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Abstract

Recently, flat minima are proven to be effective for im-
proving generalization and sharpness-aware minimization
(SAM) achieves state-of-the-art performance. Yet the cur-
rent definition of flatness discussed in SAM and its follow-
ups are limited to the zeroth-order flatness (i.e., the worst-
case loss within a perturbation radius). We show that the
zeroth-order flatness can be insufficient to discriminate min-
ima with low generalization error from those with high gen-
eralization error both when there is a single minimum or
multiple minima within the given perturbation radius. Thus
we present first-order flatness, a stronger measure of flat-
ness focusing on the maximal gradient norm within a per-
turbation radius which bounds both the maximal eigenvalue
of Hessian at local minima and the regularization function
of SAM. We also present a novel training procedure named
Gradient norm Aware Minimization (GAM) to seek minima
with uniformly small curvature across all directions. Ex-
perimental results show that GAM improves the generaliza-
tion of models trained with current optimizers such as SGD
and AdamW on various datasets and networks. Further-
more, we show that GAM can help SAM find flatter minima
and achieve better generalization. The code is available at
https://github.com/xxgege/GAM .

1. Introduction
Current neural networks have achieved promising results

in a wide range of fields [39, 57, 59, 73, 79–81, 84], yet they
are typically heavily over-parameterized [2, 4]. Such heavy
overparameterization leads to severe overfitting and poor
generalization to unseen data when the model is learned
simply with common loss functions (e.g., cross-entropy)
[29]. Thus effective training algorithms are required to limit
the negative effects of overfitting training data and find gen-

†Equal contribution, *Corresponding author

Z
O

F

Z
O

F

F
O

F

F
O

F

ρ ρ

Training Testing

(a)

Z
O

F

Z
O

F

F
O

F

F
O

F

ρ ρ

Training Testing

(b)

Figure 1. The comparison of the zeroth-order flatness (ZOF) and
first-order flatness (FOF). Given a perturbation radius ρ, ZOF can
fail to indicate generalization error both when there are multi-
ple minima (1a) and a single minimum (1b) in the radius while
FOF remains discriminative. The height of blue rectangles in
curly brackets is the value of ZOF and the height of gray trian-
gles (which indicates the slope) is the value of FOF. In Figure 1a,
when ρ is large and enough to cover multiple minima, ZOF can
not measure the fluctuation frequency while FOF prefers the flat-
ter valley which has a smaller gradient norm. When ρ is small
and covers only a single minimum, the maximum loss in ρ can be
misleading as it can be misaligned with the uptrend of loss. As
shown in Figure 1b, ZOF prefers the valley on the right, which has
a larger generalization error (the orange dotted line), while FOF
prefers the left one.

eralizable solutions.
Many studies try to improve model generalization by

modifying the training procedure, such as batch normal-
ization [28], dropout [25], and data augmentation [14, 74,
78]. Especially, some works discuss the connection be-
tween the geometry of the loss landscape and general-
ization [20, 23, 29]. A branch of effective approaches,
sharpness-Aware Minimization (SAM) [20] and its variants
[17,18,37,47,52,83], minimizes the worst-case loss within
a perturbation radius, which we call zeroth-order flatness. It
is proven that optimizing the zeroth-order flatness leads to
lower generalization error and achieves state-of-the-art per-
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formance on various image classification tasks [20, 42, 86].
Optimizing the worst case, however, relies on a reason-

able choice of perturbation radius ρ. As a prefixed hyper-
parameter in SAM or a hyperparameter under parameter re-
scaling in its variants, such as ASAM [42], ρ can not al-
ways be a perfect choice in the whole training process. We
show that the zeroth-order flatness may fail to indicate the
generalization error with a given ρ. As in Figure 1a, when
ρ covers multiple minima, the zeroth-order flatness (SAM)
can not measure the fluctuation frequency. When there is a
single minimum within ρ, as in Figure 1b the observation
radius is limited and the maximum loss in ρ can be mis-
aligned with the uptrend of loss. So zeroth-order flatness
can be misleading and the knowledge of loss gradient is re-
quired for generalization error minimization.

To address this problem, we introduce first-order flat-
ness, which controls the maximum gradient norm in the
neighborhood of minima. We show that the first-order flat-
ness is stronger than the zeroth-order flatness as the loss
intensity of the loss fluctuation can be bounded by the max-
imum gradient. When the perturbation radius covers mul-
tiple minima, which we show is quite common in prac-
tice, the first-order flatness discriminates more drastic jit-
ters from real flat valleys, as in Figure 1a. When the per-
turbation radius is small and covers only one minimum, the
first-order flatness demonstrates the trend of loss gradient
and can help indicate generalization error. We further show
that the first-order flatness directly controls the maximal
eigenvalue of Hessian of the training loss, which is a proper
sharpness/flatness measure indicating the loss uptrend un-
der an adversarial perturbation to the weights [34–36].

To optimize the first-order flatness in deep model
training, we propose Gradient norm Aware Minimization
(GAM), which approximates the maximum gradient norm
with stochastic gradient ascent and Hessian-vector products
to avoid the materialization of the Hessian matrix.

We summarize our contributions as follows.
• We present first-order flatness, which measures the largest

gradient norm in the neighborhood of minima. We show
that the first-order flatness is stronger than current zeroth-
order flatness and it controls the maximum eigenvalue of
Hessian.

• We propose a novel training procedure, GAM, to simulta-
neously optimize prediction loss and first-order flatness.
We analyze the generalization error and the convergence
of GAM.

• We empirically show that GAM considerably improves
model generalization when combined with current opti-
mizers such as SGD and AdamW across a wide range of
datasets and networks. We show that GAM further im-
proves the generalization of models trained with SAM.

• We empirically validate that GAM indeed finds flatter op-
tima with lower Hessian spectra.

2. Related Works

Optimizer Some studies [20, 68] have demonstrated that
current optimization approaches, such as SGD [53], Adam
[38], AdamW [49] and others [19,46] affect generalization.
Some previous literature finds that Adam is more vulnera-
ble to sharp minima than SGD [64], which results in worse
generalization ability [22, 26, 67]. Some following works
[10, 50, 68, 76] propose generalizable optimizers to address
this problem. However, it can be a trade-off between gener-
alization ability and convergence speed [19, 36, 46, 68, 76].
Different tasks and network architectures may agree with
different optimizers (e.g., SGD is often chosen for ResNet
[24] while AdamW [49] for ViTs [16]). Thus selecting a
proper optimizer is critical while the understanding of its
relationship to model generalization remains nascent [20].

Flat Minima and Generalization Many recent works
show that flatter minima lead to better generalization [32,
36, 36, 55, 86]. Recently, [35] thoroughly reviews the liter-
ature related to generalization and sharpness of minima. It
highlights the role of maximum Hessian eigenvalue in de-
ciding the sharpness of minima [36,63]. And there also have
been several simple strategies to achieve a smaller maxi-
mum Hessian eigenvalue, such as choosing a large learn-
ing rate [12, 31, 44] and smaller batch size [30, 44, 61].
Sharpness-Aware Minimization (SAM) [20] and its vari-
ants [17, 18, 37, 42, 47, 52, 83, 86] are representative train-
ing algorithm to seek flat minima for better generalization.
However, their definition of flatness is limited to zeroth-
order flatness. In this paper, we present first-order flatness,
a stronger flatness measure to learn better generalization. It
is shown that discrete steps of gradient descent regularize
deep models implicitly by penalizing the gradient descent
trajectories with large loss gradients and this implicit reg-
ularization helps to find flat minima [7]. [82] proposes to
directly control the gradient norm. They focus on the gradi-
ent norm at each training step, while we propose to penalize
the maximum gradient norm in the neighborhood of min-
ima and show the connection between our regularizer and
the largest eigenvalue of Hessian and generalization error.

3. Preliminaries

Notations Let X and Y be the sample space and label
space, respectively. Let D denote the training distribu-
tion on X × Y and S = {(xi, yi)}ni=1 denote the train-
ing dataset with n data-points drawn independently from
D. Let θ ∈ Θ ⊆ Rd denote the parameters of the model. In
addition, we use B(θ, ρ) to denote the open ball of radius
ρ > 0 centered at the point θ in the Euclidean space, i.e.,
B(θ, ρ) = {θ′ : ∥θ − θ′∥ < ρ}1.

Let ℓ : Θ × X × Y → R be the per-data-point loss

1We use ∥ · ∥ to denote the L2 norm throughout the paper.



function. Let L̂(θ) =
∑n

i=1 ℓ(θ, xi, yi) and L(θ) =
E(x,y)∼D[ℓ(θ, x, y)] denote the empirical loss function and
population-level loss function, respectively. We assume
L̂(θ) and L(θ) are twice differentiable throughout the pa-
per. ∇L(θ) and ∇2L(θ) (∇L̂(θ) and ∇2L̂(θ)) are the
derivative and Hessian matrix of the function L(·) (L̂(·))
at point θ, respectively. Besides, for any θ ∈ Θ, we use
∇∥∇L̂(θ)∥ to represent the gradient of function ∥∇L̂(·)∥
at point θ. In addition, we use Loracle(θ) to denote an oracle
loss function and it can be chosen as empirical loss function
L̂(θ), L̂(θ) with the weight decay regularization, and other
common loss functions.

3.1. Zeroth-Order Flatness

The most popular mathematical definitions of flatness
considers the maximal loss value within a raduis [20, 36],
which we call the zeroth-order flatness. We follow the loss
function proposed in SAM:

Lsam(θ) = L̂(θ) + max
θ′∈B(θ,ρ)

(
L̂(θ′)− L̂(θ)

)
. (1)

The second term in the right-hand side of Equation (1)
can be considered as a measure of the zeroth-order flatness.

Definition 3.1 (ρ-zeroth-order flatness). For any ρ > 0, the
ρ-zeroth-order flatness R(0)

ρ (θ) of function L̂(θ) at a point
θ is defined as

R(0)
ρ (θ) ≜ max

θ′∈B(θ,ρ)

(
L̂(θ′)− L̂(θ)

)
, ∀θ ∈ Θ. (2)

Here ρ is the perturbation radius that controls the magnitude
of the neighborhood.

Intuitively, we name the term zeroth-order flatness be-
cause it measures the gap between the maximum loss value
and the current point. As a measure of accumulation of
gradients, zeroth-order flatness can be insufficient to indi-
cate the generalization loss as shown in Section 4.2. In this
paper, we propose a novel first-order flatness measure and
compare these two flatness notions in Section 4.2.

4. First-order Flatness and Optimization
In this section, we introduce the first-order flatness and

the corresponding minimizer for optimization. In Section
4.1, we formulate the first-order flatness and show its con-
nection with the maximal eigenvalue of the Hessian. Af-
terward, we discuss the relationship between the zeroth-
order and first-order flatness in Section 4.2. In Section 4.3,
we present the optimization framework based on the first-
order flatness as shown in Algorithm 1. We further provide
a generalization bound with respect to the empirical loss,
the first-order flatness, and high order terms, indicating that
optimizing the first-order flatness improves generalization
abilities. We then prove the convergence of the algorithm.

4.1. First-order Flatness

We first introduce the formulation of the first-order flat-
ness, which measures the maximal gradient norm in the
neighbourhood of a point θ ∈ Θ.

Definition 4.1 (ρ-first-order flatness). For any ρ > 0, the
ρ-first-order flatness R(1)

ρ (θ) of function L̂(θ) at a point θ
is defined as

R(1)
ρ (θ) ≜ ρ · max

θ′∈B(θ,ρ)

∥∥∥∇L̂(θ′)
∥∥∥ , ∀θ ∈ Θ. (3)

Here ρ is the perturbation radius that controls the magnitude
of the neighbourhood.

Intuitively, the first-order flatness entails that the loss
function L̂(θ) should not change drastically in the neigh-
bourhood of θ so that the largest gradient norm of loss is
constrained.

We then discuss the relationship between the first-order
flatness and the maximal eigenvalue of the Hessian matrix
∇2L̂(θ∗) (denoted as λmax(∇2L̂(θ∗))). λmax is proven to
be a proper measure of the curvature of minima [35, 36]
and is closely related to generalization abilities [11, 30, 63].
As another definition of flatness in related works [9, 44],
λmax is widely accepted yet hard to calculate. We show in
the following lemma that given a radius ρ, the first-order
flatness controls λmax, which reinforces the validity of the
first-order flatness.

Lemma 4.1. Let θ∗ be a local minimum of L̂. Suppose L̂
can be second-order Taylor approximated in the neighbour-
hood B(θ∗, ρ)2, i.e., ∀θ ∈ B(θ∗, ρ), L̂(θ) = L̂(θ∗)+(θ−
θ∗)⊤∇2L̂(θ∗)(θ − θ∗)/2. Then

λmax

(
∇2L̂(θ∗)

)
=

R
(1)
ρ (θ∗)

ρ2
. (4)

Since the maximal eigenvalue of Hessian matrices is usu-
ally difficult to approximate and optimize directly [71, 72],
the first-order flatness becomes a proper surrogate of λmax.

4.2. Comparison with Zeroth-order Flatness

We compare the first-order flatness with the zeroth-order
flatness. We first show that R

(0)
ρ (θ) in Equation (2) is

bounded by R
(1)
ρ (θ) in Equation (3).

Proposition 4.2. For any θ ∈ Θ, R(0)
ρ (θ) is bounded by

R
(1)
ρ (θ), i.e., R(1)

ρ (θ) ≥ R
(0)
ρ (θ).

Thus a smaller R(1)
ρ also leads to a smaller R(0)

ρ , indi-
cating that R(1)

ρ is a stronger flatness measure than R
(0)
ρ .

2The second order Taylor approximation assumption is commonly
adopted in optimization-related literature [51, 66, 68, 77] to analyze the
properties near critical points.



Proposition 4.2 gives an explanation that the first-order flat-
ness covers wider scenarios compared with the zeroth-order
flatness.

We present scenarios where the zeroth-order flatness
fails to indicate generalization error while the first-order
flatness remains discriminative in Figure 1. The gap be-
tween a local minimum and the largest loss in ρ can be con-
sidered as an accumulation of gradients across the trajectory
while the largest gradient norm measures the maximum as-
cent rate, which may indicate the trends of loss outside of
ρ.

When ρ is large, there probably exist several other local
minima in the neighborhood B(θ∗, ρ) as shown in Figure
1a. This case is common in practice as shown in Section 5.1.
In addition, when the number of local minimum in B(θ∗, ρ)
becomes larger, θ∗ is expected to become sharper since the
valley of θ∗ becomes narrower. However, the zeroth-order
flatness R

(0)
ρ only measures the maximal gap of the loss

function in B(θ∗, ρ) and fails to distinguish the cases when
the number of local minimums varies. By contrast, the max-
imal gradient norm in B(θ∗, ρ) increases when the number
of local minima is larger, indicating that the first-order flat-
ness can successfully characterize the sharpness in this case.

When ρ only covers a single minimum, as shown in Fig-
ure 1b, the zeroth-order flatness in ρ can be misleading since
the observation radius is insufficient to measure the loss
trend with the maximum loss. The first-order flatness can
help to learn more about the loss trend.

From the perspective of flatness, the zeroth-order flat-
ness focuses on the average gradient within a radius while
the first-order flatness measures the maximum gradient. In-
tuitively, the combination of the zeroth-order and first-order
captures a more comprehensive picture of the loss land-
scape. Furthermore, as discussed in the following Section
4.3, minimizers for both flatness measures adopt the first-
order approximation to calculate the maxima within a ra-
dius. This may be the reason that the combination of the two
flatness measures achieves the best performance as shown
in Section 5.

4.3. Gradient Norm Aware Minimization

In this subsection, we propose a novel Gradient norm
Aware Minimization (GAM) framework to incorporate the
first-order flatness R(1)

ρ (θ) into optimization procedures.
Specifically, suppose we could obtain an oracle loss

function Loracle(θ) and calculate its gradient ∇Loracle(θ).
Loracle(θ) can be chosen as the empirical loss function L̂(θ)
and the empirical loss function with other regularizations
(such as the weight decay and the zeroth-order flatness as
shown in Definition 3.1).

Generalization analysis We first derive a generalization
bound w.r.t. the first-order flatness in Proposition 4.3.

Proposition 4.3. Suppose the per-data-point loss function
ℓ is differentiable and bounded by M . Fix ρ > 0 and θ ∈
Θ. Then with probability at least 1 − δ over training set S
generated from the distribution D,

Eϵi∼N(0,ρ2/(
√
d+

√
logn)2)[L(θ + ϵ)]

≤ L̂(θ) +R(1)
ρ (θ) +

M√
n

+

√√√√√ 1
4
d log

(
1 +

∥θ∥2(
√
d+

√
logn)2

dρ2

)
+ 1

4
+ log n

δ
+ 2 log(6n+ 3d)

n− 1
.

(5)

Remark. The left-hand side of Equation (5) is close to the
population-level loss function L(θ) since the numbers of
samples n and parameters d are often large. As a result,
ignoring high-order terms, the population-level loss L(θ)
is bounded by the empirical loss L̂(θ) and the first-order
flatness R

(1)
ρ (θ), which motivates us to use R

(1)
ρ (θ) as a

regularizer to help improve the generalization abilities of
models.

Inspired by Lemma 4.1 and Proposition 4.3, the overall
loss function is given by

Loverall(θ) = Loracle(θ) + αR(1)
ρ (θ), (6)

where α is a hyperparameter that determines the strength of
regularization. The gradient of the loss function Loverall(θ)

is given by∇Loverall(θ) = ∇Loracle(θ)+α∇R(1)
ρ (θ). Using

similar techniques in [20], GAM approximates ∇R(1)
ρ (θ)

by

∇R(1)
ρ (θ) ≈ ρ · ∇

∥∥∥∇L̂(θadv)
∥∥∥ , θadv = θ + ρ · f

∥f∥ ,

f = ∇
∥∥∥∇L̂(θ)

∥∥∥ . (7)

Details of the derivation of ∇R(1)
ρ (θ) can be found in Ap-

pendix A. Notice that

∀θ ∈ Θ, ∇∥∇L̂(θ)∥ =
∇2L̂(θ) · ∇L̂(θ)

∥∇L̂(θ)∥
. (8)

As a result, Equation (7) can be calculated efficiently by
the Hessian vector product. The pseudocode of the whole
optimization procedure is shown in Algorithm 1.

Convergence analysis We further analyze the conver-
gence properties of GAM. Firstly, we introduce the
Lipschitz smoothness, which is common adopted in
optimization-related literature [1, 70, 86].

Definition 4.2. A function J : Θ → R is γ-Lipschitz
smooth if

∀θ1,θ2 ∈ Θ, ∥∇J(θ1)−∇J(θ2)∥ ≤ γ∥θ1−θ2∥. (9)



With Definition 4.2, we could prove the convergence
property of GAM as shown in Theorem 4.4.

Theorem 4.4. Suppose Loracle(θ) is γ1-Lipschitz smooth
and L̂(θ) is γ2-Lipschitz smooth. Suppose |Loracle(θ)| is
bounded by M . For any timestamp t ∈ {0, 1, . . . , T} and
any θ ∈ Θ, suppose we can obtain noisy and bounded
observations gloss

t (θ), gnorm
t (θ), and g̃loss

t (θ) of ∇L̂(θ),
∇∥∇L̂(θ)∥, and ∇Loracle(θ) such that

E[gloss
t (θ)] = ∇L̂(θ), ∥gloss

t (θ)∥ ≤ Gloss, ∥gnorm
t (θ)∥ ≤ Gnorm,

E[g̃loss
t (θ)] = ∇Loracle(θ), ∥g̃loss

t (θ)∥ ≤ G̃loss.
(10)

Then with learning rate ηt = η0/
√
t and perturbation ra-

dius ρt = ρ0/
√
t, GAM could obtain

1

T

T∑
t=1

E
[∥∥∇Loverall(θt)

∥∥2] ≤ C1 + C2 log T√
T

, (11)

for some constants C1 and C2 that only depend
on γ,Gloss, Gnorm, G̃loss,M, η0, ρ0, and α. Here
∇Loverall(θt) = ∇Loracle(θt) + α∇R(1)

ρ (θt) and
∇R(1)

ρ (θt) is approximated in Equation (7).

Remark. The assumptions in Theorem 4.4 are common
and standard when analyzing convergence of non-convex
functions via SGD-based methods [38, 56, 86]. In addition,
the requirements on Loracle(θ) (i.e., Loracle(θ) is Lipschitz
smooth and we can obtain unbiased and bounded observa-
tions of ∇Loracle(θ)) are mild and common. For example,
when the empirical loss function L̂(θ) satisfies the con-
straints, it is easy to check that L̂(θ) with the weight decay
regularization also meets the requirements.

5. Experiments
We empirically show that the case discussed in Section

4.2 is common in practice. Then we evaluate GAM with
random initialization on various state-of-the-art models and
the transfer learning setting on various datasets. We show
the Hessian spectra of GAM at convergence and discuss the
computation overhead of GAM with the considerable im-
provement of model generalization.

5.1. The Density of Local Minima

To investigate the number of local minima within the per-
turbation radius, we train 3 ResNet-18 models with SAM on
CIFAR-100 with proper hyperparameters for 200 epochs.
The perturbation radius is set to 0.1 as suggested by [20].
We load the checkpoints at convergence for evaluation.
We randomly generate 100 perturbation directions with the
same size as the model weights for each model. For each di-
rection, we repeatedly add a perturbation with the norm of
0.01 along the selected direction 10 times. We calculate the

Algorithm 1 Gradient norm Aware Minimization (GAM)

1: Input: Batch size b, Learning rate ηt, Perturbation ra-
dius ρt, Trade-off coefficient α, Small constant ξ

2: t← 0, θ0 ← initial parameters
3: while θt not converged do
4: Sample Wt from the training data with b instances
5: hloss

t ← ∇Loracle(θt) ▷ Calculate the oracle loss
gradient ∇Loracle(θt)

6: f t ← ∇2L̂Wt(θt) ·
∇L̂Wt (θt)

∥∇L̂Wt (θt)∥+ξ

7: θadv
t ← θt + ρt · ft

∥ft∥+ξ

8: hnorm
t ← ρt · ∇2L̂Wt

(θadv
t ) · ∇L̂Wt (θ

adv
t )

∥∇L̂Wt (θ
adv
t )∥+ξ

▷

Calculate the norm gradient ∇R(1)
ρt (θt)

9: θt+1 ← θt − ηt(h
loss
t + αhnorm

t )
10: t← t+ 1
11: end while
12: return θt

2 3 4 5 6 7 8

0.1

0.2

0.3

F
re

qu
en

cy

# of local maxima and minima

Figure 2. The distribution of numbers of local minima and maxima
within the perturbation radius ρ after convergence.

training loss after each addition and report the distribution
of the number of local maxima and minima along each per-
turbation direction within the perturbation radius ρ of 0.1.
As shown in Figure 2, we find more than 1 local minima
within ρ for most of the directions, indicating that the case
is common in practice. As discussed in Section 4.2, zeroth-
order flatness fails to tell the sharpness caused by multiple
minima while the first-order flatness measure increases as
the sharpness grow.

5.2. Training from Scratch

5.2.1 CIFAR-10 and CIFAR-100

We conduct experiments on CIFAR-10 and CIFAR-100 [41]
with ResNets [24], WideResNet [75], ResNeXt [65], Pyra-
midNet [21] and Vision Transformers (ViTs) [16]. All the
models are trained for 200 epochs from scratch. We eval-
uate GAM both with basic data augmentations (i.e., hori-
zontal flip, padding by four pixels, and random crop) and
advanced data augmentation including cutout regulariza-
tion [15], RandAugment [13] and AutoAugment [14].

GAM has two hyperparameters, ρ and α. We conduct a



Table 1. Results of GAM with state-of-the-art models on CIFAR-10 and CIFAR-100. The best results are highlighted in bold font.

CIFAR-10 CIFAR-100

Model Aug SGD SGD + GAM SAM SAM + GAM SGD SGD + GAM SAM SAM + GAM

ResNet18 Basic 95.32±0.13 96.17±0.21 96.10±0.20 96.75±0.18 78.32±0.32 79.53±0.30 79.27±0.16 80.45±0.25

ResNet18 Cutout 95.99±0.13 96.46±0.20 96.64±0.13 96.99±0.23 78.73±0.13 79.89±0.31 79.43±0.15 80.80±0.14

ResNet18 RA 96.07±0.07 96.52±0.09 96.64±0.17 97.06±0.13 78.62±0.32 79.82±0.24 79.71±0.15 80.97±0.29

ResNet18 AA 96.13±0.05 96.71±0.07 96.75±0.08 97.17±0.08 78.88±0.15 80.56±0.21 80.58±0.25 81.59±0.24

ResNet101 Basic 96.35±0.08 96.98±0.11 96.82±0.16 97.20±0.15 80.47±0.13 82.21±0.40 82.03±0.12 83.13±0.07

ResNet101 Cutout 96.56±0.18 97.22±0.05 97.07±0.08 97.36±0.24 80.53±0.30 82.36±0.24 81.60±0.35 83.40±0.13

ResNet101 RA 96.68±0.25 97.33±0.30 97.12±0.18 97.40±0.23 80.60±0.28 82.40±0.31 82.19±0.34 83.28±0.20

ResNet101 AA 96.78±0.14 97.39±0.18 97.18±0.11 97.42±0.1 81.83±0.37 83.19±0.15 82.44±0.47 83.94±0.23

WRN28_2 Basic 94.82±0.07 95.69±0.13 95.47±0.08 95.85±0.08 75.45±0.25 77.21±0.31 77.04±0.18 77.69±0.20

WRN28_2 Cutout 95.70±0.20 96.41±0.18 96.22±0.13 96.39±0.22 76.80±0.45 78.58±0.24 78.04±0.43 79.33±0.12

WRN28_2 RA 95.75±0.16 96.35±0.13 96.22±0.08 96.49±0.20 76.73±0.27 78.66±0.03 77.88±0.29 78.96±0.13

WRN28_2 AA 95.44±0.06 95.98±0.09 96.07±0.08 96.44±0.09 77.35±0.02 79.05±0.10 78.64±0.23 79.50±0.21

WRN28_10 Basic 95.73±0.10 96.61±0.15 96.78±0.80 97.29±0.11 81.40±0.13 83.45±0.09 83.41±0.04 84.31±0.06

WRN28_10 Cutout 96.74±0.03 96.97±0.05 97.35±0.16 97.56±0.12 81.53±0.40 83.69±0.08 82.38±0.15 84.43±0.13

WRN28_10 RA 97.14±0.04 96.83±0.03 97.58±0.07 97.49±0.03 81.65±0.18 83.84±0.09 82.79±0.06 84.68±0.13

WRN28_10 AA 96.93±0.12 97.05±0.04 97.48±0.06 97.67±0.08 81.99±0.11 84.02±0.18 83.84±0.30 84.81±0.21

PyramidNet110 Basic 96.19±0.11 97.11±0.14 97.26±0.05 97.51±0.09 82.74±0.12 84.91±0.09 85.01±0.09 85.25±0.06

PyramidNet110 Cutout 96.82±0.09 97.32±0.21 97.49±0.06 97.91±0.14 83.31±0.21 85.20±0.19 84.90±0.03 85.46±0.10

PyramidNet110 RA 97.15±0.21 97.80±0.22 97.60±0.09 98.01±0.10 84.04±0.19 86.47±0.14 85.33±0.27 85.64±0.20

PyramidNet110 AA 97.11±0.01 97.85±0.02 97.61±0.14 97.95±0.10 84.48±0.03 85.92±0.03 85.69±0.17 86.35±0.18

grid search over {0.05, 0.1, 0.2, 0.5, 1.0, 2.0} to tune ρ and
{0.1, 0.2, 0.5, 1.0, 2.0, 3.0, ..., 10.0} for α using 10% of the
training data as a validation set. The selection of hyperpa-
rameters is in Appendix C.5.

As a gradient regularizer, GAM can be integrated with
current optimizers such as SGD and Adam [36]. We also
show that GAM can be combined with sharpness-aware
training procedures such as SAM. As shown in Section 4.2,
the GAM term bounds the regularization term in SAM. Yet
the practical implementations of GAM and SAM rely on
first-order Taylor expansion of different objective functions
(GAM approximates the maximum gradient norm while
SAM approximates the maximum loss). We empirically
show that the combination of GAM and SAM outperforms
both of them, indicating that they may strengthen each other
with omitted items.

As shown in Table 1, GAM improves generalization for
all models on CIFAR-10 and CIFAR-100. When com-
bined with SGD, GAM achieves considerably higher test
accuracy compared with SGD. Moreover, GAM further im-
proves generalization when combined with SAM. For ex-
ample, GAM improves SAM performance by 1.18% and
1.10% on CIFAR-100 with ResNet-18 and ResNet-101, re-
spectively, which are noticeable margins. Other experimen-
tal results are in Appendix C.1.

5.2.2 ImageNet

We use ResNet50, ResNet101 [24], ViT-S/32 and ViT-B/32
[16] for evaluations on ImageNet [58] to evaluate GAM on

large scale data. For ResNet, we use SGD with momentum=
0.9 as the base optimizer for both GAM and SAM. For ViT,
we use the AdamW optimizer with β1 = 0.9, β2 = 0.999.
We train ResNets for 90 epochs and ViTs for 300 epochs
following [16]. We set the batch size to 256, learning rate
to 0.1, and weight decay to 0.0001. The learning rate is
decayed using a cosine schedule.

As shown in Table 2, GAM consistently improves SGD
performance on ImageNet for both ResNets and ViTs.
GAM also further improves the model generalization com-
pared with SAM. The combination of GAM and SAM out-
performs both SGD and SAM by a noticeable margin.

5.3. Transfer Learning

Transfer learning shows the generalization of models
when trained on sufficient labeled data and finetuned on a
small dataset [85]. We show that GAM improves general-
ization on all datasets in this setting.

We consider Stanford Cars [40], CIFAR-10, CIFAR-
100 [41], Oxford_IIIT_Pets [54] and Food101 [8] for this
setting. We apply SGD, SAM, and GAM to finetuning
EfficientNet-b0 [62] and Swin-Transformer-t [48] on these
datasets. Both EfficientNet-b0 and Swin-Transformer-t are
pretrained on ImageNet.

We use ImageNet pretrained weights of EfficientNet-b0
and Swin-t except for the last linear layer for classification.
Following previous works, we train for 40k steps since our
batch size is 128. The initial learning rate is set to 2e-3 with
cosine learning rate decay. Weight decay is set to 1e-5. We
do not use any data augmentations for Stanford Cars, Ox-



Table 2. Results of GAM with ResNet50 on ImageNet.

Model Dataset Base Opt Base + GAM SAM SAM + GAM

ResNet50 Top-1 76.01±0.19 76.59±0.15 76.47±0.11 76.86±0.15

ResNet50 Top-5 92.75±0.08 93.10±0.08 93.07±0.05 93.22±0.06

ResNet101 Top-1 77.69±0.08 78.45±0.10 78.35±0.12 78.70±0.12

ResNet101 Top-5 93.76±0.09 94.09±0.12 94.02±0.06 94.15±0.12

ViT-S/32 Top-1 68.26±0.22 69.95±0.16 69.73±0.05 70.15±0.18

ViT-S/32 Top-5 87.39±0.19 88.11±0.26 87.91±0.30 88.23±0.18

ViT-B/32 Top-1 71.15±0.14 73.58±0.06 73.10±0.18 73.70±0.10

ViT-B/32 Top-5 90.12±0.07 91.15±0.19 91.03±0.06 91.50±0.16

Table 3. Results of GAM for finetuning EfficientNet-b0 and Swin Transformers on various datasets.

EfficientNet-b0 Swin-t

Dataset SGD SGD + GAM SAM SAM + GAM AdamW AdamW + GAM SAM SAM + GAM

Stanford Cars 82.14 83.50 83.21 83.98 83.50 84.90 83.55 85.29
CIFAR-10 86.26 87.37 86.95 87.97 91.32 92.06 91.77 92.55

CIFAR-100 63.75 64.85 64.29 65.03 72.88 73.78 73.99 74.30
Oxford_IIIT_Pets 91.03 91.80 91.65 91.96 93.49 93.87 93.59 94.03

Food101 82.54 82.69 82.57 83.01 86.38 86.89 86.64 87.03

ford_IIIT_Pets and Food101. For CIFAR datasets, we em-
ploy the same data augmentations as previous experiments.

As seen in Table 3, GAM once again brings general-
ization improvement for SGD, AdamW, and SAM on both
EfficientNet-b0 and Swin-t. For example, GAM improves
AdamW by 1.2% on Stanford Cars with Swin-t and 1.11%
on CIFAR-10 with EfficientNet-b0.

Moreover, we leave the experiments of robustness to la-
bel noise in Appendix C.2.

5.4. Top Eigenvalues of Hessian and Hessian Trace

Lemma 4.1 shows that the GAM term can be an equiv-
alent measure of the maximum eigenvalue of the Hessian,
which is a well-known measure of flatness/sharpness. Thus
optimizing the GAM term decreases the maximum eigen-
value of the Hessian and leads to flatter minima. To em-
pirically validate that GAM finds optima with low curva-
ture, we present the Hessian spectra of SGD, SAM, and
GAM. We consider the maximum eigenvalue of Hessian
and the Hessian trace, which measures the expected loss
increase under random perturbations to the weights [35] as
the measures of flatness. We empirically show that GAM
significantly decreases both the maximum eigenvalue and
the trace of Hessian during training compared with SGD
and SAM, and thus finds flatter minima.

We compute the Hessian spectra of ResNet-18 trained
on CIFAR-100 for 200 epochs with SGD, SAM, SGD +
GAM, and SAM + GAM. We use power iteration [72] to
compute the top eigenvalues of Hessian and Hutchinson’s
method [5, 6, 71] to compute the Hessian trace. We re-
port the histogram of the distribution of the top-50 Hessian

eigenvalues for each method.
As shown in Figure 3, the model trained with SGD has

a higher maximum Hessian eigenvalue and Hessian trace
at convergence compared to the middle of training, indi-
cating that optimizing directly with cross-entropy loss does
not contribute to the lower Hessian spectra. In contrast,
GAM leads to lower Hessian spectra and thus flatter min-
ima. Moreover, GAM helps to reduce both top eigenvalues
and the Hessian trace when combined with SAM, where
Hessian spectra at convergence are lower than other meth-
ods. We show visualizations of landscapes of SGD, SAM,
and GAM in Section 5.6.

5.5. Computation Overhead

As discussed in Section 4.3, the GAM term can be eas-
ily calculated via the Hessian vector product, which is an
efficient approach to calculating the dot product between
the Hessian and a vector without the need to calculate the
entire Hessian. However, it can still introduce extra com-
putation when calculated in each iteration. To accelerate
the training with GAM, we investigate applying GAM to
only a few iterations in each epoch. Surprisingly, we show
that only several iterations of learning with GAM (with
higher α compared with applying GAM to all iterations)
improve model generalization considerably. As shown in
Figure 4, with approximately 1/20 of iterations, GAM con-
siderablly improves test accuracy for both SGD and SAM
on CIFAR-10 and CIFAR-100. When applying GAM to
1/10 iterations of training, it shows similar effectiveness to
applying GAM to all the iterations, while the extra com-
putational cost for GAM is less than 25% of the original
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Figure 3. The distribution of top eigenvalues and the trace of Hessian at epoch 100 and 200 on CIFAR-100 with SGD, SGD + GAM, SAM,
or SAM + GAM.
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Figure 4. Accuracy and training speed of training with different
ratios ([0, 0.05, 0.1, 0.5, 1] from upper left to lower right, see
details in Appendix C.3) of iterations using GAM. Numbers in
parentheses indicate the ratio of the training speed compared with
the vanilla base optimizer SGD/SAM.

cost. GAM outperformes SAM with lower computation
overhead and achieves significant improvement when com-
bined with SGD (the red line in the figure). When com-
bined with SAM, GAM also improves generalization with
low computation cost. Thus the computation overhead of
GAM can be easily controlled. The optimization of first-
order flatness can be further accelerated by approximation
of second-order gradient with first-order gradient and the
details are in Appendix D.

5.6. Visualization of Landscapes

We visualize the loss landscapes of models trained with
SGD, SGD + GAM, SAM, SAM + GAM of the ResNet-18
model on CIFAR-100 following [45]. All the models are
trained with the same hyperparameters for 200 epochs as
described in Section 5.2.1. As shown in Figure 5, GAM
consistently helps SGD and SAM find flatter minima.

6. Discussions

We show that the most popular definitions of flatness,
which we call the zeroth-order flatness, can be insufficient
to indicate generalization error. Thus we propose first-order
flatness, a stronger flatness measure that bounds both the

(a) SGD (b) SGD + GAM

(c) SAM (d) SAM + GAM

Figure 5. Visualization of loss landscape for SGD, SGD + GAM,
SAM, SAM + GAM.

maximum eigenvalue of Hessian and the zeroth-order flat-
ness. We also propose a novel Gradient norm Aware Min-
imization (GAM) to optimize the first-order flatness. We
empirically show that GAM considerably improves gener-
alization for SGD, AdamW, and SAM.

Despite the empirical effectiveness of GAM, adopting
the first-order flatness for generalization has the following
limitations which could lead to potential future work. First,
a theoretical explanation of whether a stronger flatness mea-
sure is better for generalization is vital for selecting flatness
measures in practice. Second, the contribution to general-
ization of combining the zeroth-order and first-order flat-
ness requires a thorough theoretical analysis.
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A. Omitted details in Section 4
A.1. Derivation of Equation (7)

We follow the steps in [20] to approximate

∇R(1)(θ) = ρ · ∇θ max
ϵ∈B(0,ρ)

∥∥∥∇L̂(θ + ϵ)
∥∥∥ . (12)

We first conduct the first-order Taylor expansion of ∥∇L̂(θ + ϵ)∥ and get that

ϵ∗(θ) = argmax
ϵ∈B(0,ρ)

∥∥∥∇L̂(θ + ϵ)
∥∥∥ ≈ argmax

ϵ∈B(0,ρ)

∥∥∥∇L̂(θ)∥∥∥+
(
∇

∥∥∥∇L̂(θ)∥∥∥)⊤
ϵ

= argmax
ϵ∈B(0,ρ)

(
∇
∥∥∥∇L̂(θ)∥∥∥)⊤

ϵ =
ρ · f
∥f∥

,

(13)

where f = ∇∥∇L̂(θ)∥. As a result, by letting θadv = θ + ϵ∗(θ),

∇R(1)(θ) ≈ ρ · ∇θ

∥∥∥∇L̂(θ + ϵ∗(θ))
∥∥∥ = ρ · ∇

∥∥∥∇L̂(θadv)
∥∥∥+ ρ · dϵ

∗(θ)

dθ
· ∇

∥∥∥∇L̂(θadv)
∥∥∥ . (14)

In addition, similar to [20], we further drop the second-order term to accelerate the computation. Finally, the derivative
∇R(1)(θ) is given by

∇R(1)(θ) ≈ ρ · ∇
∥∥∥∇L̂(θadv)

∥∥∥ , θadv = θ + ρ · f

∥f∥
, f = ∇

∥∥∥∇L̂(θ)∥∥∥ . (15)

B. Proofs
B.1. Proof of Lemma 4.1

Proof. By assumption, we have that for all θ ∈ B(θ∗, ρ),

L̂(θ) = L̂(θ∗) +
1

2
(θ − θ∗)⊤

(
∇2L̂(θ∗)

)
(θ − θ∗). (16)

In addition,
∇L̂(θ) =

(
∇2L̂(θ∗)

)
(θ − θ∗). (17)

As a result,

max
θ∈B(θ∗,ρ)

∥∥∥∇L̂(θ)∥∥∥ = max
θ∈B(θ∗,ρ)

∥∥∥(∇2L̂(θ∗)
)
(θ − θ∗)

∥∥∥ = ρ
∥∥∥∇2L̂(θ∗)

∥∥∥ = ρλmax

(
∇2L̂(θ∗)

)
. (18)

Now the claim follows.

B.2. Proof of Proposition 4.2

Proof. Suppose ϵ∗ = argmaxϵ∈B(0,ρ) L̂(θ+ϵ). Then R(0)(θ) = L̂(θ+ϵ∗)− L̂(θ). According to the mean value theorem,
there exists a constant 0 ≤ c ≤ 1 such that

L̂(θ + ϵ∗)− L̂(θ) =
(
∇L̂(θ + c · ϵ∗)

)⊤
ϵ∗. (19)

As a result, by the Cauchy–Schwarz inequality,

R(0)(θ) = L̂(θ + ϵ∗)− L̂(θ) =
(
∇L̂(θ + c · ϵ∗)

)⊤
ϵ∗ ≤

∥∥∥∇L̂(θ + c · ϵ∗)
∥∥∥ ∥ϵ∗∥

≤ max
ϵ∈B(0,ρ)

∥∥∥∇L̂(θ + ϵ)
∥∥∥ · ρ = R(1)(θ).

(20)



B.3. Proof of Proposition 4.3

Proof. Define h(θ) = maxθ′∈B(θ,ρ)

∥∥∥∇L̂(θ)∥∥∥. Fix σ = ρ/(
√
d +
√
log n), following the proof of Theorem 1 in [20], we

can obtain that with probability at least 1− δ,

Eϵi∼N(0,σ2) [L(θ + ϵ)] ≤ Eϵi∼N(0,σ2)

[
L̂(θ + ϵ)

]
+

√√√√ 1
4
d log

(
1 +

∥θ∥22
dσ2

)
+ 1

4
+ log n

δ
+ 2 log(6n+ 3d)

n− 1
. (21)

Since ϵi ∼ N(0, σ2), ∥ϵ∥2/σ2 has a chi-square distribution. As a result, according to [43, Lemma 1], we have that for any
t > 0,

P
(
∥ϵ∥2/σ2 − d ≥ 2

√
dt+ 2t

)
≤ exp(−t). (22)

By letting t = 1
2 log n, we can get that with probability at least 1− 1/

√
n,

∥ϵ∥2 ≤ σ2
(
d+

√
2d log n+ log n

)
≤ σ2

(√
d+

√
log n

)2

= ρ2. (23)

As a result,

Eϵi∼N(0,σ2)

[
L̂(θ + ϵ)

]
≤Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ ≤ ρ

]
P (∥ϵ∥ ≤ ρ) + Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ > ρ

]
P (∥ϵ∥ > ρ)

≤Eϵi∼N(0,σ2)

[
L̂(θ + ϵ) | ∥ϵ∥ ≤ ρ

]
+

M√
n
.

(24)

According to the mean value theorem and Cauchy–Schwarz inequality, for any ϵ such that ∥ϵ∥ < ρ, there exists a constant
0 ≤ c ≤ 1, such that

L̂(θ + ϵ) = L̂(θ) +
(
∇L̂(θ + cϵ)

)⊤
ϵ ≤ L̂(θ) +

∥∥∥∇L̂(θ + cϵ)
∥∥∥ · ∥ϵ∥ ≤ L̂(θ) + h(θ)ρ = L̂(θ) +R(1)(θ). (25)

Now the claim follows from Equations (21), (24), and (25).

B.4. Proof of Theorem 4.4

Proof. Observe that ∥∥∇Loverall(θt)
∥∥2 =

∥∥∥∇Loracle(θt) + αρt · ∇
∥∥∥∇L̂(θadv

t )
∥∥∥∥∥∥2

≤ 2

(∥∥∇Loracle(θt)
∥∥2 + ∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv

t )
∥∥∥∥∥∥2) .

(26)

The claim follows from Propositions B.1 and B.2.

Proposition B.1. Assume the conditions in Theorem 4.4 hold (with parameters γ1, γ2, Gloss, Gnorm, G̃loss,M, η0, ρ0, α). Then
with learning rate ηt = η0/

√
t and perturbation radius ρt = ρ0/

√
t, Algorithm 1 could obtain

1

T

T∑
t=1

E
[∥∥∇Loracle(θt)

∥∥2] ≤ C ′
1 + C ′

2 log T√
T

(27)

for some constants C ′
1 and C ′

2 that only depend on γ1, γ2, G
loss, Gnorm, G̃loss,M, η0, ρ0, α.

Proof. By definition, we have hloss
t = g̃loss

t (θt) and hnorm
t = gnorm

t (θadv
t ). By assumption,

Loracle(θt+1) ≤ Loracle(θt) +
(
∇Loracle(θt)

)⊤
(θt+1 − θt) +

γ1
2
∥θt+1 − θt∥2

= Loracle(θt)− ηt
(
∇Loracle(θt)

)⊤ (
hloss
t + αρth

norm
t

)
+

γ1η
2
t

2

∥∥∥hloss
t + αρth

norm
t

∥∥∥2 . (28)



Take the expectation conditioned on the observations till timestamp t. By the assumption E[hloss
t ] = E[g̃loss

t (θt)] =
∇Loracle(θt) and E[hnorm

t ] = E[gnorm
t (θadv

t )], we can obtain that

E
[
Loracle(θt+1)

]
− Loracle(θt)

≤ − ηt
∥∥∇Loracle(θt)

∥∥2 − ηtρtα
(
∇Loracle(θt)

)⊤ E
[
gnorm
t (θadv

t )
]
+

γ1η
2
t

2

∥∥∥hloss
t + αρth

norm
t

∥∥∥2 (29)

We have

−ηtρtα
(
∇Loracle(θt)

)⊤ E
[
gnorm
t (θadv

t )
]
≤ ηtρtα

∥∥∇Loracle(θt)
∥∥∥∥∥E [

gnorm
t (θadv

t )
]∥∥∥ ≤ ηtρtαG̃

lossGnorm. (30)

In addition,

E
[∥∥∥hloss

t + αhnorm
t

∥∥∥2] ≤ 2E
[∥∥∥hloss

t

∥∥∥2]+ 2α2E
[
∥hnorm

t ∥2
]
≤ 2

(
G̃loss

)2

+ 2α2 (Gnorm)
2
. (31)

Combining Equations (29), (30), and (31), we can get that

ηt
∥∥∇Loracle(θt)

∥∥2 ≤ −E [
Loracle(θt+1)

]
+ Loracle(θt) + ηtρtZ1 + η2tZ2 (32)

for some constants Z1 and Z2 that only depend on γ1, γ2, G
loss, Gnorm, G̃loss, α. Now perform telescope sum and take the

expectations at each step, we can obtain that

T∑
t=1

ηt
∥∥∇Loracle(θt)

∥∥2 ≤ −E [
Loracle(θT+1)

]
+ Loracle(θ1) + Z1

T∑
t=1

ηtρt + Z2

T∑
t=1

η2t . (33)

By letting ηt = η0/
√
t and ρt = ρ0/

√
t, we can get that

η0√
T

T∑
t=1

∥∥∇Loracle(θt)
∥∥2 ≤ T∑

t=1

ηt
∥∥∇Loracle(θt)

∥∥2
≤ −E

[
Loracle(θT+1)

]
+ Loracle(θ1) + Z1

T∑
t=1

ηtρt + Z2

T∑
t=1

η2t

≤ 2M + Z1η0ρ0

T∑
t=1

1

t
+ Z2η

2
0

T∑
t=1

1

t

≤ Z4 + Z5 log T

(34)

for some constants Z4 and Z5 that only depend on γ1, γ2, G
loss, Gnorm, G̃loss,M, η0, ρ0, α. Divide the two sides of the equation

by η0
√
T and the claim follows.

Proposition B.2. Assume the conditions in Theorem 4.4 hold (with parameters γ1, γ2, Gloss, Gnorm, G̃loss,M, η0, ρ0, α). Then
with perturbation radius ρt = ρ0/

√
t, Algorithm 1 could obtain

1

T

T∑
t=1

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] ≤ C ′′
1 + C ′′

2 log T√
T

(35)

for some constants C ′′
1 and C ′′

2 that only depend on γ2, ρ0, α.

Proof. For any t ∈ {1, 2, . . . , T},

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] = α2ρ2tE
[∥∥∥∇∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2]

=α2ρ2tE

∥∥∥∥∥∥∇2L̂(θadv
t ) · ∇L̂(θ

adv
t )∥∥∥∇L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥
 ≤ α2ρ2tE

∥∥∥∇2L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥ ∇L̂(θ

adv
t )∥∥∥∇L̂(θadv
t )

∥∥∥
∥∥∥∥∥∥


≤α2ρ2tE[γ2] = α2ρ2tγ2.

(36)



Table 4. Results of GAM with state-of-the-art models on CIFAR-10 and CIFAR-100. The best results are highlighted in bold font.

CIFAR-10 CIFAR-100

Model Aug SGD SGD + GAM SAM SAM + GAM SGD SGD + GAM SAM SAM + GAM

DenseNet121 Basic 91.16±0.13 92.35±0.14 92.19±0.20 92.72±0.30 69.25±0.40 70.48±0.27 70.44±0.19 71.16±0.25

DenseNet121 Cutout 91.85±0.17 92.93±0.26 92.35±0.16 93.30±0.17 70.17±0.31 71.47±0.23 70.89±0.15 71.80±0.07

DenseNet121 RA 91.59±0.16 92.37±0.20 92.32±0.29 92.97±0.27 69.65±0.36 70.10±0.26 70.49±0.16 71.43±0.17

DenseNet121 AA 92.65±0.10 94.17±0.25 92.96±0.19 94.05±0.22 70.53±0.17 72.25±0.19 71.34±0.20 72.90±0.17

ResNeXt29-32x4d Basic 95.75±0.31 96.46±0.25 96.32±0.36 96.90±0.24 79.45±0.29 81.67±0.26 81.35±0.12 82.93±0.25

ResNeXt29-32x4d Cutout 96.20±0.37 97.82±0.24 96.44±0.21 97.85±0.27 80.56±0.20 82.62±0.33 82.49±0.25 83.58±0.09

ResNeXt29-32x4d RA 95.86±0.28 97.17±0.26 96.75±0.35 97.79±0.19 79.88±0.12 81.75±0.23 82.26±0.15 83.02±0.22

ResNeXt29-32x4d AA 96.58±0.18 97.46±0.15 97.38±0.25 97.58±0.16 80.47±0.13 82.02±0.19 81.52±0.26 83.35±0.09

ViT-S/16 Basic 95.27±0.23 97.21±0.14 96.85±0.25 97.58±0.20 79.52±0.36 83.35±0.28 82.77±0.29 84.30±0.25

ViT-S/16 Cutout 95.36±0.22 97.53±0.17 97.10±0.25 97.85±0.10 79.36±0.21 83.59±0.28 82.86±0.14 84.53±0.16

ViT-S/16 RA 95.59±0.19 97.44±0.31 97.18±0.12 97.59±0.11 79.96±0.22 83.80±0.20 83.36±0.13 84.66±0.23

ViT-S/16 AA 96.40±0.30 97.82±0.21 97.52±0.25 97.97±0.13 80.35±0.06 84.02±0.18 83.54±0.19 85.20±0.26

By letting ρt = ρ0/
√
t,

1

T

T∑
t=1

E
[∥∥∥αρt · ∇ ∥∥∥∇L̂(θadv)

∥∥∥∥∥∥2] ≤ 1

T
α2γ2ρ

2
0

T∑
t=1

1

t
≤ C ′′

1 + C ′′
2 log T√
T

(37)

for some constants C ′′
1 and C ′′

2 that only depend on γ2, ρ0, α.

C. More Experimental Results and Details

C.1. More Results on Training from Scratch

Due to space limitation, we omit the experimental results on CIFAR-10 and CIFAR-100 [41] with ResNeXt [65], DenseNet
[27] and ViTs [16] in Section 5.2.1 in the main paper and report them in Section C.1.1. Then we report the results of
robustness to label noise in Section C.2.

C.1.1 CIFAR-10 and CIFAR-100

We report the omitted results on CIFAR-10 and CIFAR-100 with ResNeXt, DenseNet and ViTs. As described in the main
paper, all the models are trained for 200 epochs from scratch. We evaluate GAM both with basic data augmentations (i.e.,
horizontal flip, padding by four pixels, and random crop) and advanced data augmentation including cutout regularization
[15], RandAugment [13] and AutoAugment [14]. The hyperparameters, ρ and α are searched with the same approach
described in the main paper.

Results are shown in Table 4. GAM consistently improves generalization for all models. We observe the same results as
in the main paper. When combined with SGD, GAM achieves considerably higher test accuracy compared with SGD. And
GAM also achieves improvement when combined with SAM.

Comparison with GNP GNP can be considered as a special case of GAM where ρ is set to 0. We compare GAM with
GNP [82] in on CIFAR-100 in Table 5. We follow hyperparameters searching and choice of GNP in its original paper. GAM
consistently outperforms GNP by noticeable margins.

C.2. Robustness to Label Noise

It is observed that sharpness-aware minimization methods are robust to perturbations to label noise [20, 42]. Here we
assess the degree of robustness that GAM provides to label noise.

Following [20, 42], we measure the effectiveness of GAM in the classical noisy-label setting for CIFAR-10. A fraction
of the training data labels is randomly flipped [33] while the test data remains unmodified. We train a ResNet32 for 200
epochs following [33]. Hyperparameter settings for all the models are the same as that of previous CIFAR experiments.
Following [3, 42], we report the best results during the training instead of the results at the end of the training.



Table 5. Comparison with GNP on CIFAR-100. -BA indicates the basic data augmentation, -CU indicates cutout regularization, -RA
indicates RandAugment, and -AA indicates AutoAugment.

Res18-BA Res18-CU Res18-RA Res18-AA Res101-BA Res101-CU Res101-RA Res101-AA

SGD 78.32±0.32 78.73±0.13 78.62±0.32 78.88±0.15 80.47±0.13 80.53±0.30 80.60±0.28 81.83±0.37

GNP + SGD 78.80±0.40 79.29±0.15 79.21±0.27 80.29±0.05 81.17±0.29 81.10±0.14 81.31±0.88 82.53±0.25

GAM + SGD 79.53±0.30 79.89±0.31 79.82±0.24 80.56±0.21 82.21±0.40 82.36±0.24 82.40±0.31 83.19±0.15

WRN10-BA WRN10-CU WRN10-RA WRN10-AA Pyr110-BA Pyr110-CU Pyr110-RA Pyr110-AA

SGD 81.40±0.13 81.53±0.40 81.65±0.18 81.99±0.11 82.74±0.12 83.31±0.21 84.04±0.19 84.48±0.03

GNP + SGD 82.30±0.05 82.54±0.19 82.99±0.39 83.58±0.32 83.99±0.27 84.46±0.16 84.47±0.08 84.83±0.21

GAM + SGD 83.45±0.09 83.69±0.08 83.84±0.09 84.02±0.18 84.91±0.09 85.20±0.19 86.47±0.14 85.92±0.03

Table 6. Test accuracy of ResNet32 on CIFAR-10 with label noise.

Noise Rate (%) Base Opt Base + GAM SAM SAM + GAM

0% 95.71 96.55 96.25 96.88
20% 92.05 94.20 93.85 94.74
40% 88.89 92.17 90.85 92.57
60% 83.17 88.49 87.37 89.65
80% 63.16 73.82 70.65 76.33

Table 7. Accuracy and training speed of training with different ratios of iterations using GAM. Superscripts indicate the ratio of iterations
in each epoch is trained with GAM (e.g., GAM0.05 indicates that 5% of iterations are trained with GAM, while the remaining iterations are
trained with the basic optimizer). Numbers in parentheses indicate the ratio of the training speed compared with the vanilla base optimizer
SGD/SAM. We mark runs whose training speed is lower than 50% of the basic optimizer in red and others in green. Please note that the
speed of SAM is about 50% w.r.t SGD’s speed. Thus when combined with SGD, green markers indicate that the speed of GAM under the
corresponding ratio is faster than SAM.

CIFAR-10

SGD SGD + GAM0.05 SGD + GAM0.1 SGD + GAM0.5 SGD + GAM1

Accuracy 95.32 96.08 96.15 96.17 96.17
Images/s 2,593 (100%) 2,258 (87%) 1,996 (77%) 1,023 (39%) 658 (25%)

SAM SAM + GAM0.05 SAM + GAM0.1 SAM + GAM0.5 SAM + GAM1

Accuracy 96.10 96.54 96.62 96.65 96.58
Images/s 1,314 (100%) 1,247 (95%) 1,184 (90%) 858 (65%) 629 (48%)

CIFAR-100

SGD SGD + GAM0.05 SGD + GAM0.1 SGD + GAM0.5 SGD + GAM1

Accuracy 78.32 79.25 79.42 79.50 79.53
Images/s 2,609 (100%) 2,243 (86%) 1,955 (75%) 1,011 (39%) 655 (25%)

SAM SAM + GAM0.05 SAM + GAM0.1 SAM + GAM0.5 SAM + GAM1

Accuracy 79.27 80.08 80.44 80.40 80.45
Images/s 1,318 (100%) 1,251 (95%) 1,172 (89%) 848 (64%) 628 (48%)

We report test accuracies for SGD, SAM, SGD+GAM, and SAM+GAM obtained from 3 independent runs for each label
noise level in Table 6. As seen in Table 6, GAM shows a high degree of robustness to label noise. GAM consistently improves
the robustness to label noise for both SGD and SAM.

C.3. Detailed Results and Discussions about Computation Overhead

Here we report the detailed results of the trade-off between computation overhead and test accuracy of GAM. As discussed
in Section 4.3 and 5.5 in the main paper, the GAM term can be easily calculated via the Hessian vector product, which is
an efficient approach to calculating the dot product between the Hessian and a vector without the need to calculate the entire
Hessian. And we also notice that only several iterations of learning with GAM (with higher α compared with applying GAM
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Figure 6. The influence of hyperparameters ρ and α on the performance of ResNet101 on CIFAR-100.

Table 8. Hyperparameters for Algorithm 1 on CIFAR-10 and CIFAR-100 datasets.

Model Learning Rate Weight Decay Base Optimizer Epochs LR Schedule

ResNet18 0.1 0.0005 SGD 200 Cosine
ResNet101 0.1 0.0005 SGD 200 Cosine
WRN28_2 0.1 0.0005 SGD 200 Cosine
WRN28_10 0.1 0.0005 SGD 200 Cosine
PyramidNet110 0.05 0.0005 SGD 200 Cosine
DenseNet121 0.1 0.001 SGD 200 Cosine
ResNeXt29-32x4d 0.1 0.0005 SGD 200 Cosine

to all iterations) improve model generalization considerably. As seen in Table 7, applying GAM to 1/10 iterations of training
shows similar generalization performance to applying GAM to all the iterations, while the extra computational cost for GAM
is less than 25% of the original cost. Thus the computation overhead of GAM can be easily controlled.

C.4. Ablation Study

GAM has two hyperparameters, ρ, and α. We analyze the influence of the choice of them in the following subsection
C.4.1 and C.4.2. The results are shown in Figure 6.

C.4.1 Influence of ρ

ρ controls the step length of gradient ascent in GAM. When ρ is set to 0, GAM degenerates into a naive regularizer con-
straining the gradient norm at each training step. We plot the performance of ResNet101 on CIFAR-100 with varying ρ. For
experiments where GAM is combined with SAM, we apply the same ρ for both GAM and SAM. As shown in Figure 6a,
GAM with ρ larger than 0 outperforms GAM without gradient ascent, showing that the gradient ascent is necessary for GAM.
Moreover, GAM consistently outperforms SGD with different ρ. GAM also consistently improves SAM’s performance with
various ρ, indicating that the first-order flatness can improve the generalization ability of zero-order flatness.

C.4.2 Influence of α

α controls the strength of GAM penalty. When α is set to 0 GAM degenerates into the basic optimizer (SGD or SAM). We
show the performance of GAM with varying α in Figure 6b. Compared with SGD, GAM shows considerable improvement
with varying α. The improvement of GAM under various α is also observed when combined with SAM.

C.5. Training Details and Selection of Hyperparameters

C.5.1 Training Details of Training from Scratch Experiments

We search hyperparameters, including learning rate and weight decay for all the models unless otherwise noted. For ResNets,
we conduct a grid search of learning rate in {0.01, 0.1, 1.0} and weight decay in {0.0001, 0.0005, 0.001, 0.01, 0.1}. The
batch size is set to 128 for all models. For Vits, we search the learning rate in {1e-3, 3e-3, 1e-2, 3e-3}, and weight decay in



Table 9. Hyperparameters for Algorithm 1 on ImageNet.

Model ρ α Learning Rate Weight Decay Base Optimizer Epochs LR Schedule

ResNet50 0.2 0.1 0.1 0.0001 SGD 90 Cosine
ResNet101 0.2 0.1 0.1 0.0001 SGD 90 Cosine

ViT-S/32 0.3 0.5 0.0003 0.3 AdamW 300 Cosine
ViT-B/32 0.3 0.5 0.0003 0.3 AdamW 300 Cosine

{0.001, 0.01, 0.1}. We adopt SGD with momentum = 0.9 for ResNets and AdamW with β1 = 0.9, β2 = 0.999 for ViTs. We
train ResNets for 90 epochs, and train ViTs for 300 epochs following [11, 86]. We first search for the optimal learning rate
and weight decay for training with basic optimizers and keep them fixed for SAM and GAM. We search ρ in {0.05, 0.1, 0.2,
0.5, 1.0, 2.0} for both SAM and GAM and search α in {0.1, 0.2, 0.5, 1.0, 2.0, 3.0, ..., 10.0} for GAM. We set ρ to 0.04 for
CIFAR-10 and 0.1 for CIFAR-100. We set α to 0.3 for ResNet-18 and 0.1 for other models. We report the best selection of
hyperparameters for each individual model in Table 8 and Table 9.

C.5.2 Training Details of Transfer Learning Experiments

We finetune the models on downstream datasets including Stanford Cars [40], CIFAR-10, CIFAR-100 [41], Oxford_IIIT_Pets
[54] and Food101 [8] from the weights pretrained on ImageNet. For EfficientNet-b0, we adopt SGD with momentum = 0.9.
For Swin-t, we adopt AdamW with β1 = 0.9, β2 = 0.999. We train all the models for 40k steps and the batch size is 128. The
initial learning rate is 2e-3 and the cosine learning rate decay is used. Weight decay is set to 1e-5.

D. Further Acceleration of GAM

Acceleration Optimizing the gradient of R(1)
ρ (θ) according to Equations (7) and (8) requires the Hessian vector product

operation, which can still introduce considerable extra computation when the model is large. Inspired by [60, 82], one can
approximate∇∥∇L̂(θ)∥ with first-order gradient as follows.

∀θ ∈ Θ, ∇
∥∥∥∇L̂(θ)∥∥∥ ≈ ∇L̂

(
θ + ρ′ · ∇L̂(θ)

∥∇L̂(θ)∥

)
−∇L̂(θ)

ρ′
, (38)

where ρ′ is a small constant. Thus we can further accelerate GAM by applying Equation (38) to the θadv term in Equation (7)
as follows,

θadv ≈ θ + ρ ·
∇L̂

(
θ + ρ′ · ∇L̂(θ)

∥∇L̂(θ)∥

)
−∇L̂(θ)∥∥∥∇L̂(

θ + ρ′ · ∇L̂(θ)

∥∇L̂(θ)∥

)
−∇L̂(θ)

∥∥∥ = θ + ρ · g1 − g0

∥g1 − g0∥
, (39)

where

g0 = ∇L̂(θ), g1 = ∇L̂(θ̃1), and θ̃1 = θ + ρ′ · ∇L̂(θ)
∥∇L̂(θ)∥

= θ + ρ′ · g0

∥g0∥
. (40)

We let θ̃2 ≜ θadv. Now applying Equation (38) to the calculation of ∇∥∇L̂(θ̃2)∥, we can get that

∇R(1)
ρ (θ) ≈ ρ · ∇

∥∥∥∇L̂(θ̃2)
∥∥∥ ≈ ρ ·

∇L̂
(
θ̃2 + ρ′ · ∇L̂(θ̃2)

∥∇L̂(θ̃2)∥

)
−∇L̂(θ̃2)

ρ′

=
ρ

ρ′
(g3 − g2) ,

(41)

where

g2 = ∇L̂(θ̃2), g3 = ∇L̂(θ̃3), and θ̃3 = θ̃2 + ρ′ · ∇L̂(θ̃2)

∥∇L̂(θ̃2)∥
= θ̃2 + ρ′ · g2

∥g2∥
. (42)



Algorithm 2 Accelerated GAM

1: Input: Batch size b, Learning rate ηt, Perturbation radius ρt, ρ′t, Trade-off coefficient α, β, γ, Small constant ξ
2: t← 0, θ0 ← initial parameters
3: while θt not converged do
4: Sample Wt from the training data with b instances
5: gt,0 ← ∇L̂Wt(θt)

6: θ̃t,1 ← θt + ρ′t · gt,0/(∥gt,0∥+ ξ)

7: gt,1 ← ∇L̂Wt
(θ̃t,1)

8: ht,0 ← gt,1 − gt,0

9: θ̃t,2 ← θt + ρt · ht,0/(∥ht,0∥+ ξ)

10: gt,2 ← ∇L̂Wt
(θ̃t,2)

11: θ̃t,3 ← θ̃t,2 + ρ′t · gt,2/(∥gt,2∥+ ξ)

12: gt,3 ← ∇L̂Wt
(θ̃t,3)

13: ht,+ ← αgt,1 + (1− α)gt,3

14: ht,− ← βgt,0 + (1− β)gt,2

15: h
∥
t,−,h

⊥
t,− ← decompose(ht,−;ht,+) ▷ Decompose ht,− into components that are parallel or orthogonal to ht,+

16: θt+1 ← θt − ηt

(
ht,+ − γh⊥

t,−

)
17: t← t+ 1
18: end while
19: return θt

Accelerated GAM Based on the above approximations, we could obtain the accelerated version of GAM as shown in
Algorithm 2. Besides them, the following modifications can further accelerate and suppress the effects of the above approxi-
mation.

1. We find that the gradient of the SAM regularization term, g1−g0, is already calculated during the approximation steps.
As a result, we directly optimize the target L̂(θ)+α′R

(1)
ρ (θ)+ β′R

(0)
ρ′ (θ) with hyper-parameter α′, β′. The gradient of

the target can be approximated as

∇
(
L̂(θ) + α′R(1)

ρ (θ) + β′R
(0)
ρ′ (θ)

)
≈ g0+

α′ρ

ρ′
(g3−g2)+β′(g1−g0) = β′g1+

α′ρ

ρ′
g3−(β′−1)g0−

α′ρ

ρ′
g2, (43)

which means that the gradient of our target is a linear combination of g0, g1, g2, g3. We further set three hyper-
parameters to control the importance of these parts and preserve the signs of different parts, i.e.,

∇
(
L̂(θ) + α′R(1)

ρ (θ) + β′R
(0)
ρ′ (θ)

)
≈ αg1 + (1− α)g3 − γ(βg0 + (1− β)g2) (44)

with 1 ≥ α, β ≥ 0, γ ≥ 0.

2. We find that the negative parts of Equation (44) may have side effects on the model’s convergence and performance, and
thus require fine-tuning of hyperparameters. Inspired by [69,86], we decompose βg0 +(1− β)g2 into components that
are parallel and orthogonal to αg1 + (1− α)g3. Specifically, we first let

h+ = αg1 + (1− α)g3, h− = βg0 + (1− β)g2 (45)

to denote the positive and negative parts in Equation (44), respectively. We then decompose the negative part h− into
two components that are parallel or orthogonal to h+ and we get h∥

− and h⊥
−. As a result, the final gradient is given by

h+ − γh⊥
−.


	. Introduction
	. Related Works
	. Preliminaries
	. Zeroth-Order Flatness

	. First-order Flatness and Optimization
	. First-order Flatness
	. Comparison with Zeroth-order Flatness
	. Gradient Norm Aware Minimization

	. Experiments
	. The Density of Local Minima
	. Training from Scratch
	CIFAR-10 and CIFAR-100
	ImageNet

	. Transfer Learning
	. Top Eigenvalues of Hessian and Hessian Trace
	. Computation Overhead
	. Visualization of Landscapes

	. Discussions
	. Omitted details in Section 4
	. Derivation of Equation (7)

	. Proofs
	. Proof of Lemma 4.1
	. Proof of Proposition 4.2
	. Proof of Proposition 4.3
	. Proof of Theorem 4.4

	. More Experimental Results and Details
	. More Results on Training from Scratch
	CIFAR-10 and CIFAR-100

	. Robustness to Label Noise
	. Detailed Results and Discussions about Computation Overhead
	. Ablation Study
	Influence of 
	Influence of 

	. Training Details and Selection of Hyperparameters
	Training Details of Training from Scratch Experiments
	Training Details of Transfer Learning Experiments


	. Further Acceleration of GAM

