91.06 -7.36
MetaSP [47] 43.76 -66.37 50.10 -58.39 89.91 -9.00 91.41 -7.36
Ours 48.62 -60.24 53.07 -54.44 91.52 -6.94 92.53 -5.46

Table 1. Comparison with influence function (IF)-based methods and non-IF-based methods on Split CIFAR-10 under different memory
constraints. For the compared methods, we report the results summarized in [47] in chronological order. The task-incremental setting asks
the model to classify within each task, while the class-incremental setting requires predicting both task identity and class label.

4. Experiments

4.1. Experimental setup

Datasets. We conduct experiments on three continual
learning benchmarks: (1) Split CIFAR-10 [58] splits the
original CIFAR-10 [32] dataset into 5 disjoint subsets,
where each subset comprises 2 classes. (2) Split CIFAR-
100 [58] is constructed from the CIFAR-100 [32] dataset,
containing 10 tasks with disjoint class labels. (3) Split
miniImageNet [14, 47] derives from the few-shot learning
dataset miniImageNet [50], a subset of ImageNet [19] with
100 classes and 600 images per class. The dataset is divided
equally to create 5 sequential tasks, with each image resized
to 32× 32. For all three benchmarks, we follow their origi-
nal papers in splitting training and test sets.

Metrics. Two evaluation metrics are employed, includ-
ing Average Accuracy (ACC) and Backward Transfer
(BWT) [34], where ACC is the average accuracy after the
model has been trained on all tasks and BWT indicates the
average forgetting of all previous tasks. Formally, they are
defined as:

ACC =
1

T

T∑
i=1

RT,i, BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i,

(16)
where T is the number of tasks and Ri,j is the accuracy
of the model on the j-th task after learning i tasks. As
done in [9, 47], we measure the metrics under both task-
incremental and class-incremental settings. The latter is
particularly difficult as it does not provide task identity for
each sample at test time.

Baselines. Our method is compared against nine replay-
based competitors: ER [14], GEM [34], A-GEM [13],
GSS [3], ER-MIR [1], GDUMB [40], HAL [12],
GMED [25] and MetaSP [47]. Additionally, a base strat-
egy that uses the vanilla influence functions (IF) introduced
in Sec. 3.2 is considered. To make a fair comparison, we
first reproduce the main experiments of [47] and then report
the results therein.

Implementation details. We adopt ResNet-18 [23] as the
backbone architecture. The model is optimized by SGD for
50 epochs per task, with fixed batch size and replay batch
size of both 32, as in [10]. The learning rate is set to 0.1
on Split CIFAR-10 and Split CIFAR-100, and 0.03 on Split
miniImageNet. The other hyperparameters are empirically
set as µ = 0.5 and ν = 0.01 by default, whose sensitivity
analysis will be given in Sec. 4.3. In the training, we use
cross entropy loss for replay samples and apply standard
data augmentations of random cropping and horizontal flip-
ping. To limit the computational overhead of our method,
the replay buffer is only updated during the last epoch of
each task. The continual learning scenarios are provided by
Mammoth [8,9] which relies on PyTorch [39]. For calculat-
ing Neural Tangent Kernels, the library of [37] is employed.

4.2. Main results

The results on the Split CIFAR-10 benchmark are sum-
marized in Tab. 1. Overall, our approach achieves the best
continual learning performance in all metrics under vari-
ous evaluation settings and memory constraints, suggesting
its superiority over state-of-the-art methods. From the re-
sults, we also observe that: (1) The first-order influence-

6

Method
Class-incremental Task-incremental

m = 500 m = 1000 m = 500 m = 1000

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Non-IF

GEM [34] 15.91 -77.07 22.79 -68.32 68.68 -18.72 73.71 -12.81
A-GEM [13] 9.31 -85.18 9.27 -84.88 55.28 -34.10 55.95 -33.01
ER [14] 13.75 -81.64 17.56 -77.52 66.82 -22.73 71.74 -17.40
GSS [3] 14.01 -80.02 17.87 -76.04 66.80 -21.44 71.98 -16.06
ER-MIR [1] 13.49 -82.09 17.56 -77.59 66.18 -23.60 71.20 -18.10
GDUMB [40] 11.11 - 15.75 - 36.40 - 43.25 -
HAL [12] 8.20 -65.70 10.59 -63.86 44.98 -25.17 50.07 -20.61
GMED [25] 14.56 -80.68 18.67 -76.23 68.82 -20.53 73.91 -15.10

IF
Vanilla IF 17.49 -77.54 22.75 -72.56 71.74 -17.90 73.25 -17.22
MetaSP [47] 19.28 -76.13 25.72 -68.69 70.81 -19.74 76.14 -14.32
Ours 21.15 -73.24 27.99 -64.56 72.53 -17.22 74.27 -16.37

(a) Split CIFAR-100

Method
Class-incremental Task-incremental

m = 500 m = 1000 m = 500 m = 1000

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Non-IF

A-GEM [13] 10.69 -49.22 10.69 -49.16 18.34 -39.65 18.78 -39.05
ER [14] 11.00 -50.84 11.35 -50.08 28.97 -28.40 31.59 -24.95
GSS [3] 11.09 -50.66 11.42 -49.91 28.67 -28.71 31.75 -24.56
ER-MIR [1] 11.07 -50.46 11.32 -49.92 29.10 -27.95 31.39 -24.89
GDUMB [40] 6.22 - 7.15 - 16.37 - 17.69 -
GMED [25] 11.03 -50.23 11.73 -48.93 30.47 -26.02 32.85 -22.69

IF
Vanilla IF 12.08 -48.55 14.64 -47.15 33.74 -21.71 37.55 -19.28
MetaSP [47] 12.74 -48.84 14.54 -45.52 34.36 -21.70 37.20 -17.83
Ours 13.63 -47.94 16.15 -43.78 36.46 -19.48 39.61 -16.01

(b) Split miniImageNet

Table 2. Comparison with state-of-the-art methods on more challenging benchmarks, including Split CIFAR-100 and Split miniImageNet.
While most setups follow the previous experiment, a different hyperparameter setting µ = 0.75 is adopted on Split CIFAR-100 with
memory size m = 1000 empirically.

based methods obtain significant performance gains over
traditional methods, but our version almost doubles the im-
provement under the small memory setting of m = 300.
By taking into account the second-order influences, it out-
performs the state-of-the-art method by 4.86% in ACC and
6.13% in BWT in the challenging class-incremental evalua-
tions, which in turn reflects the non-trivial effect of second-
order influences. (2) Though the base strategy vanilla IF
is slightly inferior to the state-of-the-art method MetaSP in
most cases for it does not introduce any new losses in the
model training, it can substantially surpass MetaSP with a
simple regularization term on the selection criterion. This
verifies the effectiveness of our proposed regularizer.

We further evaluate our method on the more difficult
Split CIFAR-100 and Split miniImageNet benchmarks. As
presented in Tab. 2, our approach brings consistent perfor-

mance improvement over vanilla IF on both benchmarks, by
up to 5.24% and 8.0% in terms of ACC and BWT, respec-
tively. Compared to other approaches, it obtains state-of-
the-art performance on Split miniImageNet in all metrics,
and leads ACC by about 2% on three different setups of
Split CIFAR-100. Only in the simplest scenario of task-
incremental learning on Split CIFAR-100 with m = 1000,
our method fails to surpass MetaSP, for which we speculate
that the high-order interference is alleviated to some extent
by the large buffer itself. Nevertheless, our method remains
competitive in most evaluations.

4.3. Ablation study and analysis

This section empirically justifies the design of our ap-
proach through a series of experiments conducted on Split
CIFAR-10 with a fixed memory size of m = 500.

7

Method Class-incremental Task-incremental

ACC (%) BWT (%) ACC (%) BWT (%)

Vanilla IF 47.14 -62.20 91.06 -7.36
+ matching 49.86 -58.24 92.30 -5.78
+ diversity 50.59 -57.06 90.69 -7.28
+ both 51.61 -56.31 91.93 -6.11

Ours 53.07 -54.44 92.53 -5.46

Table 3. Comparison with alternative regularizers on Split CIFAR-
10 with memory size m = 500. The diversity-based regularizer is
implemented by minimizing the norm of the coreset gradient.

0.0 0.5 1.0 1.5 2.0
ν 1e 2

47

48

49

50

51

52

53

•
C

la
ss

-in
cr

em
en

ta
l A

C
C

 (%
)

0.00 0.25 0.50 0.75 1.00
µ

91.0

91.5

92.0

92.5

+
Ta

sk
-in

cr
em

en
ta

l A
C

C
 (%

)

(a) Weight for the regularizer

0.0 0.5 1.0 1.5 2.0
ν 1e 2

47

48

49

50

51

52

53

•
C

la
ss

-in
cr

em
en

ta
l A

C
C

 (%
)

0.00 0.25 0.50 0.75 1.00
µ

91.0

91.5

92.0

92.5

+
Ta

sk
-in

cr
em

en
ta

l A
C

C
 (%

)

(b) Weight for Hessian-related term

Figure 3. Sensitivity to hyperparameters on Split CIFAR-10 with
m = 500. They are set to ν = 0.01 and µ = 0.5 by default.

Comparison with other regularizers. To further validate
the effectiveness of our regularizer, it is compared to two
closely related criteria, namely gradient matching and diver-
sity, in Tab. 3. Our regularizer draws on the strengths from
both criteria, including the satisfactory task-incremental
performance of gradient matching and the higher class-
incremental ACC of gradient diversity. In addition, we com-
pare it with a combination of both criteria, during which
the considerable performance advantage of our Hessian-
aware regularizer illustrates the benefits from incorporating
Hessian-related information. More comparative studies can
be found in the supplementary material.

Hyperparameter sensitivity. In order to explore the sen-
sitivity of our strategy to hyperparameter settings, we vary
the two coefficients µ and ν and plot the response of model
performance. Figure 3a shows that under both evaluation
settings, ACC improves consistently with the growth of
weight ν on the second-order regularizer until its stability.
The situation is more complicated in Fig. 3b, where the two
ACC curves exhibit inconsistent trends regarding the weight
µ for the Hessian-related term. Recall that in Sec. 3.5 µ is
associated with the degree of diversity, so it may be inter-
preted that the more challenging class-incremental setting
requires higher memory diversity, while the simpler task-
increment setting accommodates lower diversity.

1 2 3 4 5
Task

0.3

0.4

0.5

0.6

0.7

0.8

K
en

da
ll

s τ

Vanilla IF
Ours

Figure 4. Evolution of the
influence estimation accuracy
measured by Kendall’s τ [26].

Method Runtime (h)

ER [14] 0.92
A-GEM [13] 1.22
GSS [3] 0.92
HAL [13] 1.73

Vanilla IF 1.69
MetaSP [47] 2.03
Ours 1.74

Table 4. Running time measured
on Split CIFAR-10 using a single
NVIDIA 2080 Ti GPU.

Accuracy of influence estimates. To measure accuracy,
the previous practice of comparing with the ground-truth
given by leave-one-out retraining [6,30] imposes an imprac-
tical cost under the continual learning setup. Hence, we turn
to a large reservoir sampling buffer to produce unbiased in-
fluence estimates and compute their correlation with other
predictions. The Kendall rank correlation [26] is adopted
since we are more concerned with each sample’s rank dur-
ing selection. As illustrated in Fig. 4, the buffer maintained
by vanilla IF dissociates from the unbiased buffer after a
short period, producing inaccurate influence estimates. In
contrast, our strategy yields a relatively higher agreement,
which verifies its effectiveness in mitigating interference.

Running time. Table 4 compares our proposed method
with several replay-based competitors in terms of efficiency.
Though influence-based approaches generally incur higher
time costs in the Hessian-related computations, our method
imposes a limited overhead with the newly introduced
second-order regularizer. This implies that the above im-
provements are achieved within comparable training time,
demonstrating the high efficiency of our implementation.

5. Concluding remarks
We propose an effective coreset selection strategy for

continual learning that addresses the interference within
successive selection steps. By dissecting the interactions
between consecutive rounds of influence-based selection,
a new class of second-order influences is identified, with
which the long selection process may gradually lose diver-
sity and accumulate bias. To solve this problem, a novel
regularizer is presented which is linked to two other pop-
ular criteria but incorporates additional Hessian-related in-
formation. Finally, we implement the proposed selection
criterion with high efficiency and validate its effectiveness
in a variety of comparative experiments.

This work is supported by National Key R&D Program of China
(2020AAA0104401), Beijing Natural Science Foundation (Z190001) and
Peng Cheng Laboratory Key Research Project No.PCL2021A07.

8

References
[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-

rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In NeurIPS, pages 11849–11860, 2019. 6, 7, 13

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.
Expert gate: Lifelong learning with a network of experts. In
CVPR, pages 3366–3375, 2017. 2

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. In NeurIPS, pages 11817–11826, 2019. 1, 2, 3, 5,
6, 7, 8, 13

[4] Lukas Balles, Giovanni Zappella, and Cédric Archam-
beau. Gradient-matching coresets for continual learning. In
NeurIPS Workshops, 2021. 2, 5

[5] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha,
and Jonghyun Choi. Rainbow memory: Continual learning
with a memory of diverse samples. In CVPR, pages 8218–
8227, 2021. 2, 5

[6] Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-
order group influence functions for black-box predictions. In
ICML, pages 715–724, 2020. 2, 4, 8, 12

[7] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets
via bilevel optimization for continual learning and streaming.
In NeurIPS, pages 14879–14890, 2020. 1, 2, 3, 5, 13

[8] Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo
Porrello, and Simone Calderara. Class-incremental continual
learning into the extended DER-verse. TPAMI, pages 1–16,
2022. 6

[9] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In NeurIPS,
pages 15920–15930, 2020. 6

[10] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Si-
mone Calderara. Rethinking experience replay: a bag of
tricks for continual learning. In ICPR, pages 2180–2187,
2021. 6

[11] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual
learning. In ICLR, 2022. 13

[12] Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip
Torr, and David Lopez-Paz. Using hindsight to anchor past
knowledge in continual learning. In AAAI, pages 6993–7001,
2021. 6, 7

[13] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In ICLR, 2019. 6, 7, 8, 13

[14] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. In ICML Workshops, 2019. 2, 6,
7, 8, 11, 13

[15] Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar,
Duane Boning, and Cho-Jui Hsieh. Multi-stage influence
function. In NeurIPS, pages 12732–12742, 2020. 2

[16] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2018. 1

[17] R Dennis Cook and Sanford Weisberg. Residuals and influ-
ence in regression. New York: Chapman and Hall, 1982.
3

[18] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying
forgetting in classification tasks. TPAMI, 44(7):3366–3385,
2021. 1

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[20] Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and
Caiming Xiong. FastIF: Scalable influence functions for effi-
cient model interpretation and debugging. In EMNLP, pages
10333–10350, 2021. 2

[21] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan
Pascanu. Embracing change: Continual learning in deep
neural networks. Trends in Cognitive Sciences, 24(12):1028–
1040, 2020. 2

[22] Frank R Hampel. The influence curve and its role in robust
estimation. Journal of the American Statistical Association,
69(346):383–393, 1974. 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[24] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: convergence and generalization in neural
networks. In NeurIPS, pages 8580–8589, 2018. 2, 5

[25] Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-
based editing of memory examples for online task-free con-
tinual learning. In NeurIPS, pages 29193–29205, 2021. 6,
7

[26] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. 8

[27] Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: Gradient matching
based data subset selection for efficient deep model training.
In ICML, pages 5464–5474, 2021. 5

[28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sci-
ences, 114(13):3521–3526, 2017. 2, 13

[29] Pang Wei Koh, Kai-Siang Ang, Hubert HK Teo, and Percy
Liang. On the accuracy of influence functions for measuring
group effects. In NeurIPS, pages 5254–5264, 2019. 2, 12

[30] Pang Wei Koh and Percy Liang. Understanding black-box
predictions via influence functions. In ICML, pages 1885–
1894, 2017. 2, 3, 5, 8, 11

[31] Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolv-
ing training biases via influence-based data relabeling. In
ICLR, 2022. 2

[32] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto, 2009. 6

9

[33] Zhizhong Li and Derek Hoiem. Learning without forgetting.
TPAMI, 40(12):2935–2947, 2017. 2

[34] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In NeurIPS, page
6470–6479, 2017. 1, 2, 6, 7

[35] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. Psychology of Learning and Motivation, 24:109–
165, 1989. 2

[36] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu,
and Hassan Ghasemzadeh. Understanding the role of train-
ing regimes in continual learning. In NeurIPS, pages 7308–
7320, 2020. 13

[37] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee,
Alexander A Alemi, Jascha Sohl-Dickstein, and Samuel S
Schoenholz. Neural tangents: Fast and easy infinite neural
networks in python. In ICLR, 2020. 6

[38] Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young
Choi. Influence-balanced loss for imbalanced visual clas-
sification. In ICCV, pages 735–744, 2021. 2

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8026–8037, 2019. 6

[40] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
GDumb: A simple approach that questions our progress in
continual learning. In ECCV, pages 524–540, 2020. 2, 6, 7

[41] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, pages 2001–2010,
2017. 1, 2, 13

[42] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In ICLR, 2019. 2

[43] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[44] Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. Scaling up influence functions. In AAAI,
pages 8179–8186, 2022. 2

[45] Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In ICML, pages 4548–4557, 2018. 2

[46] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NeurIPS,
page 2994–3003, 2017. 2

[47] Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang
Wan. Exploring example influence in continual learning. In
NeurIPS, 2022. 2, 5, 6, 7, 8

[48] Daniel Ting and Eric Brochu. Optimal subsampling with
influence functions. In NeurIPS, pages 3654–3663, 2018. 2

[49] Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and
Pradeep Shenoy. GCR: Gradient coreset based replay buffer
selection for continual learning. In CVPR, pages 99–108,
2022. 1, 2, 13

[50] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In NeurIPS, pages 3637–3645, 2016. 6

[51] Jeffrey S Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57, 1985.
2

[52] Tianyang Wang, Jun Huan, and Bo Li. Data dropout: Op-
timizing training data for convolutional neural networks. In
IEEE International Conference on Tools with Artificial Intel-
ligence, pages 39–46, 2018. 3

[53] Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and
Shao-Lun Huang. Less is better: Unweighted data subsam-
pling via influence function. In AAAI, pages 6340–6347,
2020. 2, 3

[54] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, pages 374–382, 2019. 13

[55] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju
Hwang. Online coreset selection for rehearsal-based contin-
ual learning. In ICLR, 2022. 1, 2, 3, 5, 13

[56] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong learning with dynamically expandable net-
works. In ICLR, 2018. 2

[57] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Contin-
ual learning of context-dependent processing in neural net-
works. Nature Machine Intelligence, 1(8):364–372, 2019.
2

[58] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In ICML, pages
3987–3995, 2017. 6

[59] Rui Zhang and Shihua Zhang. Rethinking influence func-
tions of neural networks in the over-parameterized regime.
In AAAI, pages 9082–9090, 2022. 2

[60] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In ICLR, 2021. 5

[61] Fan Zhou and Chengtai Cao. Overcoming catastrophic for-
getting in graph neural networks with experience replay. In
AAAI, pages 4714–4722, 2021. 2, 3

10

A. Notation

Table 5 summarizes the used notation for quick lookup.

B. Continual learning framework

The pseudocode for our learning procedure is presented
in Alg. 1. Following ER [14], the model is trained on a
mini-batch composed of the current task data and replay ex-
amples at each time step. Meanwhile, to reduce the compu-
tational cost imposed by the selection algorithm, the replay
buffer is updated only in the last epoch of each task. For the
settings of hyperparameters, please refer to Sec. 4.1.

C. Derivation of influence functions

As a background introduction, this section provides the
derivation of the first-order influence score I(z) in Eq. (3),
following the idea by Koh and Liang [30].

It begins with upweighting an interested sample z by an
infinitesimal amount ϵ, after which the perturbed optimal
point θ̂ϵ,z can be written as follows:

θ̂ϵ,z = argmin
θ

∑
zi∈Ct

L(zi, θ) + ϵL(z, θ). (17)

Its first-order optimality condition states that:

0 =
∑
zi∈Ct

∇θL(zi, θ̂ϵ,z) + ϵ∇θL(z, θ̂ϵ,z). (18)

To exploit the known optimal point θ̂t, we apply the first-
order Taylor expansion on the right-hand side:

0 ≈
[∑
zi∈Ct

∇θL(zi, θ̂t) + ϵ∇θL(z, θ̂t)

]

+

[∑
zi∈Ct

∇2
θL(zi, θ̂t) + ϵ∇2

θL(z, θ̂t)

]
(θ̂ϵ,z − θ̂t),

(19)

where o(∥θ̂ϵ,z − θ̂t∥) terms are dropped. It is also assumed
that L is twice-differentiable and convex in θ. Using the
optimality condition

∑
zi∈Ct

∇θL(zi, θ̂t) = 0 and the no-
tation Hθ̂t

=
∑

zi∈Ct
∇2

θL(zi, θ̂t), it can be simplified to:

θ̂ϵ,z − θ̂t ≈ H−1

θ̂t
∇θL(z, θ̂t)ϵ, (20)

where o(ϵ) terms are neglected. This yields the derivate of
θ̂ϵ,z w.r.t. ϵ:

dθ̂ϵ,z
dϵ

∣∣∣
ϵ=0

= −H−1

θ̂t
∇θL(z, θ̂t). (21)

Finally, the influence of a particular sample z on the test

Symbol Description

Zt Available data at the t-th step
Z1:t Seen data till the t-th step
Ct Coreset at the t-th step
m Maximum coreset size
L(z, θ) Loss of parameter θ on sample z

θ̂t Optimal point at the t-th step
θ̂ϵ,z Optimal point after z is upweighted by ϵ

Hθ̂t
Hessian of θ̂t on coreset Ct

Hθ̂t,z
Hessian of θ̂t on sample z

st Inverse Hessian-vector product at the t-th step
I(z) Influence of z on the test loss
Iϵ,z(z′) Influence of z′ after z is upweighted by ϵ
I(2)(z, z′) Second-order influence of z and z′

∆I(z′) Total interference on the influence of z′

R(·) Our proposed regularizer

Table 5. Notation in the main paper.

Algorithm 1 Learning Procedure for Task T

1: Input: Dataset Z of task T , coreset Ct−1 from the last round
of selection, the number of epochs emax, model parameter θ,
learning rate η.

2: for e = 1 to emax do
3: for each batch Zt ∈ Z do
4: Sample a replay batch BC ∈ Ct−1

5: θ ← θ − η∇θ

∑
z∈Zt∪BC

L(z, θ)
6: if e = emax then
7: Update coreset Ct ∈ Ct−1 ∪ Zt by Sec. 3.6
8: t← t+ 1

loss can be computed by the chain rule:

I(z) =
∑

zi∈Ct−1∪Zt

dL(zi, θ̂ϵ,z)

dϵ

∣∣∣
ϵ=0

=
∑

zi∈Ct−1∪Zt

∇θL(zi, θ̂t)
⊤ dθ̂ϵ,z

dϵ

∣∣∣
ϵ=0

= −
∑

zi∈Ct−1∪Zt

∇θL(zi, θ̂t)
⊤H−1

θ̂t
∇θL(z, θ̂t).

(22)

D. Derivation of the second-order influence
This section explains the derivation of the second-order

effects I(2)(z, z′) in Eq. (8) of Sec. 3.3. The derivation ap-
plies to Eq. (6) as well, since they share a similar form.

In that case, the influence score of a subsequent sample
z′ after the previous z is upweighted by ϵ is as follows:

Iϵ,z(z′) = −
(∑

zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1) + ϵ∇θL(z, θ̂t+1)

)⊤

(
Hθ̂t+1

+ ϵHθ̂t+1,z

)−1

∇θL(z
′, θ̂t+1).

(23)

11

𝑂 𝑂 𝑂

Current coreset gradient Previous coreset gradient

Step 1 Step 2

Figure 5. Illustration of two consecutive selection steps based on
influence functions. The latter selection turns out to be non-ideal,
as evidenced by its decision boundary (between high and low den-
sity regions indicated by color intensity) being rotated under the
interference of the previous step on gradient information.

The inverse matrix therein can be effectively approximated
with a Neumann series as ϵ → 0:

(A+ ϵB)−1 = A−1(I + ϵBA−1)−1

= A−1
∞∑

k=0

(−ϵBA−1)k

= A−1 − ϵA−1BA−1 + o(ϵ).

(24)

Take A = Hθ̂t+1
and B = Hθ̂t+1,z

and substitute into
Eq. (23), then we get:

Iϵ,z(z′) = −
(∑

zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1) + ϵ∇θL(z, θ̂t+1)

)⊤

(
H−1

θ̂t+1
− ϵH−1

θ̂t+1
Hθ̂t+1,z

H−1

θ̂t+1
+ o(ϵ)

)
∇θL(z

′, θ̂t+1),

(25)
which can be further rearranged into:

Iϵ,z(z′) =−
∑

zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1)
⊤H−1

θ̂t+1
∇θL(z

′, θ̂t+1)

+ ϵ
∑

zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1)
⊤H−1

θ̂t+1
Hθ̂t+1,z

H−1

θ̂t+1
∇θL(z

′, θ̂t+1)

− ϵ∇θL(z, θ̂t+1)
⊤H−1

θ̂t+1
∇θL(z

′, θ̂t+1)

+ o(ϵ).

(26)
With notation st+1 = H−1

θ̂t+1

∑
zi∈Ct∪Zt+1

∇θL(zi, θ̂t+1),
its derivative w.r.t. ϵ can be written as:

I(2)(z, z′) = dIϵ,z(z′)
dϵ

∣∣∣
ϵ=0

= −(∇θL(z, θ̂t+1)−Hθ̂t+1,z
st+1)

⊤H−1

θ̂t+1
∇θL(z

′, θ̂t+1).

(27)

E. Intuition behind the deviration
To illustrate the physical meaning behind the equations,

this section presents Figure 5 as an intuitive example of the
second-order effects on sample selection.

It is depicted that after two rounds of selection, the sam-
ples are more concentrated in the upper right corner. On a
closer look, the prior selection alters the overall gradient,
thereby distorting the next selection boundary which is in-
herently orthogonal to the gradient (by the inner product
defined in Sec. 3.3. The final result is thus biased and less
diversified.

The illustrated example, which focuses on the drift of
decision boundary due to the deviation in coreset gradient,
is characterized by our first case of second-order influences
in Eq. (6). Complementarily, the disturbance to Hessian-
related information is tackled in the second case of Eq. (8).

F. Comparison with group influences

Our second-order influences have a different origin from
the group influences proposed by Basu et al. [6]. The group
effects [6,29] in their work arise from the interaction within
a group of reweighted datapoints on the inner objective, so
they are limited to jointly optimized samples. Our second-
order terms, derived from separate analyses of inner and
outer objectives, in contrast, have no such restrictions and
apply to sequentially incoming data.

G. Connection to diversity

This section presents an algebraic view of the connection
between our regularizer and gradient diversity, as a comple-
ment to the geometric perspective in Sec. 3.5.

Let Ro(Ct) and Ri(Ct) denote the regularizers under
the µ = 0 and identical Hessian settings, respectively. They
are expressed as:

Ro(Ct) =
∥∥∥∥ ∑
z∈Ct−1∪Zt

∇θL(z, θ̂t)−
∑
z∈Ct

∇θL(z, θ̂t)

∥∥∥∥,
Ri(Ct) =

∥∥∥∥(1− αµ)
∑

z∈Ct−1∪Zt

∇θL(z, θ̂t)−
∑
z∈Ct

∇θL(z, θ̂t)

∥∥∥∥.
(28)

where α is a coefficient related only to the coreset size. The
comparison of the two regularizers yields:

Ri(Ct)2 −Ro(Ct)2 = (−2αµ+ α2µ2)

∥∥∥∥ ∑
z∈Ct−1∪Zt

∇θL(z, θ̂t)

∥∥∥∥2

︸ ︷︷ ︸
constant

+ 2αµ

(∑
z∈Ct−1∪Zt

∇θL(z, θ̂t)

)⊤(∑
z∈Ct

∇θL(z, θ̂t)

)
︸ ︷︷ ︸

diversity

,

(29)
in which the latter term enforces the coreset gradient to be
less aligned with the main gradient. Thus, the regularizer
Ri(Ct) additionally encourages the inclusion of gradients
in other directions and promotes gradient diversity.

12

Method Class-incremental Task-incremental

Grad matching 39.56±1.52 • 88.98±0.95 •
Grad diversity 43.94±2.03 • 87.82±1.38 •
Vanilla IF 47.09±0.85 • 90.78±1.21
Ours 52.81±1.26 92.43±1.11

Table 6. Comparison with only gradient regularization, in terms of
ACC (%) on Split CIFAR-10 with m = 500. • indicates signifi-
cant improvement with p-value less than 0.05 in paired t-tests.

H. Taylor expansion of the regularizer
To optimize the new equivalent form of our regularizer

in Eq. (15), we perform a first-order Taylor expansion near
the initial weight wo

t,i:

R(wt) ≈ R(wo
t)−

∑
zi∈Ct−1∪Zt

βT (∇θL(zi, θ̂t)− µHθ̂t,zi
st)(wt,i − wo

t,i),

(30)
where β is a vector independent of wt,i:

β =
∑

zi∈Ct−1∪Zt

(1− wo
t,i)(∇θL(zi, θ̂t)− µHθ̂t,zi

st)

R(wo
t)

. (31)

The result is a linear combination of wt,i, and thus can be
minimized with greedy heuristics, i.e., by iteratively setting
the wt,i with the largest coefficient to zero.

I. Additional results
Time cost with Hessian-vector product. The overhead
in evaluating the Hessian-vector product is 0.014±0.001
seconds per step on Split CIFAR-10. This is fairly small
compared to the base cost of 0.368±0.029 seconds per step
for computing first-order influence functions.

Comparison with only gradient regularization. Com-
bination of memory replay with gradient regularization
based approaches can partly bypass the interference issue.
However, it lacks efficiency in buffering the most critical
samples for performance preservation. We verify this point
through the comparisons in Table 6, which empirically justi-
fies the motivation of our proposed influence-based scheme.

Comparison with multi-epoch competitors. Additional
comparisons with the classical multi-epoch methods
iCaRL [41] and BiC [54] are given in Table 7, which con-
firm the edge of our method in 50-epoch learning. Results
are presented with standard deviations.

In combination with ER-ACE. Table 7 further tests
our strategy on the more advanced replay framework ER-
ACE [11] instead of the previously adopted ER [14]. It is

Method Class-incremental Task-incremental

iCaRL [41] 47.87±0.47 • 90.35±1.13
BiC [54] 51.49±1.37 90.99±0.78
Ours 52.81±1.26 92.43±1.11

ER-ACE [11] 56.86±0.64 • 89.59±3.23
ER-ACE + Ours 60.57±0.93 91.84±0.71

Table 7. Comparison with multi-epoch methods and ER variant in
50-epoch learning. Detailed settings follow Table 6.

Method Split CIFAR-100 Multiple Datasets

ACC (%) BWT ACC (%) BWT

iCaRL [41] 60.3 -0.04 - -
EWC [28] 49.5 -0.48 42.7 -0.28
A-GEM [13] 50.7 -0.19 - -
ER [14] 46.9 -0.21 - -
GSS [3] 59.7 -0.04 60.2 -0.07
ER-MIR [1] 60.2 -0.04 56.9 -0.11
Stable SGD [36] 57.4 -0.07 53.4 -0.16
Bilevel [7] 60.1 -0.04 58.1 -0.08
OCS [55] 60.5 -0.04 61.5 -0.03
GCR [49] 60.9 - - -

Vanilla IF 60.0 -0.05 59.7 -0.07
Ours 61.2 -0.04 61.6 -0.05

Table 8. Comparison with another group of baseline methods in
task-incremental evaluations. The results of most methods come
from the summary in OCS [55], while the result of GCR [49] is
provided in its supplementary material.

observed that the proposed method combines well with ER-
ACE and yields a 3.71% gain in class-incremental learning.

Additional comparison. To compare with other replay-
based competitors such as OCS [55], GCR [55] and
Bilevel [7], as well as some regularization-based meth-
ods such as Stable SGD [36] and EWC [28], we reimple-
ment our approach using the codebase of OCS. Its frame-
work differs in mainly two aspects: (1) Methods are eval-
uated on two task-incremental benchmarks, including 20-
split CIFAR-100 and a mixture of five datasets from differ-
ent domains. (2) Each learning stage features much fewer
training epochs, so the resulting ACC will be lower than be-
fore, while the forgetting metric BWT will be much better.

As shown in Tab. 8, our approach continues to de-
liver considerable improvement over the base strategy
Vanilla IF. Like many replay-based methods, we outperform
regularization-based methods by a large margin. Further-
more, our method surpasses the top two competitors OCS
and GCR in terms of ACC on both benchmarks. These re-
sults again demonstrate the effectiveness of our approach.

13

	1 . Introduction
	2 . Related works
	3 . Influence functions for continual learning
	3.1 . Problem formulation
	3.2 . Influence-based selection
	3.3 . Second-order influences in continual selection
	3.4 . Regularizing second-order influences
	3.5 . Connection to gradient matching and diversity
	3.6 . Implementation for neural networks

	4 . Experiments
	4.1 . Experimental setup
	4.2 . Main results
	4.3 . Ablation study and analysis

	5 . Concluding remarks
	A . Notation
	B . Continual learning framework
	C . Derivation of influence functions
	D . Derivation of the second-order influence
	E . Intuition behind the deviration
	F . Comparison with group influences
	G . Connection to diversity
	H . Taylor expansion of the regularizer
	I . Additional results

