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Abstract

The recent emergence of new algorithms for permuting
models into functionally equivalent regions of the solution
space has shed some light on the complexity of error sur-
faces, and some promising properties like mode connectiv-
ity. However, finding the right permutation is challenging,
and current optimization techniques are not differentiable,
which makes it difficult to integrate into a gradient-based
optimization, and often leads to sub-optimal solutions. In
this paper, we propose a Sinkhorn re-basin network with the
ability to obtain the transportation plan that better suits a
given objective. Unlike the current state-of-art, our method
is differentiable and, therefore, easy to adapt to any task
within the deep learning domain. Furthermore, we show the
advantage of our re-basin method by proposing a new cost
function that allows performing incremental learning by ex-
ploiting the linear mode connectivity property. The benefit
of our method is compared against similar approaches from
the literature, under several conditions for both optimal
transport finding and linear mode connectivity. The effec-
tiveness of our continual learning method based on re-basin
is also shown for several common benchmark datasets, pro-
viding experimental results that are competitive with state-
of-art results from the literature.

1. Introduction

Despite the success of deep learning (DL) across many
application domains, the loss surfaces of neural networks
(NNs) are not well understood. Even for shallow neural net-
works, the number of saddle points and local optima can in-
crease exponentially with the number of parameters [4,13].
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Figure 1. (a) The loss landscape for the polynomial approximation
task [28]. θA and θB are solutions found by SGD. LMC suggests
that permuting hidden units of θB would result in πP(θB) which
is functionally equivalent to before permutation, with no barrier on
its linear interpolation with θA. (b) Comparison of the cost value
in the linear path before (naive) and after re-basin. The dashed line
in both figures corresponds with the original (naive) path between
models, and the solid line represents the path and corresponding
loss after the proposed Sinkhorn re-basin.
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The permutation symmetry of neurons in each layer allows
the same function to be represented with many different pa-
rameter values of the same network. Symmetries imposed
by these invariances help us to better understand the struc-
ture of the loss landscape [6, 11, 13].

Previous studies establish that minima found by Stochas-
tic Gradient Descent (SGD) are not only connected in the
network parameter’s space by a path of non-increasing
loss, but also permutation symmetries may allow us to lin-
early connect those points with no detriment to the loss
[9, 11–13, 16, 25]. This phenomenon is often referred to as
linear mode connectivity (LMC) [25]. For instance, Fig. 1a
shows a portion of the loss landscape for the polynomial
approximation task [28] using the method proposed by Li
et al. [17]. θA and θB are two minima found by SGD in
different basins with an energy barrier between the pair.
LMC suggests that if one considers permutation invariance,
we can teleport solutions into a single basin where there is
almost no loss barrier between different solutions [2, 11].
In literature, this mechanism is called re-basin [2]. How-
ever, efficiently searching for permutation symmetries, that
bring all solutions to one basin, is a challenging prob-
lem [11]. Three main approaches for matching units be-
tween two neural networks have been explored. The stud-
ies [2, 27] propose a data-dependent algorithm which asso-
ciates units across two NNs by matching their activations.
Since activation-based matching is data dependent, it helps
to adjust permutations to certain desired kinds of classes or
domains [27]. Instead of associating units by their activa-
tions, one could align the weights of the model itself [2,27],
which is independent of the dataset and therefore the com-
putational cost is much lower. Finally, the third approach
is to iteratively adjust the permutation of weights. Many
studies [2, 29, 30] have proposed to alternate for a number
of iterations between finding an alignment and retraining
to minimize the loss barriers between SGD minimas. Un-
fortunately, the proposed approaches so far are either non-
differentiable [2, 11, 27] or computationally expensive [2],
making the solution difficult to be extended to other appli-
cations, with a different objective. For instance, adapting
those methods for domain adaptation by including in the op-
timization loss the algorithm for weight matching between
two models trained on different domains is not trivial.

In this work, inspired by [22], we relax the permutation
matrix with the Sinkhorn operator [1] and use it to solve the
matching problem in a differentiable fashion. To avoid the
high computational cost for computing gradients in Mena
et al. [22] proposal, we use the implicit differentiation algo-
rithm proposed by [10] which has been shown to be more
cost-effective. Our re-basin formulation allows defining any
differentiable objective as a loss function.

A direct application of re-basin is the merger of diverse
models without significantly degrading their performance

[2, 5, 12, 13, 29]. Applications like federate learning [2],
ensembling [12], or model initialization [5] exploit such a
merger by selecting a model in the line connecting the mod-
els to be combined. Here to show the effectiveness of our
approach, we propose a new continual learning algorithm
that combines models trained on different domains. Our
continual learning algorithm differs from previous state-of-
art approaches [23] because it directly estimates a model at
the intersection of previous and new knowledge by exploit-
ing the LMC property observed in SGD-based solutions.

Our main contribution can be summarized as follows:
(1) Solving the re-basin for optimal transportation using
implicit Sinkhorn differentiation, enabling better differen-
tiable solutions that can be integrated on any loss.
(2) A powerful way to use our re-basin method based on the
Sinkhorn operator for continual learning, by considering it
as a model merging problem and leveraging LMC.
(3) An extensive set of experiments that validate our method
for: (i) finding the optimal permutation to transform a
model to another one equivalent; (ii) linear mode connec-
tivity, to linearly connect two models such that their loss
is almost identical along the entire connecting line on the
weights space; and (iii) continual learning, to learn new do-
mains and tasks while not forgetting the previous ones.

2. Related work
Re-Basin. Recently, in neural network community, re-basin
has been demonstrating useful properties. The main goal of
such re-basin approaches is to obtain functionally equiva-
lent models in a different region of the weight space fol-
lowing some pre-defined objective. Permutation symme-
tries are a well-known example of transformations that al-
lows performing re-basin. In particular, Entezari et al. [11]
shows that the invariances of neural networks using random
permutations on SGD solutions are likely to have almost
zero barriers, and therefore the randomness in terms of per-
mutations does not impact the quality of the final training
result of the model. A simulated annealing-based algorithm
was proposed for doing a re-basin with an elevated compu-
tational cost which makes it impractical to use, especially
for bigger models. Ainsworth et al. [2] proposed three new
re-basin algorithms, that rely on solving linear assignment
problems to find permutation matrices that satisfy their en-
coded objective. The methods shown perform well, espe-
cially in achieving linear mode connectivity. On the down-
side, new objectives are difficult to plug into their frame-
work and their solution uses greedy algorithms which do
not guarantee to find the optimal solution, as shown in our
experiments. Using a similar approach, Benzing et al. [5]
found strong evidence that two random initialization of a
neural network after permutation can lead to a good perfor-
mance, showing that the random initialization is already in
the same loss valley during the initialization. Finally, [3]
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uses the concepts of Wasserstein Barycenter and Gromov-
Wasserstein Barycenter, offering a framework for neural
network model fusion with insights about linear mode con-
nectivity of SGD solutions. Even though the previous works
presented solutions to perform re-basin by solving linear as-
signment problems, their approach fails to generalize well
for other objectives. Using gradient descent-based algo-
rithms seems to be a more suitable approach.
Differentiating through permutations. Permutations are
fundamental for diverse applications, especially those that
involve aligning and sorting data, and are the core of most
current re-basin algorithms. However, the solution space is
constrained to the set of binary permutation matrices, which
makes differentiation very difficult. Mena et al. [22] pro-
poses the Gumbel-Sinkhorn, an extension of the Gumbel-
Softmax method, which is a non-differentiable parametriza-
tion of a permutation that is approximated by the Sinkhorn
operator. Recently, [10] proposes a computationally effi-
cient and robust approach to differentiate the Sinkhorn op-
erator. We based our proposal on these studies providing
solutions to obtain a differentiable re-basin via permutation.
Such an approach simplifies the generalization to other ap-
plications such as continual learning and federated learning
and makes it easy to integrate into neural networks.
Mode connectivity. Mode connectivity is responsible for
demonstrating that the loss minima of different models can
be connected in the weight space with almost zero loss bar-
rier, introducing the concept of the basin of equivalent so-
lutions. In their work, Garipov et al. [13] found that the
local optima of deep learning models are connected by sim-
ple curves. As an application for their proposal, the Fast
Geometric Ensembling method was proposed. Almost at
the same time, [9] proposed a Nudged Elastic Band-based
method to construct continuous paths between minima of
neural networks architectures. Finally, Frankle et al. [12]
studies the sensitivity of different levels of SGD noise on
neural networks. These pioneering works are the basis for
applications of mode connectivity, like [2, 23] and ours.
Continual learning. Continual or incremental learning
(CL) has received much attention in the machine/deep
learning community, allowing us to adapt models incremen-
tally based on new training data, without forgetting previous
knowledge. Catastrophic forgetting [20, 26] occurs when a
model that is trained for a task on a new dataset loses infor-
mation learned to perform well on that task on the original
dataset. To address this issue for CL, [15] proposes Elas-
tic Weight Consolidation (EWC), which smooths the catas-
trophic forgetting by regularizing neural network parame-
ters with respect to the importance of the weights concern-
ing the previous and actual tasks. Chaudhry et al. [8] pro-
poses to use a small number of samples for replay. In their
work, the Experience Replay (ER) helps the CL, even with
tiny episodic memory, to improve performance on classifi-

cation tasks. Closer to our work, [23] proposes an LMC-
based method with replay. Its solution is called Mode Con-
nectivity SGD (MC-SGD), which relies on the assumption
that there is always an existing solution that incrementally
solves all seen tasks, and they are connected with a linear
path consisting of a low value on the loss landscape. Fur-
thermore, MC-SGD utilizes a replay buffer to remember
previous tasks for CL. Its efficiency relies on exploring the
linear path of low loss to constrain learning, thus perform-
ing better than competitors, such as EWC, when less data is
presented. However, such an approach has a high computa-
tional cost since it requires training independent models for
the new task and merging them as a separate step with the
model for previous knowledge. Also, the method has been
shown to be difficult to reproduce or adapt to new bench-
marks [21]. A compelling scenario for continual learning is
the usage of a linear mode connectivity path to keep learn-
ing and adapt the model without forgetting the previous
knowledge. The trade-off between the flatness of the LMC
path and the direction to adapt the loss can be tuned in a
way that brings more stability or plasticity depending on
the target final solution.

3. Re-basin via the Sinkhorn operator
Let fθ(.) be a parameterized mapping where θ represents

a vector of parameters within the solution space Θ ⊂ Rd,
where d is the number of parameters in θ. In the deep
learning context, f can be seen as a neural network archi-
tecture, and fθ is a model with weights θ. Here, we re-
fer to θ as a model for simplicity. Consequently, the cost
(or error) of a model for a given task can be defined as
C(θ) = 1

|T|
∑

(x,y)∈T L(fθ(x), y), where (x, y) ∈ T are
input and expect output in training set T, and L is an appro-
priate loss function.

A function f is invariant to a transformation if and only
if the obtained transformed function is functionally equiv-
alent to the original mapping. Note that such invariances
can also be found between two functions within the fam-
ily of parametric functions {fθ}θ∈Θ. The permutation of
neurons is a well-known example of such transformation
applied to neural networks that allow obtaining function-
ally equivalent models, i.e., fθA(x) = fθB (x),∀x. These
invariant models are obtained via the permutation transfor-
mation or re-basin function, here defined as π : Θ → Θ,
which shifts a model to a symmetric region of the loss land-
scape, C(θ) = C(πP(θ)). In this work P = (P1, ..., Ph) is
a transportation plan with Pi contained in the transportation
polytope,

Π = {P ∈ Rm×n+ |P1m = 1n, P
T1n = 1m}, (1)

where 1d = (1, ..., 1)d. Without loss of generality, let
fθ(x) = (`h ◦ ... ◦ `1)(x) be a neural network defined as
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the composition of h layers such that `i(z) = σ(Wiz + bi).
Here, the weightsWi and biases bi are the parameters of the
network, θ = {Wi, bi}hi=1, and σ is a non-linear activation
function. Then, the re-based model πP(θ) can be written as
the functionally equivalent mapping:

`′i(z) = σ(PiWiP
T
i−1z + Pibi), (2)

where Pi ∈ Π is a valid permutation matrix, and Ph =
PT0 = I is the identity matrix.

With regards to permutation invariance, Entezari et al.
[11] conjectured that re-based SGD solutions are likely
to have a low barrier within their linear interpolation
B(θA, θB) ≈ 0, where B(.) is defined as:

B(θA, θB) = sup
λ

[[C((1− λ)θA + λθB)]−

[(1− λ)C(θA) + λC(θB)]], (3)

and λ ∈ (0, 1). This phenomenon is known as LMC [12],
and it is a particular case of the widely studied mode con-
nectivity [9, 13]. Notably, Ainsworth et al. [2] proposed
three approaches that ratify the conjecture in [11] by find-
ing a re-based model πP(θB) with LMC that is near to a
target model θA. Fig. 1 depicts the goal of such re-basin
approaches. In this figure, we can observe two solutions
for the task, θA and θB , found through SGD. As shown in
Fig. 1b, the naive path between θA and θB has higher values
of the barrier within the line (1−λ)θA+λθB , λ ∈ (0, 1). On
the other hand, and consistently with the results in [2, 11],
our re-based model πP(θB) achieves LMC by successfully
finding a transportation plan P that shift model θB to the
same basin of model θA.

Although the seminal work by Ainsworth et al. [2]
proposed a highly efficient approach for finding a per-
mutation that minimizes the distances between models,
arg minP ||θA − πP(θB)||2, their non-differentiable ap-
proach provides solutions that are difficult to be extended
to other applications with a different objective. Specifi-
cally, their algorithms use a formulation based on the linear
assignment problem (LAP) to find suitable permutations,
meaning any new objective needs to be cast as a LAP which
is a hard task in itself.

In this work, a differentiable approach is proposed to per-
form re-basin that allows defining any differentiable objec-
tive as a loss function. Here, we relax the rigid constraint
of having a binary permutation matrix P , and consequently
add an entropy regularizer h(P ) = −

∑
P (logP ) to the

original LAP as proposed by [22]. The final equation is
then defined as:

Sτ (X) = arg max
P∈Π

〈P,X〉F + τh(P ), (4)

being τ a factor that weights the strengths of the entropy
regularization term.

The formulation in Eq. (4) is known as the Sinkhorn op-
erator and can be efficiently approximated by:

S(0)
τ (X) = exp

(
X

τ

)
,

S(t+1)
τ (X) = Tc(Tr(S(t)

τ (X))). (5)

where X ∈ Rm×n is a soft version of the permutation ma-
trix, Tc(X) = X�(1m1

T
mX) and Tr(X) = X�(X1n1

T
n )

are respectively the re-normalization of columns and rows
of X , and � is the element-wise division. In their work,
Mena et al. [22] proved that Eq. (5) converges to Eq. (4)
when t→∞. However, in practice, only a finite number of
iterations are needed to produce a suitable approximation.

Although the Sinkhorn operator is reasonably easy to
implement within the neural network layers, a significant
drawback arises when considering the efficiency of its dif-
ferentiation. We use the implicit differentiation algorithm
proposed by Eisenberger et al. [10] to mitigate such an in-
crease in the computational cost. Their method significantly
increases the efficiency, and also stability of the training
process. The marginals of the generic formulation in [10]
are defined as a = 1m/m and b = 1n/n to match the
re-basin task.

Finally, our proposed Sinkhorn re-basin re-writes the
original re-based mapping in Eq. (2) as:

`′i(z) = σ(Sτ (Pi)WiSτ (PTi−1)z + Sτ (Pi)bi). (6)

where Pi ∈ Rm×n is a differentiable cost matrix. In all our
experiments, Pi are initialized to the identity matrix. Note
that in contrast with non-differentiable approaches [2,5,10],
our method can update all permutation matrices at the same
time during optimization.

To show the ability of our proposed Sinkhorn re-basin to
minimize any differentiable objective, we provide three ex-
amples of cost functions that are minimized without chang-
ing the formulation in Eq. (6). These cost functions are
used in the SGD framework to compute the gradient of the
weights in our Sinkhorn re-basin network and finally update
the permutation matrices to minimize the objective. First,
for a data-free objective like Weights Matching [2], we di-
rectly minimize the squared L2 distance defined as:

CL2(P; θA, θB) = ||θA − πP(θB)||2. (7)

Given the ability of our method to use differentiable ob-
jectives, we introduce two other data-driven cost functions.
Inspired by the Straight-Through Estimator in [2], we pro-
pose a differentiable midpoint cost function to minimize the
barrier,

CMid(P; θA, θB) = C
(
θA + πP(θB)

2

)
. (8)
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Figure 2. Graphical representation of the intersection of low cur-
vature regions of the loss landscape for task Ti (red) and Ti+1

(blue). The goal of our method is to find a re-basin πPi(θi) that
transverses the multitask region using LMC. The final model θi+1

(Eq. (12)) is found in the surroundings of the line by adding a
learnable residual δi.

Since minimizing the midpoint can lead to a multimodal
cost path, i.e., lower cost value for λ = 0.5, and higher cost
values elsewhere, we propose a cost function that minimizes
the cost at random points within the line:

CRnd(P; θA, θB) = C ((1− λ)θA + λπP(θB)) , (9)

with λ uniformly sampled at each iteration, λ ∼ U(0, 1).

4. Re-basin incremental learning
A critical application of re-basin approaches is the ability

to merge models without a significant performance reduc-
tion. Such a merging is usually done by selecting a model
in their connecting line. Applications like federate learn-
ing [2], ensembling [12], or model initialization [5] have
been explored recently for merging models trained on the
same task. Here we push the merging based on re-basin
further by proposing a new incremental learning approach
that fuses models trained on different domains or classes.
Our proposed approach relies on a stability-plasticity hyper-
parameter that allows us choosing the balance between for-
getting and incorporating the new knowledge.

Let θ0 be an initial model trained over dataset T0. Let
also T = {T1,T2, ...} be a stream of data where Ti =
{(xij , yij)|xij ∈ Xi, yij ∈ Yi}, 1 ≤ i ≤ Ni, is a super-
vised dataset with input Xi, output Yi, and Ni data points.
Note that the sets Ti are also known in continual learning
literature as tasks but these are not limited to task incremen-
tal learning scenarios, but also include domain and class in-
cremental learning. An incremental or continual learning
process seeks to incorporate the new knowledge Ti+1 into
the model θi without forgetting how to perform correctly
in previous datasets T0, ...,Ti. To this end, the continual
learning community has proposed approaches that exploit
the fact that multitask low curvature regions usually appear
at the intersection of low curvature regions for individual

tasks [15, 23] (see Fig. 2 for a visual reference). In particu-
lar, Mirzadeh et al. [23] approach uses a two steps training
where the model θi+1 is first trained over dataset Ti+1 and
then a mode connectivity-based merging finds the model
with low loss value on both new and previous knowledge.

In our approach, different from [23], we directly esti-
mate a model in the intersection of previous and new knowl-
edge by exploiting our differentiable method to obtain the
LMC observed in SGD-based solutions. Similarly to the ap-
proaches introduced in the last section, our method looks for
a re-basin of the given model that minimizes a given objec-
tive. For continual learning purposes, a new cost function
is introduced such that, similarly to Eq. (8), the cost of the
model in the middle of the line (1 − λ)θi + λπPi

(θi), λ ∈
(0, 1), is minimized for dataset Ti+1, (see Fig. 2). In such a
continual learning scenario, the middle point is the furthest
model in the line from high stability points θi and πPi(θi).
Constraining the solution space to the models within the line
yields a solution that performs well on the previous task, but
does not allow optimal performance on the new task, thus
affecting the training plasticity. Similarly to Kirkpatrick et
al. [15], we find well-behaved models for Ti+1 in the neigh-
borhood of our optimization target. This is done by adding
a residual vector δi with l2 norm close to zero with a regu-
larization term. Finally, the proposed cost is calculated as:

CCL(δi,Pi; θi) = C
(
θi + πPi(θi)

2
+ δi

)
+β||δi||2. (10)

During the learning phase, the underlying optimization
problem finds:

δ∗i ,P∗i = arg min
δi,Pi

CCL(δi,Pi; θi), (11)

where δ∗i and P∗i are found at the same time. Note that
the cost in Eq. (10) can be computed over any knowledge
dataset. In this work, a replay method is used by taking the
average of Eq. (10) for current and previous datasets.

A fused model with a balance between previous and new
knowledge should be obtained after minimizing the cost in
Eq. (10). Here, the incremented model at episode i + 1 is
defined as:

θi+1 = (1− α)θi + απPi
(θi) + δi, (12)

where α is a hyper-parameter controlling the balance be-
tween plasticity and stability. Note that values of α near
0.5 favors higher plasticity, while values around 0.0 and 1.0
give more importance to previous knowledge.

5. Experimental results and analysis
The experimental procedure for comparing re-basin ap-

proaches follows the same one used by Ainsworth et al. [2],
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P0 P̂0 from WM P̂0 (Ours) P1 P̂1 from WM P̂1 (Ours)

Figure 3. Estimated permutation matrices via Weight Matching (WM) [2] and the proposed Sinkhorn re-basin. Pi refers to the expected
10 × 10 permutation matrix with ones represented in black and zeros in white. The estimated permutations matrix P̂i shows matching
permutations as blue squares and miss-matchings in red and yellow. The permutation matrices Pi ∈ R10×10 correspond with transportation
plans of layer i, with each layer containing 10 neurons. These matrices correspond with actual permutation matrices from the experiment
with random initialization and 2 hidden layers.

while the continual learning experiments follow the stan-
dard experimental procedure in incremental learning litera-
ture [23]. For all experiments, the mean and standard de-
viation of results are reported, and were obtained over in-
dependent runs with different seeds. We used the original
implementation provided by the authors in all cases. We
study the effect of re-basin for both classification and re-
gression tasks. Mnist and Cifar10 datasets were used for
image classification. The polynomial approximation prob-
lems from [28] were used for regression. As backbone ar-
chitectures, we explored feedforward neural networks with
2 to 8 layers. In all our experiments, we use t = 20
and τ = 1.0 as proposed in [22] for the Sinkhorn opera-
tor. Furthermore, the corresponding performance measures
and hyper-parameters are summarized in each subsection.
Additional details on the experimental methodology, e.g.,
dataset, protocol, and performance measures, are provided
in the supplementary material.

5.1. Finding the optimal transport

In this experiment, we measure the ability of both
Weights Matching (WM) [2] and our Sinkhorn re-basin
to find the optimal permutation. Similar to our CL2, the
Weights Matching method minimizes the norm between the
re-based model and a target model by solving a LAP. The
cost function used for our re-basin is the squared L2 dis-
tance between models (Eq. (7)). Note that the objectives
are not data-driven, and therefore we only measure the abil-
ity of each algorithm to reach the global minima without
any context. Each method received a model and a randomly
permuted version of it, with the goal of finding the permu-
tation matrices that originated the target re-basin.

For our purposes, 9 datasets are created, each one
containing 50 models and a random re-basin, Ti =
{(θij , πP(θij)) | Pk ∼ U(Π),∀Pk ∈ P}, where 1 ≤
j ≤ 50 is the index of the model within dataset Ti and
1 ≤ k ≤ h is the number of hidden layers in the neural
network. Note that we select random permutation matrices

Method Init 2 hidden ↓ 4 hidden ↓ 8 hidden ↓
WM [2] Rnd 6.05±9.17 4.12±6.58 0.50±1.55
CL2 (Ours) 0.00±0.00 0.00±0.00 0.00±0.00

WM [2] Pol3 0.57±2.84 0.07±0.46 0.01±0.10
CL2 (Ours) 0.00±0.00 0.00±0.00 0.00±0.00

WM [2] Pol1 0.27±0.94 0.00±0.00 0.00±0.00
CL2 (Ours) 0.00±0.00 0.00±0.00 0.00±0.00

Table 1. L1 distance between the estimated and expected re-
basing with different network initialization and depth. Distances
are scaled ×103.

following a uniform distribution, U(Π). Neural networks
with two, four, and eight hidden layers were used as base
architecture. Additionally, we tested three types of initial-
izations – random initialization with weights following a
normal distributionN (0, 1), hereafter called Rnd, and mod-
els trained in a third and first-degree polynomial approxima-
tion problem, named Pol3 and Pol1 respectively. The 9 data
set configurations lie within the combination {Rnd, Pol3,
Pol1}×{2 hidden, 4 hidden, 8 hidden}.

The Sinkhorn re-basin model was updated using the
Adam optimizer with an initial learning rate of 0.1, and
for a maximum of 5 iterations, using early stopping in case
of convergence. Tab. 1 summarizes the L1 norm between
weights after re-basin, |πP̂(θ) − πP(θ)|, where P̂ and P
are the estimated and optimal transportation plan, respec-
tively. As expected, our proposal always finds the optimal
permutation thanks to its ability to look at all permutation
matrices simultaneously. In contrast, the WM results fall
short for some scenarios. It is worth mentioning that these
results match the ones obtained by Ainsworth et al. in [2].
In general, the WM algorithm seems to be affected by ran-
dom initialization, while increasing the network’s capacity
improves its ability to reach the global minimum. We hy-
pothesize that this is an effect of using a greedy algorithm

6



First degree polynomial Third degree polynomial Mnist Cifar10
Method AUC ↓ Barrier ↓ AUC ↓ Barrier ↓ AUC ↓ Barrier ↓ AUC ↓ Barrier ↓
Naive 0.31±0.38 0.62±0.71 0.25±0.15 0.58±0.33 0.34±0.08 1.07±0.21 0.73±0.12 1.23±0.18
WM [2] 0.16±0.15 0.32±0.28 0.19±0.26 0.41±0.57 0.01±0.00 0.03±0.01 0.13±0.02 0.27±0.04
CL2 (Ours) 0.05±0.06 0.10±0.12 0.05±0.06 0.12±0.12 0.01±0.00 0.02±0.00 0.09±0.02 0.19±0.03

STE [2] 0.11±0.10 0.23±0.22 0.09±0.07 0.24±0.23 0.01±0.00 0.01±0.01 0.08±0.01 0.15±0.02
CMid (Ours) 0.03±0.02 0.07±0.05 0.05±0.04 0.17±0.17 0.00±0.00 0.00±0.00 0.02±0.01 0.05±0.01
CRnd (Ours) 0.01±0.01 0.03±0.02 0.01±0.01 0.03±0.03 0.00±0.00 0.01±0.00 0.02±0.01 0.06±0.01

Table 2. AUC and loss Barrier results of linear mode connectivity for regression datasets (first and third-degree polynomial approximation),
and classification datasets (Mnist and Cifar10). The WM method and our Sinkhorn with CL2 belong to the data-free category, while
Straight-Trough Estimator STE, Sinkhorn with CMid and CRnd are data-driven.

that optimizes the objective for different layers at each it-
eration. A deeper inspection of the estimated permutation
matrices show that WM reaches local minima close to the
expected re-basin, with only a few misplaced permutations
(see Fig. 3).

5.2. Linear mode connectivity

To verify the conjecture of Entezari et al. [11], we mea-
sure the ability of our method to find linear connectivity be-
tween SGD modes after re-basin one of them. For this ex-
periment, four datasets are employed – first and third-degree
polynomial regression tasks [28], along with the classical
classification benchmarks, Mnist and Cifar10. Our exper-
iment follows a similar setup to the one described by [2],
i.e., two networks were trained over the same dataset, and
we performed the re-basin of one of them, hoping to reach
the same basin as the unchanged model. The experiment
was repeated 50 times for every dataset, and each method
saw the same two networks. To measure the ability of the
different approaches to find LMC, we use the Barrier [12]
(Eq. (3)) and Area Under the Curve (AUC) over the esti-
mated cost curve within the linear path. With both mea-
sures, the best performance is achieved when a method pro-
vides a low value, with a lower bound of 0.

We compare our approach with different objectives –
L2 (Eq. (7)), Middle point (Eq. (8)), and Random lambda
(Eq. (9)) with the recently introduced Weights Matching
(WM) and Straight-Through Estimator (STE) [2]. Tab. 2
reports the performance of the methods for each dataset.
All experiments used a neural network with two hidden lay-
ers. As seen in the table, our methods outperform state-of-
art methods with (first three rows) and without considering
the data (last three rows) during re-basin. Specifically, our
CL2 method exceeded WM for both AUC and Barrier mea-
sures for all datasets, except Mnist where no significant dif-
ferences were observed. In the data-driven category, our
other proposals outperform the state-of-art STE approach
for AUC and Barrier. In particular, our CRnd loss showed
the best results, comparable to our CMid for more challeng-

ing scenarios like Cifar10. As a general point, all methods
provide a significant improvement over the naive path.

We show the obtained loss and accuracy curves over
the linear path before doing a re-basin (naive) and after
applying WM, STE, and Sinkhorn with CL2, CMid, and
CRnd methods in Fig. 4. An interesting observation is that
CMid tends to find multi-modal cost curves with a valley at
λ = 0.5, similarly to STE.

5.3. Incremental learning application

Although several authors have proposed methods to
combine models trained over subsets of some domain, e.g.,
federate learning [2], ensembling [12], and model initializa-
tions [5], this paper explores the idea of obtaining a model
that can learn a new knowledge without forgetting the previ-
ous one. To this end, this experiment seeks to compare our
method with other well-known and state-of-art continual
learning approaches from the literature. Since our proposal
can fit the regularization techniques that use replay, we
compare it with different algorithms within this category.
In particular, we compared with 3 regularization-based ap-
proaches – elastic weight consolidation (EWC) [15], learn-
ing without forgetting (LwF) [18], and average gradient
episodic memory (A-GEM) [7]. The average accuracy was
calculated to measure the overall performance of model θi
in the first E episodes Tj . In addition, the forgetting mea-
sure averages the forgetting in terms of accuracy for each
domain or task in episode E.

Given the variety of libraries and implementations, we
limited our comparison to reproducible models that could
be used in the Avalanche environment [19]. All measures,
benchmarks, networks, and algorithms, including our own,
were implemented using this framework. While we at-
tempted to incorporate other recent approaches like MC-
SGD [23] and Stable SGD [24] into Avalanche, a high dis-
crepancy was observed w.r.t. their reported results and,
therefore, we restrain ourselves from including them in our
study. Difficulties in adapting MC-SGD to new conditions
has also been observed by other authors [21].
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Figure 4. Example of linear mode connectivity achieved by Weight Matching (WM) [2], Straight-Through Estimator (STE) [2], and our
Sinkhorn re-basin with CL2, CMid, and CRnd costs for a neural network with two hidden layers. Accuracy and loss are shown for the Mnist
and Cifar10 classification, while only the L2 loss is shown for the regression tasks. For Mnist, we include an amplified version of the loss
and accuracy for better comparison.

Rotated Mnist Split Cifar100
Method Accuracy ↑ Forgetting ↓ Accuracy ↑ Forgetting ↓
Finetune 46.28±1.01 0.52±0.01 35.41±0.95 0.49±0.01
EWC [15] 59.92±1.71 0.34±0.02 50.50±1.33 0.24±0.02
LwF [18] 61.86±3.66 0.29±0.06 41.43±4.06 0.51±0.01
A-GEM [7] 68.47±0.90 0.28±0.01 44.42±1.46 0.36±0.01
Rebasin /w replay (Ours) 78.14±0.50 0.12±0.01 51.34±0.74 0.07±0.02

Joint training 90.84±4.30 0.00 60.48±0.54 0.00

Table 3. Performance of our proposed and state-of-art methods on the continual learning benchmark datasets over 20 episodes.

We focused our experiments on low episodic mem-
ory scenarios, using only five examples per class for both
benchmarks in methods that rely on memory replay (A-
GEM and our method). Similar to [23], we used a neural
network with two hidden layers and 256 neurons for the
Rotated Mnist benchmark. For the Split Cifar100 bench-
mark, a multi-head resnet18 was used following the settings
in [23, 24]. Since our current Sinkhorn re-basin network
implementation does not support residual connections, we
only apply the re-basin to linear layers.

Tab. 3 shows the accuracy and forgetting performance of
methods on the benchmarks Rotated Mnist and Split Cifar-
100 datasets using 20 episodes. Our method outperforms
the others, and still achieves better or comparable perfor-
mance than those reported in [24]. The reader should pay

special attention to the low values of forgetting achieved us-
ing our re-basin approach. This is a consequence of setting
the value of α = 0.8 when fusing the models (Eq. (12)). A-
GEM is ranked second in accuracy and forgetting for Ro-
tated Mnist. LwF showed a similar forgetting to A-GEM
in this benchmark. On Split Cifar100, EWC ranked second
for both measures. Despite having similar accuracy to our
approach, the high forgetting value suggests stability issues.

6. Conclusion

In this work, a new method based on the implicit
Sinkhorn operator is proposed that estimates a permutation
matrix which makes two neural network models equivalent.
With respect to previous work, such as weight matching,
our method is: (i) more flexible, because it is differentiable
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and can be applied with any loss, (ii) estimates the permuta-
tions for all layers at the same time, avoiding getting stuck
in local minima, (iii) more accurate, as shown in our ex-
perimental evaluation on well-known benchmarks. First,
our experiments yield perfect results when our approach
was evaluated to produce the optimal permutation between
a model and its artificially permuted transformation. We
have also used our approach for linear mode connectivity,
showing better connectivity (lower loss barrier) than weight
matching. Finally, we showed that our efficient and dif-
ferentiable approach for re-basin can easily be applied to
the challenging task of continual learning, producing re-
sults that are comparable to, or better than state-of-art ap-
proaches. As a limitation to our work, we observed from
our experiments and analysis of the literature that linear
assignment problems solved with greedy Hungarian-based
approaches are generally more efficient in terms of memory
than the Sinkhorn operator.
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A. Supplementary Material

In this appendix, we provide the details for reproduc-
ing our work. The source code to reproduce our results
is anonymously provided. Our implementation focuses on
simplicity, allowing us to pass a PyTorch module1 as an ar-
gument to our re-basin network and performing re-basin us-
ing a standard training cycle. Any cost function can be de-
fined to guide the re-basin. The experimental setup for ev-
ery experiment in the manuscript is detailed in the following
sections.

1Currently, our re-basin network only handles NNs and CNNs without
skip connections. Batch normalization is supported for re-basin but not for
LMC.

B. Finding optimal transport
We used a feedforward neural network with 2, 4, and 8

hidden layers containing 10 neurons each to find the opti-
mal transport. The hyperbolic tangent was used as an acti-
vation function. The number of inputs and outputs is set to
1 following the polynomial approximation dataset require-
ments. The re-basin optimization used Adam [14] with an
initial learning rate of 0.1. The method used the proposed
data-free squared L2 distance cost function (Eq. (7)). The
maximum number of iterations was set to 100. However,
in practice, all methods converged to 0 loss in the validation
set in less than 50 iterations. An early stopping strategy was
implemented to avoid running after the convergence point
(see Fig. 5). The performance measurement employed dur-
ing evaluation (see Table 1 of the manuscript) was the L1
norm between the re-based model θA and the target model
θB :

L1(P̂; θA, θB) = |πP̂(θA)− θB |, (13)

with θA, θB ∈ Rd, being d the number of parameters in the
network and P̂ the set of estimated permutation matrices.

To assess the initialization impact, we propose three ini-
tial settings for re-basin. The first one uses random ini-
tializations where the network’s parameters were initialized
following a normal distributionN (0, 1). The other two set-
tings involved training neural networks to perform regres-
sion tasks. The selected tasks were the first and third-degree
polynomial approximation datasets [28], TPol1 = {(x, y) |
y = x + 3, x ∈ (−4,−2)} and TPol3 = {(x, y) | y =
(x − 3)3, x ∈ (2, 4)}. For training the polynomial approx-
imation networks, a small gaussian noise with distribution
N (0, 0.05) was added to the regression target [28].

Similar to others in the literature, our re-basin method
is not limited to regression tasks or shallow feedforward
neural networks. Although we selected such a scenario for
comparison purposes, we want to re-enforce our approach’s
ability to perform well in these scenarios for classification
tasks, deepest feedforward networks (NNs), and convolu-
tional neural networks (CNNs). In particular, we use differ-
ent standards of VGG without batch normalization. Fig. 5
shows the loss curves of our Sinkhorn re-basin training us-
ing the cost in Eq. (7). The initial models were obtained by
training both NNs and CNNs over the Mnist dataset. The
optimal transport was found in all cases in less than 20 sec-
onds using an Nvidia GeForce RTX 3070 GPU. The source
code for reproducing the experiment is provided anony-
mously here. In particular, we provide examples of the exe-
cution command for both NNs and CNNs.

C. Linear mode connectivity
To assess the capacity of achieving linear mode connec-

tivity, we employed two classification datasets –Mnist and

10

https://worksheets.codalab.org/worksheets/0x641008eb0b1b4768b865b58eddbe419c
https://worksheets.codalab.org/bundles/0x5e77ad56e6c24487bbf832fac4d7ba9c
https://worksheets.codalab.org/bundles/0x530c0b96887b44a99d90e82706d6400f
https://worksheets.codalab.org/bundles/0xcf5f643bd9424cd29639e76b9dd4b328


0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

0.000

0.005

0.010

0.015

0.020

0.025

Epochs

C L
2

Epochs

C L
2

hidden 2

hidden 4
hidden 8
hidden 16

VGG11

VGG13
VGG16
VGG19

Figure 5. Validation loss during Sinkhorn re-basin training for feedforward neural networks with a different number of hidden layers (left
panel) and VGG with increasing depth (right panel).

Cifar10–, and the previously described first and third-degree
polynomial approximation datasets [28]. As base architec-
ture, we used a feedforward neural network with two hidden
layers. In classification cases, the activation function was
ReLU with 784 = 28 × 28 neurons within the input layer
for Mnist and 3072 = 32 × 32 × 3 for Cifar10. For both
benchmarks, the output layer has 10 neurons corresponding
with the number of classes. The cross-entropy loss function
was used for training these networks. As for the regression
tasks, only 1 input and 1 output were required. Similarly to
the previous experiment, hyperbolic tangent activation was
used. The L2 loss function was used for training the regres-
sion networks.

The Sinkhorn re-basin networks used the Adam opti-
mizer with a maximum of 1000 iterations. In practice, none
of the executions ran the maximum number of iterations,
thanks to the early stopping. In the classification settings,
all experiments converged in less than 50 iterations. The
best initial learning rate for every configuration is given in
Tab. 4. The mini-batch sizes were 100 for regression and
1000 for classification.

Dataset/Method CL2 CMid CRnd
First degree polynomial 0.10 0.10 0.01
Third degree polynomial 0.10 0.10 0.01
Mnist 0.01 0.10 0.10
Cifar10 0.01 0.10 0.10

Table 4. Initial learning rate for every dataset and method in the
linear mode connectivity experiment.

As performance measurement, we use the Barrier [12]:

B(θA, θB) = sup
λ

[[C((1− λ)θA + λθB)]−

[(1− λ)C(θA) + λC(θB)]], (14)

with λ ∈ (0, 1), and Area Under the Curve (AUC) over the
estimated cost curve within the linear path:

AUC(θA, θB) =

∫ 1

λ=0

[C((1− λ)θA + λθB)]−

[(1− λ)C(θA) + λC(θB)]dλ. (15)

Our method is not limited to NNs for linear mode con-
nectivity as in the previous experiment. Examples of LMC
using two VGG11 trained over Cifar10 dataset are shown
in Fig. 6. The naive path is presented with dashed gray
lines while the cost and accuracy after re-basin with our
Sinkhorn network with L2 loss is shown in solid red lines,
and Weights Matching (WM) [2] in dashed blue. An exam-
ple with VGG19 is also presented in the figure to exemplify
some complex cases where LMC is not achieved. Although
both methods struggle, our data-free approach can generally
find better re-basins. The mean Barrier and AUC of VGGs
with different depths are given in Fig. 7 for our proposal
with L2 cost and Weight Matching (WM) [2]. The code for
reproducing this experiment is also provided here. An ex-
ample of the execution line using Mnist and NN described
in the manuscript is given in this link.

D. Incremental learning algorithm
Incremental learning scenarios followed the standard

procedure in the literature, i.e., a benchmark is divided into
several episodes, and the new knowledge is incrementally
added to the model at episode i, θi. In our experiments, we
employed 20 episodes. Regarding the benchmarks, we used
the classical Rotated Mnist, which consists of rotated ver-
sions of the Mnist dataset starting with 0 degrees until 180.
At each episode, a clockwise rotation of 9.47 degrees was
applied to every image in the previous episode. Note that,
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independently of the rotation applied, the classes remain
the same. To address this challenge, we used a feedfor-
ward neural network with 1 hidden layer and 256 neurons
within the layer. ReLu activation was used for the hidden
layer. The input layer size was 784 = 28 × 28. The num-

ber of neurons in the last layer was 10, corresponding with
the number of classes. The algorithm for performing the
Re-basin incremental learning is outlined in Algorithm 1.
Note that the algorithm is defined using Stochastic Gradient
Descent (SGD) for simplicity, but in practice, there is no
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Algorithm 1 Re-basin incremental learning

Require: A set of episodes T = {T1, ...,Tn}, and a model fθ0 trained on T0

Ensure: A model θn
for e = 1 to n do
P0 ← {Pj |Pj = I}, 1 ≤ j ≤ h . Initialize permutation matrices to identity. h is the number of hidden layers.
δ0 ← U(0, 10−6)d . Initialize values of vector δ0 following U(0, 10−6). d is the number of parameters.
for i = 0 to it do

(x, y)← U(Te) . Sample a mini-batch (x, y) from Te.

θi ← θe−1 + πPi(θe−1)

2
+ δi . Compute the model in the middle of the re-basin line, plus the residual.

C(δi,Pi; θi) = L(y, f(x; θi)) + β||δi||2 . L depends on the task, i.e., cross entropy for classification

Pi+1 ← Pi − η ∂C(δ
i,Pi; θi)
∂Pi

. Backpropagation and gradient descent for permutation matrices P

δi+1 ← δi − γ ∂C(δ
i,Pi; θi)
∂δi

. Backpropagation and gradient descent for residual δ
end for
θe ← (1− α)θe−1 + αθe−1 + δit . Fuse models for task Te−1 and Te

end for

constraint in which an optimizer can be used. The source
code for the re-basin incremental learning is provided here.
In our experiments, we used Adam with an initial learning
rate η = 0.001 for the first task and η = 0.1 for the con-
tinual learning. As for the residual model, we used SGD
with learning rate γ = 0.05 and weight decay β = 0.1. A
total of 5 epochs were used to incorporate the new knowl-
edge at each episode using a mini-batch size of 500. As the
manuscript relates, the fusion hyper-parameter α = 0.8 for
all our experiments.

As for the second benchmark, we used the Split Ci-
far100. For such a dataset, we partitioned the Cifar100
dataset into 20 smaller datasets with 5 classes each. Ev-
ery episode had labeled images corresponding to the 5
categories at hand. The architecture was the multi-head
ResNet18 from [23]. Similarly to the previous benchmark,
we used Adam for the re-basin and SGD for learning the
residual, this time using a mini-batch size of 10 and 20 train-
ing epochs for the initial model. The rest of the parameters
remained the same as in the previous benchmark, except
for the residual vector training, which needed learning rate
γ = 0.5 and weight decay β = 10−4.

The accuracy at episode e = 20 is computed as the aver-
age accuracy of model θe over every test dataset from cur-
rent and previous tasks. On the other hand, forgetting mea-
surement seeks to measure the ability to retain knowledge
by computing the highest difference in accuracy between
the current model and the previous ones for every task.
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