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Figure 1. Examples of the proposed ImageNet-E dataset. In contrast to adversarial examples or datasets like ImageNet-C [21] who add
perturbation or corruptions to original images, we edit the object attributes with controls of backgrounds, sizes, positions and directions.

Abstract

Recent studies have shown that higher accuracy on Im-
ageNet usually leads to better robustness against differ-
ent corruptions. Therefore, in this paper, instead of fol-
lowing the traditional research paradigm that investigates
new out-of-distribution corruptions or perturbations deep
models may encounter, we conduct model debugging in in-
distribution data to explore which object attributes a model
may be sensitive to. To achieve this goal, we create a toolkit
for object editing with controls of backgrounds, sizes, po-
sitions, and directions, and create a rigorous benchmark
named ImageNet-E(diting) for evaluating the image clas-
sifier robustness in terms of object attributes. With our
ImageNet-E, we evaluate the performance of current deep
learning models, including both convolutional neural net-
works and vision transformers. We find that most models
are quite sensitive to attribute changes. A small change
in the background can lead to an average of 9.23% drop
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on top-1 accuracy. We also evaluate some robust models
including both adversarially trained models and other ro-
bust trained models and find that some models show worse
robustness against attribute changes than vanilla models.
Based on these findings, we discover ways to enhance at-
tribute robustness with preprocessing, architecture designs,
and training strategies. We hope this work can provide
some insights to the community and open up a new av-
enue for research in robust computer vision. The code
and dataset are available at https://github.com/

alibaba/easyrobust.

1. Introduction

Deep learning has triggered the rise of artificial intel-
ligence and has become the workhorse of machine intel-
ligence. Deep models have been widely applied in vari-
ous fields such as autonomous driving [27], medical sci-
ence [32], and finance [37]. With the spread of these tech-
niques, the robustness and safety issues begin to be essen-
tial, especially after the finding that deep models can be
easily fooled by negligible noises [15]. As a result, more
researchers contribute to building datasets for benchmark-
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ing model robustness to spot vulnerabilities in advance.
Most of the existing work builds datasets for evaluat-

ing the model robustness and generalization ability on out-
of-distribution data [6, 21, 29] using adversarial examples
and common corruptions. For example, the ImageNet-
C(orruption) dataset conducts visual corruptions such as
Gaussian noise to input images to simulate the possible pro-
cessors in real scenarios [21]. ImageNet-R(enditions) con-
tains various renditions (e.g., paintings, embroidery) of Im-
ageNet object classes [20]. As both studies have found that
higher accuracy on ImageNet usually leads to better robust-
ness against different domains [21,50]. However, most pre-
vious studies try to achieve this in a top-down way, such
as architecture design, exploring a better training strategy,
etc. We advocate that it is also essential to manage it in a
bottom-up way, that is, conducting model debugging with
the in-distribution dataset to provide clues for model repair-
ing and accuracy improvement. For example, it is interest-
ing to explore whether a bird with a water background can
be recognized correctly even if most birds appear with trees
or grasses in the training data. Though this topic has been
investigated in studies such as causal and effect analysis [8],
the experiments and analysis are undertaken on domain gen-
eralization datasets. How a deep model generalizes to dif-
ferent backgrounds is still unknown due to the vacancy of a
qualified benchmark. Therefore, in this paper, we provide
a detached object editing tool to conduct the model debug-
ging from the perspective of object attribute and construct a
dataset named ImageNet-E(diting).

The ImageNet-E dataset is a compact but challenging
test set for object recognition that contains controllable ob-
ject attributes including backgrounds, sizes, positions and
directions, as shown in Fig. 1. In contrast to ObjectNet [5]
whose images are collected by their workers via posing ob-
jects according to specific instructions and differ from the
target data distribution. This makes it hard to tell whether
the degradation comes from the changes of attribute or dis-
tribution. Our ImageNet-E is automatically generated with
our object attribute editing tool based on the original Im-
ageNet. Specifically, to change the object background, we
provide an object background editing method that can make
the background simpler or more complex based on diffusion
models [24, 46]. In this way, one can easily evaluate how
much the background complexity can influence the model
performance. To control the object size, position, and di-
rection to simulate pictures taken from different distances
and angles, an object editing method is also provided. With
the editing toolkit, we apply it to the large-scale ImageNet
dataset [41] to construct our ImageNet-E(diting) dataset. It
can serve as a general dataset for benchmarking robustness
evaluation on different object attributes.

With the ImageNet-E dataset, we evaluate the perfor-
mance of current deep learning models, including both con-

volutional neural networks (CNNs), vision transformers as
well as the large-scale pretrained CLIP [39]. We find that
deep models are quite sensitive to object attributes. For ex-
ample, when editing the background towards high complex-
ity (see Fig. 1, the 3rd row in the background part), the drop
in top-1 accuracy reaches 9.23% on average. We also find
that though some robust models share similar top-1 accu-
racy on ImageNet, the robustness against different attributes
may differ a lot. Meanwhile, some models, being robust un-
der certain settings, even show worse results than the vanilla
ones on our dataset. This suggests that improving robust-
ness is still a challenging problem and the object attributes
should be taken into account. Afterward, we discover ways
to enhance robustness against object attribute changes. The
main contributions are summarized as follows:

• We provide an object editing toolkit that can change
the object attributes for manipulated image generation.

• We provide a new dataset called ImageNet-E that can
be used for benchmarking robustness to different ob-
ject attributes. It opens up new avenues for research in
robust computer vision against object attributes.

• We conduct extensive experiments on ImageNet-E and
find that models that have good robustness on adversar-
ial examples and common corruptions may show poor
performance on our dataset.

2. Related Work
The literature related to attribute robustness benchmarks

can be broadly grouped into the following themes: robust-
ness benchmarks and attribute editing datasets. Existing ro-
bustness benchmarks such as ImageNet-C(orruption) [21],
ImageNet-R(endition) [20], ImageNet-Stylized [13] and
ImageNet-3DCC [29] mainly focus on the exploration of
the corrupted or out-of-distribution data that models may
encounter in reality. For instance, the ImageNet-R dataset
contains various renditions (e.g., paintings, embroidery) of
ImageNet object classes. ImageNet-C analyzes image mod-
els in terms of various simulated image corruptions (e.g.,
noise, blur, weather, JPEG compression, etc.). Attribute
editing dataset creation is a new topic and few studies
have explored it before. Among them, ObjectNet [5] and
ImageNet-9 (a.k.a. background challenge) [50] can be the
representative. Specifically, ObjectNet collects a large real-
world test set for object recognition with controls where
object backgrounds, rotations, and imaging viewpoints are
random. The images in ObjectNet are collected by their
workers who image objects in their homes. It consists of
313 classes which are mainly household objects. ImageNet-
9 mainly creates a suit of datasets that help disentangle the
impact of foreground and background signals on classifi-
cation. To achieve this goal, it uses coarse-grained classes
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Figure 2. Attribute editing with DDPMs. Give an input image and its corresponding object mask, the object is firstly removed with
inpainting operation to get the pure background image. Then, we leverage the diffusion process to edit the background image x0 and
object image coherently. ⊙ denotes the element-wise blending of these two images using the object mask. For background editing, the
background complexity objective function is added during the diffusion process (Alg. 1, line 5). For other object attributes editing, the
object image needs to be transformed first (Alg. 2, line 1).

with corresponding rectangular bounding boxes to remove
the foreground and then paste the cut area with other back-
grounds. It can be observed that there lacks a dataset that
can smoothly edit the object attribute.

3. Preliminaries
Since the editing tool is developed based on diffusion

models, let us first briefly review the theory of denoising
diffusion probabilistic models (DDPM) [24,46] and analyze
how it can be used to generate images.

According to the definition of the Markov Chain, one
can always reach a desired stationary distribution from a
given distribution along with the Markov Chain [14]. To
get a generative model that can generate images from ran-
dom Gaussian noises, one only needs to construct a Markov
Chain whose stationary distribution is Gaussian distribu-
tion. This is the core idea of DDPM. In DDPM, given a
data distribution x0 ∼ q(x0), a forward noising process
produces a series of latents x1, ...,xT of the same dimen-
sionality as the data x0 by adding Gaussian noise with vari-
ance βt ∈ (0, 1) at time t:

q(xt|xt−1) = N (
√
1− βtxt−1, βtI), s.t. 0 < βt < 1,

(1)
where βt is the diffusion rate. Then the distribution
q(xt|x0) at any time t is:

q(xt|x0) = N (
√
ᾱt, (1− ᾱt)I), xt =

√
ᾱtx0 +

√
1− ᾱtϵ

(2)
where ᾱt =

∏t
s=1(1 − βt), ϵ ∼ N (0, I). It can be proved

that limt→∞ q(xt) = N (0, I). In other words, we can
map the original data distribution into a Gaussian distribu-
tion with enough iterations. Such a stochastic forward pro-
cess is named as diffusion process since what the process
q(xt|xt−1) does is adding noise to xt−1.

To draw a fresh sample from the distribution q(x0), the
Markov process is reversed. That is, beginning from a

Gaussian noise sample xT ∼ N (0, I), a reverse sequence
is constructed by sampling the posteriors q(xt−1|xt). To
approximate the unknown function q(xt−1|xt), in DDPMs,
a deep model pθ is trained to predict the mean and the co-
variance of xt−1 given xt instead. Then the xt−1 can be
sampled from the normal distribution defined as:

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). (3)

In stead of inferring µθ(xt, t) directly, [24] propose to
predict the noise ϵθ(xt, t) which was added to x0 to get xt

with Eq. (2). Then µθ(xt, t) is:

µθ(xt, t) =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (4)

[24] keep the value of Σθ(xt, t) to be constant. As a result,
given a sample xt at time t, with a trained model that can
predict the noise ϵθ(xt, t), we can get µθ(xt, t) according to
Eq. (4) to reach the xt−1 with Equation (3) and eventually
we can get to x0.

Previous studies have shown that diffusion models can
achieve superior image generation quality compared to the
current state-of-the-art generative models [1]. Besides,
there have been plenty of works on utilizing the DDPMs
to generate samples with desired properties, such as seman-
tic image translation [36], high fidelity data generation from
low-density regions [44], etc. In this paper, we also choose
the DDPM adopted in [1] as our generator.

4. Attribute Editing with Diffusion Models and
ImageNet-E

Most previous robustness-related work has focused on
the important challenges of robustness on adversarial ex-
amples [6], common corruptions [21]. They have found
that higher clean accuracy usually leads to better robustness.



Therefore, instead of exploring a new corruption that mod-
els may encounter in reality, we pay attention to the model
debugging in terms of object attributes, hoping to provide
new insights to clean accuracy improvement. In the fol-
lowing, we describe our object attribute editing tool and the
generated ImageNet-E dataset in detail. The whole pipeline
can be found in Fig. 2.

4.1. Object Attribute Editing with Diffusion Models

Background editing. Most existing corruptions conduct
manipulations on the whole image, as shown in Fig. 1.
Compared to adding global corruptions that may hinder the
visual quality, a more likely-to-happen way in reality is to
manipulate the backgrounds to fool the model. Besides, it is
shown that there exists a spurious correlation between labels
and image backgrounds [12]. From this point, a background
corruption benchmark is needed to evaluate the model’s
robustness. However, the existing background challenge
dataset achieves background editing with copy-paste opera-
tion, resulting an obvious artifacts in generated images [50].
This may leave some doubts about whether the evaluation
is precise since the dataset’s distribution may have changed.
To alleviate this concern, we adopt DDPM approach to in-
corporate background editing by adding a guiding loss that
can lead to backgrounds with desired properties to make
the generated images stay in/close to the original distribu-
tion. Specifically, we choose to manipulate the background
in terms of texture complexity due to the hypothesis that an
object should be observed more easily from simple back-
grounds than from complicated ones. In general, the tex-
ture complexity can be evaluated with the gray-level co-
occurrence matrix (GLCM) [16], which calculates the gray-
level histogram to show the texture characteristic. However,
the calculation of GLCM is non-differentiable, thus it can-
not serve as the conditional guidance of image generation.
We hypothesize that a complex image should contain more
frequency components in its spectrum and higher amplitude
indicates greater complexity. Thus, we define the objective
of complexity as:

Lc =
∑

|A(F(x))| , (5)

where F is the Fourier transform [45], A extracts the am-
plitude of the input spectrum. x is the evaluated image.
Since minimizing this loss helps us generate an image with
desired properties and should be conducted on the x0, we
need a way of estimating a clean image x0 from each noisy
latent representation xt during the denoising diffusion pro-
cess. Recall that the process estimates at each step the noise
ϵθ(xt, t) added to x0 to obtain xt. Thus, x̂0 can be esti-
mated via Equation (6) [1]. The whole optimization proce-
dure is shown in Algorithm 1.

x̂0 =
xt√
ᾱt

−
√
1− ᾱtϵθ(xt, t)√

ᾱt
. (6)

As shown in Fig. 3(a), with the proposed method, when
we guide the generation procedure with the proposed ob-
jective towards the complex direction, it will return images
with visually complex backgrounds. We also provide the
GLCM dissimilarity and contrast of each image to make a
quantitative analysis of the generated images. A higher dis-
similarity/contrast score indicates a more complex image
background [16]. It can be observed that the complexity is
consistent with that calculated with GLCM, indicating the
effectiveness of the proposed method.
Controlling object size, position and direction. In gen-
eral, the human vision system is robust to position, direc-
tion and small size changes. Whether the deep models
are also robust to these object attribute changes is still un-
known to researchers. Therefore, we conduct the image
editing with controls of object sizes, positions and direc-
tions to find the answer. For a valid evaluation on differ-
ent attributes, all other variables should remain unchanged,
especially the background. Therefore, we first disentangle
the object and background with the in-painting strategy pro-
vided by [54]. Specifically, we mask the object area in in-
put image x. Then we conduct in-painting to remove the
object and get the pure background image xb, as shown in
Fig. 3(b) column 3. To realize the aforementioned object
attribute controlling, we adopt the orthogonal transforma-
tion. Denote P as the pixel locations of object in image x
where P ∈ R3×No . No is the number of pixels belong to
object and pi = [xi, yi, 1]

T is the position of object’s i-th
pixel. h′ ∈ [0, H − h], w′ ∈ [0,W − w] where [x, y, w, h]
stand for the enclosing rectangle of the object with mask
M . Then the newly edited x[Tattribute · P ] = x[P ] and
M [Tattribute · P ] = M [P ], where

Tsize =

s 0 ∆x
0 s ∆y
0 0 1

 , Tposition =

1 0 w′

0 1 h′

0 0 1

 , Tdirection =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

(7)

where s is the resize scale. θ is the rotation angle. ∆x =
(1− s) · (x+ w/2),∆y = (1− s) · (y + h/2).

With the background image xb and edited object xo,
a naive way is to place the object in the original im-
age to the corresponding area of background image xb as
M ⊙ xo + (1 − M) ⊙ xb. However, the result generated
in this manner may look disharmonic, lacking a delicate
adjustment to blending them together. Besides, as shown
in Fig. 3(b) column 3, the object-removing operation may
leave some artifacts behind, failing to produce a coherent
and seamless result. To deal with this problem, we lever-
age DDPM models to blend them at different noise levels
along the diffusion process. Denote the image with de-
sired object attribute as xo. Starting from the pure back-
ground image xb at time t0, at each stage, we perform a
guided diffusion step with a latent xt to obtain the xt−1 and
at the same time, obtain a noised version of object image
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Figure 3. (a) Images generated with the proposed background complexity editing method. (b) Edited images with size changing. The
Fréchet inception distance (FID) for pasting is 50.64 while it is 32.59 for ours, indicating the effectiveness of the leveraging of DDPMs.

Algorithm 1: Background editing
input : source image x, mask M , diffusion model

(µθ(xt),Σθ(xt)), ᾱt, λ, iteration steps t0
output: edited image x0

1 xt0 ∼ N (
√
ᾱt0x, (1− ᾱt0)I);

2 for t← t0 to 1 do
3 x̂0 ← xt√

ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt
;

4 ∇bg ← ∇x̂0Lc(x̂0);
5 xb

t−1 ∼ N (µθ(xt) + λΣθ(xt)∇bg,Σθ(xt));
6 xo ∼ N (

√
ᾱtx, (1− ᾱt)I);

7 xt−1 ←M ⊙ xo + (1−M)⊙ xb
t−1;

8 end

xo
t−1. Then the two latents are blended with the mask M as

xt−1 = M ⊙ xo
t−1 + (1−M)⊙ xt−1. The DDPM denois-

ing procedure may change the background. Thus a proper
initial timing is required to maintain a high resemblance to
the original background. We set the iteration steps t0 as 50
and 25 in Algorithm 1 and 2 respectively.

4.2. ImageNet-E dataset

With the tool above, we conduct object attribute edit-
ing including background, size, direction and position
changes based on the large-scale ImageNet dataset [41] and
ImageNet-S [11], which provides the mask annotation. To
guarantee the dataset quality, we choose the animal classes
from ImageNet classes such as dogs, fishes and birds, since
they appear more in nature without messy backgrounds.
Classes such as stove and mortarboard are removed. Fi-
nally, our dataset consists of 47872 images with 373 classes
based on the initial 4352 images, each of which is applied
11 transforms. Detailed information can be found in Ap-
pendix A. For background editing, we choose three levels
of the complexity, including λ = −20, λ = 20 and λ =
20-adv with adversarial guidance (see Sec.B for details) in-
stead of complexity. Larger λ indicates stronger guidance
towards high complexity. For the object size, we design

Algorithm 2: Object size controlling
input : source image x, mask M , diffusion model

(µθ(xt),Σθ(xt)), ᾱt, iteration steps t0, ratio s
output: edited image x0

1 xb ← ObjectRemoving(x,M );
2 x,M ← Rescale (x,M, s);
3 xt0 ∼ N (

√
ᾱt0x

b, (1− ᾱt0)I);
4 for t← t0 to 1 do
5 xb

t−1 ∼ N (µθ(xt),Σθ(xt));
6 xo ∼ N (

√
ᾱtx, (1− ᾱt)I);

7 xt−1 ←M ⊙ xo + (1−M)⊙ xb
t−1;

8 end

four levels of sizes in terms of the object pixel rates (=
sum(M > 0.5)/sum(M ≥ 0)): [Full, 0.1, 0.08, 0.05]
where ‘Full’ indicates making the object as large as possible
while maintaining its whole body inside the image. Smaller
rates indicate smaller objects. For object position, we find
that some objects hold a high object pixel rate in the whole
image, resulting in a small H − h. Take the first picture
in Fig. 3 for example, the dog is big and it will make little
visual differences after position changing. Thus, we adopt
the data whose pixel rate is 0.05 as the initial images for the
position-changing operation.

In contrast to benchmarks like ImageNet-C [21] giving
images from different domains so that the model robust-
ness in these situations may be assessed, our effort aims
to give an editable image tool that can conduct model de-
bugging with in-distribution (ID) data, in order to iden-
tify specific shortcomings of different models and provide
some insights for clean accuracy improving. Thus, the data
distribution should not differ much from the original Im-
ageNet. We choose the out-of-distribution (OOD) detec-
tion methods Energy [33] and GradNorm [26] to evaluate
whether our editing tool will move the edited image out
of its original distribution. These OOD detection methods
aim to distinguish the OOD examples from the ID exam-



Figure 4. Distributions of ID score of different datasets in terms of the quantities in Energy (the first row) and GradNorm (the second row)
for in-distribution (ImageNet) and other datasets. Higher overlap indicates greater proximity to ImageNet.

ples. The results are shown in Fig. 4. x-axis is the ID
score in terms of the quantities in Energy and GradNorm
and y-axis is the frequency of each ID score. A high ID
score indicates the detection method takes the input sam-
ple as the ID data. Compared to other datasets, our method
barely changes the data distribution under both Energy (the
1st row) and GradNorm (the 2nd row) evaluation methods.
Besides, the Fréchet inception distance (FID) [23] for our
ImageNet-E is 15.57 under the random background setting,
while it is 34.99 for ImageNet-9 (background challenge).
These all imply that our editing tool can ensure the prox-
imity to the original ImageNet, thus can give a controlled
evaluation on object attribute changes. To find out whether
the DDPM will induce some degradation to our evaluation,
we have conducted experiment in Tab. 1 with the setting
λ = 0 during background editing. This operation will first
add noises to the original and then denoise them. It can be
found in “Inver” column that the degradation is negligible
compared to degradation induced by attribute changes.

5. Experiments

We conduct evaluation experiments on various ar-
chitectures including both CNNs (ResNet (RN) [19],
DenseNet [25], EfficientNet (EF) [47], ResNest [53],
ConvNeXt [35]) and transformer-based models (Vision-
Transformer (ViT) [9], Swin-Transformer (Swin) [34]).
Other state-of-the-art models that trained with extra data
such as CLIP [39], EfficientNet-L2-Noisy-Student [51] are
also evaluated in the Appendix. Apart from different sizes
of these models, we have also evaluated their adversarially
trained versions for comprehensive studies. We report the
drop of top-1 accuracy as metric based on the idea that the
attribute changes should induce little influence to a robust
trained model. More experimental details and results of top-
1 accuracy can be found in the Appendix.

5.1. Robustness evaluation

Normally trained models. To find out whether the widely
used models in computer vision have gained robustness
against changes on different object attributes, we conduct
extensive experiments on different models. As shown
in Tab. 1, when only the background is edited towards
high complexity, the average drop in top-1 accuracy is
9.23% (λ = 20). This indicates that most models are sensi-
tive to object background changes. Other attribute changes
such as size and position can also lead to model perfor-
mance degradation. For example, when changing the object
pixel rate to 0.05, as shown in Fig. 1 row 4 in the ‘size’ col-
umn, while we can still recognize the image correctly, the
performance drop is 18.34% on average. We also find that
the robustness under different object attributes is improved
along with improvements in terms of clean accuracy (Orig-
inal) on different models. Accordingly, a switch from an
RN50 (92.69% top-1 accuracy) to a Swin-S (96.21%) leads
to the drop in accuracy decrease from 15.72% to 10.20%
on average. By this measure, models have become more
and more capable of generalizing to different backgrounds,
which implies that they indeed learn some robust features.
This shows that object attribute robustness can be a good
way to measure future progress in representation learning.
We also observe that larger networks possess better ro-
bustness on the attribute editing. For example, swapping
a Swin-S (96.21% top-1 accuracy) with the larger Swin-
B (95.96% top-1 accuracy) leads to the decrease of the
dropped accuracy from 10.20% to 8.99% when λ = 20.
In a similar fashion, a ConvNeXt-T (9.32% drop) is less
robust than the giant ConvNeXt-B (7.26%). Consequently,
models with even more depth, width, and feature aggrega-
tion may attain further attribute robustness. Previous stud-
ies [30] have shown that zero-shot CLIP exhibits better out-
of-distribution robustness than the finetuned CLIP, which is
opposite to our ImageNet-E as shown in Tab. 1. This may
serve as the evidence that our ImageNet-E has a good prox-
imity to ImageNet. We also find that compared with fully-



supervised trained model under the same backbone (ViT-
B), the CLIP fails to show a better attribute robustness. We
think this may be caused by that the CLIP has spared some
capacity for OOD robustness.

HF

All

Original

HF

All

Original

Figure 5. Comparisons between vanilla models and adversari-
ally trained models across different architectures in terms of size
changes (left). Evaluation of adversarial models (RN50) trained
with different perturbation budgets is provided in the right figure.

Adversarially trained models. Adversarial training [42]
is one of the state-of-the-art methods for improving the ad-
versarial robustness of deep models and has been widely
studied [2]. To find out whether they can boost the attribute
robustness, we conduct extensive experiments in terms of
different architectures and perturbation budgets (constraints
of l2 norm bound). As shown in Fig. 5, the adversarially
trained ones are not robust against attribute changes includ-
ing both backgrounds and size-changing situations. The
dropped accuracies are much greater compared to normally
trained models. As the perturbation budget grows, the sit-
uation gets worse. This indicates that adversarial training
can do harm to robustness against attributes.

5.2. Robustness enhancements

Based on the above evaluations, we step further to dis-
cover ways to enhance the attribute robustness in terms of
preprocessing, network design and training strategies. More
details including training setting and numerical experimen-
tal results can be found in Appendix C.5.
Preprocessing. Given that an object can be inconspicuous
due to its small size or subtle position, viewing an object at
several different locations may lead to a more stable predic-
tion. Having this intuition in mind, we perform the classical
Ten-Crop strategy to find out if this operation can help to
get a robustness boost. The Ten-Crop operation is executed
by cropping all four corners and the center of the input im-
age. We average the predictions of these crops together with
their horizontal mirrors as the final result. We find this oper-
ation can contribute a 0.69% and 1.24% performance boost
on top-1 accuracy in both background and size changes sce-
narios on average respectively.
Network designs. Intuitively, a robust model should tend
to focus more on the object of interest instead of the back-
ground. Therefore, recent models begin to enhance the
model by employing attention modules. Of these, the

ResNest [53] can be a representative. The ResNest is a
modularized architecture, which applies channel-wise at-
tention on different network branches to leverage their suc-
cess in capturing cross-feature interactions and learning di-
verse representations. As it has achieved a great boost in the
ImageNet dataset, it also shows superiority on ImageNet-E
compared to ResNet. For example, a switch from RN50
decreases the average dropped accuracy from 15.72% to
12.57%. This indicates that the channel-wise attention mod-
ule can be a good choice to improve the attribute robustness.
Another representative model can be the vision transformer,
which consists of multiple self-attention modules. To study
whether incorporating transformer’s self-attention-like ar-
chitecture into the model design can help attribute robust-
ness generalization, we establish a hybrid architecture by
directly feeding the output of res 3 block in RN50 into ViT-
S as the input feature like [3]. The dropped accuracy de-
creases by 1.04% compared to the original RN50, indicating
the effectiveness of the self-attention-like architectures.

Training strategy. a) Robust trained. There have been
plenty of studies focusing on the robust training strategy to
improve model robustness. To find out whether these works
can boost the robustness on our dataset, we further evaluate
these state-of-the-art models including SIN [13], Debiased-
CNN [31], Augmix [22], ANT [40], DeepAugment [20] and
model trained with lots of standard augmentations (RN50-
T) [48]. As shown in Tab. 2, apart from the RN50-T, while
the Augmix model shows the best performance against the
background change scenario, the Debiased model holds the
best in the object size change scenario. What we find unex-
pectedly is the SIN performance. The SIN method features
the novel data augmentation scheme where ImageNet im-
ages are stylized with style transfer as the training data to
force the model to rely less on textural cues for classifica-
tion. Though the robustness boost is achieved on ImageNet-
C (mCE 69.32%) compared to its vanilla model (mCE
76.7%), it fails to improve the robustness in both object
background and size-changing scenarios. The drops of top-
1 accuracy for vanilla RN50 and RN50-SIN are 21.26%
and 24.23% respectively, when the object size rate is 0.05,
though they share similar accuracy on original ImageNet.
This indicates that existing benchmarks cannot reflect the
real robustness in object attribute changing. Therefore, a
dataset like ImageNet-E is necessary for comprehensive
evaluations on deep models. b) Masked image modeling.
Considering that masked image modeling has demonstrated
impressive results in self-supervised representation learn-
ing by recovering corrupted image patches [4], it may be
robust to the attribute changes. Therefore, we choose the
Masked AutoEncoder (MAE) [17] as the training strat-
egy since its objective is recovering images with only 25%
patches. Specifically, we adopt the MAE training strategy
with ViT-B backbone and then finetune it with ImageNet



Table 1. Evaluations with different state-of-the-art models in terms of Top-1 accuracy and the corresponding drop of accuracy under
background changes, size changes, random position (rp) and random direction (rd).

Models Original Background changes Size changes Position Direction Avg.Inver λ = −20 λ = 20 λ = 20-adv Random Full 0.1 0.08 0.05 rp rd
RN50 92.69% 1.97% 7.30% 13.35% 29.92% 13.34% 2.71% 7.25% 10.51% 21.26% 26.46% 25.12% 15.72%

DenseNet121 92.10% 1.49% 6.29% 9.00% 29.20% 12.43% 3.50% 7.00% 10.68% 21.55% 26.53% 23.64% 14.98%
EF-B0 92.85% 1.07% 7.10% 10.71% 34.88% 15.64% 3.03% 8.00% 11.57% 23.28% 27.91% 19.11% 16.12%

ResNest50 95.38% 1.44% 6.33% 8.98% 26.62% 11.28% 2.53% 5.27% 8.01% 18.03% 21.37% 17.32% 12.57%
ViT-S 94.14% 0.82% 6.42% 8.98% 31.12% 13.06% 0.80% 5.37% 8.59% 17.37% 22.86% 17.13% 13.17%

Swin-S 96.21% 1.13% 5.18% 7.33% 23.50% 9.31% 1.27% 4.21% 6.29% 14.16% 17.35% 13.42% 10.20%
ConvNeXt-T 96.07% 1.43% 4.69% 6.26% 19.83% 7.93% 1.75% 3.28% 5.18% 12.76% 15.71% 15.78% 9.32%

RN101 94.00% 2.11% 7.05% 11.62% 29.47% 13.57% 2.57% 6.81% 10.12% 20.65% 25.85% 24.42% 15.21%
DenseNet169 92.37% 1.12% 5.81% 8.43% 27.51% 11.61% 2.25% 6.90% 10.41% 20.59% 24.93% 20.68% 13.91%

EF-B3 94.97% 1.87% 7.77% 8.40% 29.90% 12.92% 1.36% 6.80% 10.16% 21.36% 24.98% 17.24% 14.09%
ResNest101 95.54% 1.10% 5.58% 6.65% 23.03% 10.40% 1.35% 3.97% 6.53% 15.44% 19.11% 14.31% 10.64%

ViT-B 95.38% 0.83% 5.32% 8.43% 26.60% 10.98% 0.62% 4.00% 6.30% 14.51% 18.82% 14.95% 11.05%
Swin-B 95.96% 0.79% 4.46% 6.23% 21.44% 8.25% 0.99% 3.16% 5.04% 12.34% 15.38% 12.60% 8.99%

ConvNeXt-B 96.42% 0.69% 3.75% 4.86% 16.49% 6.04% 0.99% 2.25% 3.36% 9.47% 12.40% 13.01% 7.26%
CLIP-zeroshot 80.01% 4.88% 11.56% 15.28% 36.14% 20.09% 3.33% 12.67% 15.77% 25.31% 28.87% 21.57% 19.06%
CLIP-finetuned 93.68% 2.17% 9.82% 11.83% 38.33% 18.19% 9.06% 9.25% 12.67% 23.32% 28.56% 22.00% 18.30%

Table 2. Evaluations with different robust models in terms of Top-1 accuracy and the corresponding dropped accuracy.

Architectures Ori Background changes Size changes Position Direction Avg.Inver λ = −20 λ = 20 λ = 20-adv Random Full 0.1 0.08 0.05 rp rd
RN50 92.69% 1.97% 7.30% 13.35% 29.92% 13.34% 2.71% 7.25% 10.51% 21.26% 26.46% 25.12% 15.72%

RN50-Adversarial 81.96% 0.66% 4.75% 13.62% 37.87% 15.25% 4.87% 9.62% 13.94% 25.51% 32.51% 31.96% 18.99%
RN50-SIN 91.57% 2.23% 7.61% 12.19% 33.16% 13.58% 1.68% 8.30% 12.60% 24.23% 29.16% 27.24% 16.98%

RN50-Debiased 93.34% 1.43% 6.09% 11.45% 27.99% 12.12% 1.98% 5.53% 8.76% 19.27% 24.01% 24.97% 14.22%
RN50-Augmix 93.50% 0.98% 6.26% 8.38% 30.49% 12.94% 1.61% 6.40% 9.97% 21.42% 27.14% 22.42% 14.70%

RN50-ANT 91.87% 1.68% 6.62% 11.94% 35.66% 15.36% 1.57% 7.12% 10.62% 21.49% 26.66% 25.23% 16.23%
RN50-DeepAugment 92.88% 1.50% 6.62% 12.37% 32.40% 13.32% 1.36% 7.27% 10.62% 21.28% 26.28% 21.29% 15.28%

RN50-T 94.55% 1.05% 5.65% 7.38% 21.89% 10.42% 2.11% 4.74% 7.83% 17.46% 21.12% 19.60% 11.82%

training data. We find that the robustness is improved. For
example, the dropped accuracy decreases from 10.62% to
9.05% on average compared to vanilla ViT-B.

5.3. Failure case analysis

To explore the reason why some robust trained mod-
els may fail, we leverage the LayerCAM [28] to generate
the heat map for different models including vanilla RN50,
RN50+SIN and RN50+Debiased for comprehensive stud-
ies. As shown in Fig. 6, the heat map of the Debiased model
aligns better with the objects in the image than that of the
original model. It is interesting to find that the SIN model
sometimes makes wrong predictions even with its attention
on the main object. We suspect that the SIN model relies too
much on the shape. for example, the ‘sea urchin’ looks like
the ‘acron’ with the shadow. However, its texture clearly in-
dicates that it is the ‘sea urchin’. In contrast, the Debiased
model which is trained to focus on both the shape and tex-
ture can recognize it correctly. More studies can be found
in Appendix C.4.

5.4. Model repairing

To validate that the evaluation on ImageNet (IN)-E can
help to provide some insights for model’s applicability and
enhancement, we conduct a toy example for model repair-

SINEdited DebiasedVanillaOriginal

Figure 6. Heat maps for explaining which parts of the image dom-
inate the model decision through LayerCAM [28].

ing. Previous evaluation shows that the ResNet50 is vul-
nerable to background changes. Based on this observation,
we randomly replace the backgrounds of objects with oth-
ers during training and get a validation accuracy boost from
77.48% to 79.00%. Note that the promotion is not small as
only 8781 training images with mask annotations are avail-
able in ImageNet. We also step further to find out if the
improved model can get a boost the OOD robustness, as
shown in the Tab. 3. It can be observed that with the in-
sights provided by the evaluation on ImageNet-E, one can
explore the model’s attribute vulnerabilities and manage to



repair the model and get a performance boost accordingly.

Table 3. Model repairing results. Top-1 accuracy (%) is reported
except for IN-C, which is mCE (mean Corruption Error). Higher
top-1 accuracy and lower mCE indicate better performance. IN-E
reports the average accuracy on ImageNet-E.

Models IN IN-v2 IN-A IN-C↓ IN-R IN-Sketch IN-E
RN50 77.5 65.7 6.5 68.6 39.6 27.5 83.7

RN50-repaired 79.0 67.2 9.4 65.8 40.7 29.4 85.0

6. Conclusion and Future work
In this paper, we put forward an image editing toolkit

that can take control of object attributes smoothly. With
this tool, we create a new dataset called ImageNet-E that
can serve as a general dataset for benchmarking robust-
ness against different object attributes. Extensive evalua-
tions conducted on different state-of-the-art models show
that most models are vulnerable to attribute changes, es-
pecially the adversarially trained ones. Meanwhile, other
robust trained models can show worse results than vanilla
models even when they have achieved a great robustness
boost on other robustness benchmarks. We further discover
ways for robustness enhancement from both preprocessing,
network designing and training strategies.

Limitations and future work. This paper proposes to edit
the object attributes in terms of backgrounds, sizes, posi-
tions and directions. Therefore, the annotated mask of the
interest object is required, resulting in a limitation of our
method. Besides, since our editing toolkit is developed
based on diffusion models, the generalization ability is de-
termined by DDPMs. For example, we find synthesizing
high-quality person images is difficult for DDPMs. Un-
der the consideration of both the annotated mask and data
quality, our ImageNet-E is a compact test set. In our future
work, we would like to explore how to leverage the edited
data to enhance the model’s performance, including both
the validation accuracy and robustness.
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strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 7

[49] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim,
Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gon-
tijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok
Namkoong, et al. Robust fine-tuning of zero-shot models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7959–7971, 2022. 18

[50] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander
Madry. Noise or signal: The role of image backgrounds in
object recognition. Proceedings of the International Confer-
ence on Learning Representations, 2021. 2, 4

[51] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet
classification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10687–
10698, 2020. 6, 18

[52] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653–9663, 2022. 16



[53] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu,
Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller,
R Manmatha, et al. Resnest: Split-attention networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2736–2746, 2022. 6,
7

[54] Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai, and Dinh
Phung. Bridging global context interactions for high-fidelity
image completion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11512–11522, June 2022. 4

[55] Yao Zhu, Yuefeng Chen, Xiaodan Li, Kejiang Chen, Yuan
He, Xiang Tian, Bolun Zheng, Yaowu Chen, and Qing-
ming Huang. Toward understanding and boosting adversarial
transferability from a distribution perspective. IEEE Trans-
actions on Image Processing, 31:6487–6501, 2022. 17



A. Details for ImageNet-E

To guarantee the visual quality of the generated exam-
ples, we choose the animal classes from ImageNet since
they appear more in nature without messy backgrounds.
Specifically, images whose coarse labels in [fish, shark,
bird, salamander, frog, turtle, lizard, crocodile, dinosaur,
snake, trilobite, arachnid, ungulate, monotreme, marsu-
pial, coral, mollusk, crustacean, marine mammals, dog,
wild dog, cat, wild cat, bear, mongoose, butterfly, echin-
oderms, rabbit, rodent, hog, ferret, armadillo,primate] are
picked. The corresponding coarse labels of each class we
refer to can be found in [10]1. Finally, our ImageNet-E
consists of 373 classes. Since the number of masks pro-
vided in ImageNet-S [11] in these classes is 4352, thus
the number of images in each edited kind is 4352. The
ImageNet-E contains 11 kinds of attributes editing, includ-
ing 5 kinds of background editing and 4 kinds of size edit-
ing, as well as one kind of position editing and one kind of
direction editing. Finally, our ImageNet-E contains 47872
images. Experiments on more images can be found in sec-
tion C.3. The comprehensive comparisons with the state-
of-the-art robustness benchmarks are shown in Figure 7. In
contrast to other benchmarks that investigate new out-of-
distribution corruptions or perturbations deep models may
encounter, w conduct model debugging with in-distribution
data to explore which object attributes a model may be sen-
sitive to. The examples in ImageNet-E are shown in Fig-
ure 9. A demo video for our editing toolkit can be found
at this url:https://drive.google.com/file/d/
1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?
usp=sharing. Our code can be found at an anony-
mous url: https://huggingface.co/spaces/
Anonymous-123/ImageNet-Editing.

Benchmarks Description Classes Samples

ImageNet-A
Challenging examples 

collected by-hand 200

ImageNet-C
Corruptions added on 

images 1000

ImageNet-R
Various renditions of 

ImageNet object classes 200

ImageNet-3DCC 3D common corruptions 1000

ImageNet-9
Images whose objects and 

backgrounds are 
disentangled with bbox

370

ImageNet-E
Images with attribute-

edited objects 373

Figure 7. Benchmark comparison.

1https://github.com/noameshed/novelty-
detection/blob/master/imagenet categories synset.csv

HF

All

Original

HF

All

Original

Figure 8. Comparisons between the amplitude supervision on
high-frequency components (HF) and amplitude supervision on all
frequency components (All).

B. Background editing

Intuitively, an image with complicated background tends
to contain more high-frequency components, such as edges.
Therefore, a straight-forward way is to define the back-
ground complexity as the amplitude of high-frequency com-
ponents. However, this operation can result in noisy back-
grounds, instead of the ones with complicated textures.
Therefore, we directly define complexity as the amplitude
of all frequency components. The compared results are
shown in Figure 8. It can be observed that the amplitude su-
pervision on high-frequency components tends to make the
model generate images with more noise. In contrast, am-
plitude supervision on all frequency components can help
to generate images with texture-complex backgrounds. To
edit the background adversarially, we set Lc = CE(f(x), y)
where ‘CE’ is the cross entropy loss. f and y are the clas-
sifier and label of x respectively. We adopt the classifier f
from guided-diffusion2.

C. Experimental details

C.1. Details for metrics

In this paper, we care more about how different attributes
impact different models. Therefore, we choose the drop of
top-1 accuracy as our evaluation metric. A lower dropped
accuracy indicates higher robustness against our attribute

2https://github.com/openai/guided-diffusion

https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://drive.google.com/file/d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing
https://huggingface.co/spaces/Anonymous-123/ImageNet-Editing
https://huggingface.co/spaces/Anonymous-123/ImageNet-Editing


Figure 9. Samples from ImageNet-E. From left to right, top to bottom, the images stand for background editing with λ = −20, λ = 20,
λ = 20-adv, randomly shuffled backgrounds, size editing with rate 0.1 and 0.05, randomly rotate, random position, randomly rotate based
on images with object pixel rate 0.05 respectively.
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Figure 10. Attribute editing with DDPMs. Give an input image and its corresponding object mask, the object is firstly removed with
inpainting operation to get the pure background image. Then, we leverage the diffusion process to edit the background image x0 and
object image coherently. ⊙ denotes the element-wise blending of these two images using the object mask. For background editing, the
background complexity objective function is added during the diffusion process (Alg. 1, line 5). For other object attributes editing, the
object image needs to be transformed first (Alg. 2, line 1).

changes. The dropped accuracy is defined as:

DA = accoriginal − acc. (8)

The detailed top-1 accuracy (Top-1) and dropped accu-
racy (DA)on our ImageNet-E are listed in Table 4, Table 5
and Table 6, Table 7. All the experiments are conducted for
5 runs and we report the mean value in the tables.

C.2. Classes whose accuracy drops the greatest

To find out which class gets the worst robustness against
attribute changes, we plot the dropped accuracy in Fig-
ure 11. The evaluated models are vanilla RN50 and its
Debiased model. It can be observed that objects that have
tentacles with simple backgrounds are more easily to be at-
tacked. For example, the dropped accuracy of the ‘black
widow’ class reaches 47% for both vanilla and Debiased
models. In contrast, the impact is smaller for images with
complicated backgrounds such as pictures from ‘squirrel
monkey’.

C.3. Experiments on more data

To explore the model robustness against object attributes
on large-scale datasets, we step further to conduct the im-
age editing on all the images in the ImageNet-S validation
set. Finally, the edited dataset ImageNet-E-L shares the
same size as ImageNet-S, which consists of 919 classes
and 10919 images. We conduct both background edit-
ing and size editing to them. The evaluation results are
shown in Table 8. The same conclusion can also be ob-
served. For instance, most models show vulnerability
against attribute changing since the average dropped accu-
racies reach 12.22% and 22.21% in background and size
changes respectively. When the model gets larger, the ro-
bustness is improved. The consistency implies that using
our ImageNet-E can already reflect the model robustness
against object attribute changes.

C.4. Bad case analysis

To make a comprehensive study of how the model be-
haves, we step further to make a comparison of the heat
maps of the originals and edited ones. We choose the
images that are recognized correctly at first but misclassi-
fied after editing. All the attributes editing including back-
ground, size, directions are explored. The heat maps are
visualized in Figure 12. It can be observed that compared
to the SIN and Debiased models, the vanilla RN50 is more
likely to lose its focus on the interest area, especially in the
size change scenario. For example, in the second row, as
it puts his focus on the background, it returns a result with
the ‘nail’ label. The same fashion is also observed in the
background change scenario. The predicted label of ‘night
snake’ turns into ‘spider web’ as the complex background
has attracted its attention. In contrast, the SIN and Debi-
ased models have robust attention mechanisms. The quan-
titative results in Table 5 also validate this. The dropped
accuracy of RN50 (13.35%) is higher than SIN (12.19%)
and Debiased (11.45%) even though the original accuracy
of SIN (0.9157) is lower than vanilla RN50 (0.9269). How-
ever, the SIN also has its weakness. We find that though the
SIN pays attention to the desired region, it can also make
wrong predictions. As shown in the second row of Fig-
ure 12, when the object size gets smaller, the shape-based
SIN model tends to make wrong predictions, e.g., mistaking
the ‘sea urchin’ as ’acorn’ due to the lack of texture anal-
ysis. As a result, the dropped accuracy in the size change
scenario is 24.23% for SIN, even lower than vanilla RN50,
whose dropped accuracy is 21.26%. On the contrary, the
Debiased model can recognize it correctly, profiting from
its shape and texture-biased module. From the above obser-
vation, we can conclude that the texture matters in the small
object scenario.



Table 4. Evaluations under different backgrounds.

Models
Ori Inver λ = −20 λ = 20 λ = 20-Adv Random

Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA
RN50 92.69% 90.72% 1.97% 85.39% 7.30% 79.34% 13.35% 62.77% 29.92% 79.35% 13.34%

DenseNet121 92.10% 90.61% 1.49% 85.81% 6.29% 83.10% 9.00% 62.90% 29.20% 79.67% 12.43%
EF-B0 92.85% 91.78% 1.07% 85.75% 7.10% 82.14% 10.71% 57.97% 34.88% 77.21% 15.64%

ResNest50 95.38% 93.94% 1.44% 89.05% 6.33% 86.40% 8.98% 68.76% 26.62% 84.10% 11.28%
ViT-S 94.14% 93.32% 0.82% 87.72% 6.42% 85.16% 8.98% 63.02% 31.12% 81.08% 13.06%

Swin-S 96.21% 95.08% 1.13% 91.03% 5.18% 88.88% 7.33% 72.71% 23.50% 86.90% 9.31%
ConvNeXt-T 96.07% 94.64% 1.43% 91.38% 4.69% 89.81% 6.26% 76.24% 19.83% 88.14% 7.93%

RN101 94.00% 91.89% 2.11% 86.95% 7.05% 82.38% 11.62% 64.53% 29.47% 80.43% 13.57%
DenseNet169 92.37% 91.25% 1.12% 86.56% 5.81% 83.94% 8.43% 64.86% 27.51% 80.76% 11.61%

EF-B3 94.97% 93.10% 1.87% 87.20% 7.77% 86.57% 8.40% 65.07% 29.90% 82.05% 12.92%
ResNest101 95.54% 94.44% 1.10% 89.96% 5.58% 88.89% 6.65% 72.51% 23.03% 85.14% 10.40%

ViT-B 95.38% 94.55% 0.83% 90.06% 5.32% 86.95% 8.43% 68.78% 26.60% 84.40% 10.98%
Swin-B 95.96% 95.17% 0.79% 91.50% 4.46% 89.73% 6.23% 74.52% 21.44% 87.71% 8.25%

ConvNeXt-B 96.42% 95.73% 0.69% 92.67% 3.75% 91.56% 4.86% 79.93% 16.49% 90.38% 6.04%

Table 5. Evaluations with different robust models under different backgrounds.

Models
Ori Inver λ = −20 λ = 20 λ = 20-Adv Random

Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA
RN50 92.69% 90.72% 1.97% 85.39% 7.30% 79.34% 13.35% 62.77% 29.92% 79.35% 13.34%

RN50-A 81.96% 81.30% 0.66% 77.21% 4.75% 68.34% 13.62% 44.09% 37.87% 66.71% 15.25%
RN50-SIN 91.57% 89.34% 2.23% 83.96% 7.61% 79.38% 12.19% 58.41% 33.16% 77.99% 13.58%

RN50-debiasd 93.34% 91.91% 1.43% 87.25% 6.09% 81.89% 11.45% 65.35% 27.99% 81.22% 12.12%
RN50-Augmix 93.50% 92.52% 0.98% 87.24% 6.26% 85.12% 8.38% 63.01% 30.49% 80.56% 12.94%

RN50-ANT 91.87% 90.19% 1.68% 85.25% 6.62% 79.93% 11.94% 56.21% 35.66% 76.51% 15.36%
RN50-DeepAugment 92.88% 91.38% 1.50% 86.26% 6.62% 80.51% 12.37% 60.48% 32.40% 79.56% 13.32%

RN50-T 94.55% 93.50% 1.05% 88.90% 5.65% 87.17% 7.38% 72.66% 21.89% 84.13% 10.42%

C.5. Details for robustness enhancements

Network design—-self-attention-like architecture.
The results in Table 1 show that most vision transformers
show better robustness than CNNs in our scenario. Previous
study has shown that the self-attention-like architecture
may be the key to robustness boost [3]. Therefore, to
ablate whether incorporating this module can help attribute
robustness generalization, we create a hybrid architec-
ture (RN50d-hybrid) by directly feeding the output of res 3
block in RN50d into ViT-S as the input feature. The results
are shown in Table 9. As we can find that while the added
module maintains the robustness on background changes,
it can help to boost the robustness against size changes.
Moreover, the RN50-hybrid can also boost the overall
performance compared to ViT-S.

Training strategy—-Masked image modeling. Con-
sidering that masked image modeling has demonstrated im-
pressive results in self-supervised representation learning
by recovering corrupted image patches [4], it may be robust
to the attribute changes. Thus, we test the Masked AutoEn-
coder (MAE) [18] and SimMIM [52] training strategy based
on ViT-B backbone. As shown in Table 10, the dropped ac-

curacies decrease a lot compared to vanilla ViT-B, validat-
ing the effectiveness of the masked image modeling strat-
egy. Motivated by this success, we also test another kind of
self-supervised-learning strategy. To be specific, we choose
the representative method MoCo-V3 [7] in the contrastive
learning family. After the end-to-end finetuning, it achieves
top-1 83.0% accuracy on ImageNet. It can also improve the
attribute robustness when compared to the vanilla ViT-B,
showing the effectiveness of contrastive learning.

C.6. Hardware

Our experiments are implemented by PyTorch [38] and
runs on RTX-3090TI.

D. Further exploration on backgrounds
Motivated by the models’ vulnerability against back-

ground changes, especially for those complicated back-
grounds. Apart from randomly picking the backgrounds
from the ImageNet dataset as final backgrounds (ran-
dom bg), we also collect background templates with abun-
dant textures, including leopard, eight diagrams, checker
and stripe to explore the performance on out-of-distribution



Table 6. Evaluations under different object sizes.

Models
Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA
RN50 92.69% 89.98% 2.71% 85.44% 7.25% 82.18% 10.51% 71.43% 21.26% 66.23% 26.46% 67.57% 25.12%

DenseNet121 92.10% 88.60% 3.50% 85.10% 7.00% 81.42% 10.68% 70.55% 21.55% 65.57% 26.53% 68.46% 23.64%
EF-B0 92.85% 89.82% 3.03% 84.85% 8.00% 81.28% 11.57% 69.57% 23.28% 64.94% 27.91% 73.74% 19.11%

ResNest50 95.38% 92.85% 2.53% 90.11% 5.27% 87.37% 8.01% 77.35% 18.03% 74.01% 21.37% 78.06% 17.32%
ViT-S 94.14% 93.34% 0.80% 88.77% 5.37% 85.55% 8.59% 76.77% 17.37% 71.28% 22.86% 77.01% 17.13%

Swin-S 96.21% 94.94% 1.27% 92.00% 4.21% 89.92% 6.29% 82.05% 14.16% 78.86% 17.35% 82.79% 13.42%
ConvNeXt-T 96.07% 94.32% 1.75% 92.79% 3.28% 90.89% 5.18% 83.31% 12.76% 80.36% 15.71% 80.29% 15.78%

RN101 94.00% 91.43% 2.57% 87.19% 6.81% 83.88% 10.12% 73.35% 20.65% 68.15% 25.85% 69.58% 24.42%
DenseNet169 92.37% 90.12% 2.25% 85.47% 6.90% 81.96% 10.41% 71.78% 20.59% 67.44% 24.93% 71.69% 20.68%

EF-B3 94.97% 93.61% 1.36% 88.17% 6.80% 84.81% 10.16% 73.61% 21.36% 69.99% 24.98% 77.73% 17.24%
ResNest101 95.54% 94.19% 1.35% 91.57% 3.97% 89.01% 6.53% 80.10% 15.44% 76.43% 19.11% 81.23% 14.31%

ViT-B 95.38% 94.76% 0.62% 91.38% 4.00% 89.08% 6.30% 80.87% 14.51% 76.56% 18.82% 80.43% 14.95%
Swin-B 95.96% 94.97% 0.99% 92.80% 3.16% 90.92% 5.04% 83.62% 12.34% 80.58% 15.38% 83.36% 12.60%

ConvNeXt-B 96.42% 95.43% 0.99% 94.17% 2.25% 93.06% 3.36% 86.95% 9.47% 84.02% 12.40% 83.41% 13.01%

Table 7. Evaluations with different robust models under different object sizes.

Models
Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA
RN50 92.69% 89.98% 2.71% 85.44% 7.25% 82.18% 10.51% 71.43% 21.26% 66.23% 26.46% 67.57% 25.12%

RN50-A 81.96% 77.09% 4.87% 72.34% 9.62% 68.02% 13.94% 56.45% 25.51% 49.45% 32.51% 50.00% 31.96%
RN50-SIN 91.57% 89.89% 1.68% 83.27% 8.30% 78.97% 12.60% 67.34% 24.23% 62.41% 29.16% 64.33% 27.24%

RN50-debiasd 93.34% 91.36% 1.98% 87.81% 5.53% 84.58% 8.76% 74.07% 19.27% 69.33% 24.01% 68.37% 24.97%
RN50-Augmix 93.50% 91.89% 1.61% 87.10% 6.40% 83.53% 9.97% 72.08% 21.42% 66.36% 27.14% 71.08% 22.42%

RN50-ANT 91.87% 90.30% 1.57% 84.75% 7.12% 81.25% 10.62% 70.38% 21.49% 65.21% 26.66% 66.64% 25.23%
RN50-DeepAugment 92.88% 91.52% 1.36% 85.61% 7.27% 82.26% 10.62% 71.60% 21.28% 66.60% 26.28% 71.59% 21.29%

RN50-T 94.55% 92.44% 2.11% 89.81% 4.74% 86.72% 7.83% 77.09% 17.46% 73.43% 21.12% 74.95% 19.60%

backgrounds. The evaluation results are shown in Table 12.
It can be observed that the background changes can lead to
a 13.34% accuracy drop. When the background is set to be
a leopard or other images, the dropped accuracy can even
reach 35.52%. Sometimes the robust models even show
worse robustness. For example, when the background is
eight diagrams, all the robust models show worse results
than the vanilla RN50, which is quite unexpected. To com-
prehend the behaviour behind it, we visualize the heat maps
of the different models in Figure 7. An interesting find-
ing is that deep models tend to make decisions with depen-
dency on the backgrounds, especially when the background
is complicated and can attract some attention. For example,
when the background is the eight diagrams, the SIN takes
the goldfish as a dishwasher. We suspect it has mistaken the
background as dishes. In the same fashion, the Debiased
model and ANT take the ‘sea slug’ with eight diagrams as
a ‘shopping basket’, which seems to make sense since the
‘sea slug’ looks like a vegetable.

E. Further discussion on the distribution

In this paper, our effort aims to give an editable
image tool that can edit the object’s attribute in the
given image while maintaining it in the original distri-
bution for model debugging. Thus, we choose the out-

of-distribution (OOD) detection methods including En-
ergy [33] and GradNorm [26] following DRA [55] as the
evaluation methods to find out whether our editing tool
will move the edited image out of its original distribution.
In contrast to FID which indicates the divergence of two
datasets, the OOD detection is used to indicate the extent of
the deviance of a single input image from the in-distribution
dataset.

Covariate shift adaptation(a.k.a batch-norm adaptation,
BNA) is a way for improving robustness against common
corruptions [43]. Thus, it can help to get a top-1 accuracy
performance boost in OOD data. One can easily find out if
the provided dataset is OOD by checking whether the BNA
can get a performance boost on its data. We have tested
the full adaptation results using BNA on ResNet50. In con-
trast to the promotion on other out-of-distribution dataset,
we find that this operation induces little changes to top-1 ac-
curacy on both ImageNet validation set (0.7615 → 0.7613)
and our ImageNet-E (0.7934 → 0.7933 under λ = 20,
0.6521 → 0.6514 under random position scenario, mean
accuracy of 5 runs). This similar tendency implies that our
ImageNet-E shares a similar property with ImageNet.
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Figure 11. Dropped accuracy (%) in each class. Classes whose number of images is less than 15 or dropped accuracy is zero are removed.

Table 8. Evaluations with more data.

Models Original Background Size-0.05 Models Original Background Size-0.05
Top-1 Top-1 DA Top-1 DA Top-1 Top-1 DA Top-1 DA

DenseNet121 86.60% 74.73% 11.87% 61.48% 25.12% DenseNet169 87.66% 76.26% 11.40% 63.57% 24.09%
RN50 88.12% 71.64% 16.48% 63.13% 24.99% RN101 89.52% 75.33% 14.19% 65.11% 24.41%
EF-B0 88.54% 75.64% 12.90% 62.16% 26.38% EF-B3 92.12% 80.81% 11.31% 66.18% 25.96%

ResNest50 92.12% 80.61% 11.51% 70.05% 22.07% ResNest101 92.78% 83.46% 9.32% 72.67% 20.11%
ViT-S 92.15% 78.94% 13.21% 69.30% 22.85% ViT-B 94.12% 83.04% 11.08% 75.65% 18.47%

Swin-S 93.11% 82.98% 10.13% 75.36% 17.75% Swin-B 93.18% 84.11% 9.07% 76.99% 16.19%
ConvNeXt-T 92.75% 84.00% 9.43% 76.41% 16.34% ConvNeXt-B 94.05% 86.41% 7.64% 80.34% 13.71%

F. Further evaluation on more state-of-the-art
models

To provide evaluations on more state-of-the-art models,
we step further to evaluate the CLIP [39] and EfficientNet-
L2-Noisy-Student [51]. The average dropped accuracy in
terms of different models can be found in Figure 13. CLIP
shows a good robustness to out-of-distribution data [30].
Therefore, to find out whether the CLIP can also show a
good robustness against attribute editing, we evaluate the
CLIP model (Backbone ViT-B) with both the zero-shot and
end-to-end finetuned version. To achieve this, we fine-
tune the pretrained CLIP on the ImageNet training dataset
based on prompt-initialized model following [49]. It ac-
quires a 81.2% top-1 accuracy on ImageNet validation set
while it is 68.3% for zero-shot version. The evaluation on
ImageNet-E is shown in Table 11 and Table 13. Though
previous studies have shown that the zero-shot CLIP model
exhibits better out-of-distribution robustness than the fine-
tuned ones, the finetuned CLIP shows better attribute ro-
bustness on ImageNet-E, as shown in Table 11 and Ta-
ble 13. The tendency on ImageNet-E is the same with Im-

ageNet (IN) validation set and ImageNet-V2 (IN-V2). This
implies that the ImageNet-E shows a better proximity to Im-
ageNet than other out-of-distribution benchmarks such as
ImageNet-C (IN-C), ImageNet-A (IN-A). Another finding
is that the CLIP model fails to show better robustness than
ViT-B while they share the same architectures. We suspect
that this is caused by that CLIP may have spared some ca-
pacity for out-of-distribution robustness. As the network
gets larger, its attribute robustness gets better.

While EfficientNet-L2-Noisy-Student is one of the top
models on ImageNet-A benchmark [51], it also shows su-
periority on ImageNet-E. To delve into the reason behind
this, we test EfficientNet-L2-Noisy-Student-475 (EF-L2-
NT-475) and EfficientNet-B0-Noisy-Student (EF-B0-NT).
The EF-L2-NT-475 differs from EF-L2-NT in terms of in-
put size, which former is 475 while it is 800 for the latter.
It can be found that the input size can induce little improve-
ment to the attribute robustness. In contrast, larger networks
can benefit a lot to attribute robustness, which is consistent
with the finding in Section 5.1.

Evaluations on 91 state-of-the-art models can be found
in Figure 14. All the evaluated models in this figure are all
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Figure 12. The heat map comparisons between original images and edited ones.

Table 9. Ablation study of the self-attention-like architecture.

Models Ori Background changes Size changes Position Direction Avg.Inver λ = −20 λ = 20 λ = 20-Adv Random Full 0.1 0.08 0.05 rp rd
R50d 93.77% 1.23% 4.80% 6.48% 19.39% 8.28% 2.82% 4.36% 7.07% 16.95% 20.49% 19.31% 11.00%
ViT-S 94.74% 1.66% 7.32% 10.64% 32.17% 14.39% 1.22% 7.10% 10.64% 20.29% 25.08% 17.22% 14.61%

R50-hybrid 95.40% 1.04% 5.64% 7.16% 21.54% 9.19% 1.37% 3.53% 5.92% 13.92% 17.23% 14.12% 9.96%

65 70 75 80 85 90
Top-1 Accuracy on ImageNet(%)

0

5

10

15

20

25

Av
er

ag
e 

Dr
op

pe
d 

Ac
cu

ra
cy

 o
n 

Im
ag

eN
et

-E
(%

)

RN50 RN101

Deit-S
Deit-B Swin-S

Swin-B
ConvNeXt-T

ConvNeXt-B

CLIP_B/16_zeroshot
CLIP_B/16_FT

CLIP_L/14@336_zeroshot

CLIP_L/14@336_FT

EF-B3

EF-B7

EF-B7-NT

EF-L2-NT

ResNet
Deit
Swin
ConvNeXt
CLIP-zeroshot
CLIP-finetune
EfficientNet

Figure 13. The average accuracy drop of different models. The
x-axis is the model’s top-1 accuracy on ImageNet.

provided by the timm library, except for the MoCo-V3-FT
and CLIP-FT, which are finetuned by us.

G. Failure cases of generated images
The failure cases of generated images are shown in Fig-

ure 16. The diffusion model fails to generate high-quality

person images. Though the object is reserved, the whole im-
age looks quite wired. Therefore, we only keep the animal
classes, resulting a compact set of ImageNet-E. However,
extensive evaluations to 919 in Section C.3 have witnessed
a same conclusion with evaluations on 373 classes. This
implies that using our ImageNet-E can already reflect the
model robustness against object attribute changes.

H. Related literature to robustness enhance-
ments

Adversarial training. [42] focus on adversarially ro-
bust ImageNet classifiers and show that they yield improved
accuracy on a standard suite of downstream classification
tasks. It provides a strong baseline for adversarial training.
Therefore, we choose their officially released adversarially
trained models3 as the evaluation model. Models with dif-
ferent architectures are adopted here4.

SIN [13] provides evidence that machine recognition to-
day overly relies on object textures rather than global object
shapes, as commonly assumed. It demonstrates the advan-
tages of a shape-based representation for robust inference

3https://github.com/microsoft/robust-models-transfer
4https://github.com/alibaba/easyrobust



Table 10. Ablation study of the self-supervised models. All the compared models are end-to-end finetuned on ImageNet except for ViT-B,
which is supervised trained from the early start.

Models Ori Background changes Size changes Position Direction Avg.Inver λ = −20 λ = 20 λ = 20-Adv Random Full 0.1 0.08 0.05 rp rd
ViT-B 95.38% 0.83% 5.32% 8.43% 26.60% 10.98% 0.62% 4.00% 6.30% 14.51% 18.82% 14.95% 11.05%

CLIP finetune 93.68% 2.17% 9.82% 11.83% 38.33% 18.19% 9.06% 9.25% 12.67% 23.32% 28.56% 22.00% 18.30%
MoCo-v3 95.70% 0.55% 4.91% 7.33% 24.33% 9.92% 0.92% 3.76% 5.62% 13.61% 17.85% 15.20% 10.35%

MAE-ViT-B 96.12% 0.78% 4.77% 6.21% 21.09% 8.18% 0.78% 3.01% 4.86% 12.10% 15.47% 14.00% 9.05%
SimMIM 96.14% 0.75% 5.13% 6.76% 23.58% 9.33% 0.97% 3.22% 5.33% 13.18% 17.12% 13.62% 9.82%

Standard supervised CNNs

Supervised ViTs

Self-Supervised ViTs Data-rich models

Figure 14. The top-1 accuracy performance under different editing scenarios of 91 state-of-the-art models.

Table 11. Evaluations on different robustness benchmarks. All
results are top-1 accuracies(%) on corresponding datasets except
for ImageNet-C, which is mCE (mean Corruption Error). Higher
top-1 accuracy and lower mCE indicate better performance.

Models IN IN-V2 IN-A IN-C IN-R IN-Sketch IN-E
CLIP-zero-shot 68.3 61.9 50.1 43.1 77.6 48.3 62.1

CLIP-FT 81.2 70.7 35.3 47..9 65.0 44.9 77.2

(using their Stylized-ImageNet dataset to induce such a rep-
resentation in neural networks)

Debiased [31] shows that convolutional neural networks
are often biased towards either texture or shape, depend-
ing on the training dataset, and such bias degenerates model
performance. Motivated by this observation, it develops a
simple algorithm for shape-texture Debiased learning. To
prevent models from exclusively attending to a single cue
in representation learning, it augments training data with
images with conflicting shape and texture information (e.g.,
an image of chimpanzee shape but with lemon texture) and
provides the corresponding supervision from shape and tex-
ture simultaneously. It empirically demonstrates the advan-
tages of the shape-texture Debiased neural network training
on boosting both accuracy and robustness.

Augmix [22] focuses on the robustness improvement to

unforeseen data shifts encountered during deployment. It
proposes a data processing technique named Augmix that
helps to improve robustness and uncertainty measures on
challenging image classification benchmarks.

ANT [40] demonstrates that a simple but properly tuned
training with additive Gaussian and Speckle noise general-
izes surprisingly well to unseen corruptions, easily reaching
the previous state of the art on the corruption benchmark
ImageNet-C and on MNIST-C.

DeepAugment [20]. Motivated by the observation that
using larger models and artificial data augmentations can
improve robustness on real-world distribution shifts, con-
trary to claims in prior work. It introduces a new data
augmentation method named DeepAugment, which uses
image-to-image neural networks for data augmentation. It
improves robustness on their newly introduced ImageNet-R
benchmark and can also be combined with other augmen-
tation methods to outperform a model pretrained on 1000×
more labeled data.

There are some more tables and figures in the next pages.



Table 12. Evaluation of images generated with different backgrounds.

Models Original Random bg Leopard Eight diagrams Checker Stripe
Top-1 DA Top-1 DA Top-1 DA Top-1 DA Top-1 DA

RN50 92.69% 79.35% 13.34% 57.17% 35.52% 64.32% 28.37% 65.13% 27.56% 62.90% 29.79%
RN50-A 81.96% 66.71% 15.25% 25.05% 56.91% 37.21% 44.75% 32.47% 49.49% 46.96% 35.00%

RN50-SIN 91.57% 77.99% 13.58% 62.74% 28.83% 48.74% 42.83% 51.15% 40.42% 52.65% 38.92%
RN50-debiasd 93.34% 81.22% 12.12% 68.58% 24.76% 62.68% 30.66% 67.10% 26.24% 63.16% 30.18%
RN50-Augmix 93.50% 80.56% 12.94% 57.35% 36.15% 56.20% 37.30% 68.78% 24.72% 65.68% 27.82%

RN50-ANT 91.87% 76.51% 15.36% 58.11% 33.76% 59.04% 32.83% 51.91% 39.96% 54.69% 37.18%
RN50-DeepAugment 92.88% 79.56% 13.32% 62.83% 30.05% 57.71% 35.17% 59.46% 33.42% 61.80% 31.08%

R50-T 94.55% 84.13% 10.42% 72.93% 21.62% 73.98% 20.57% 79.42% 15.13% 76.43% 18.12%

Original

Random

Leopard

Eight diagrams

Checker

Stripe

Vanilla SIN Debiased Augmix ANT DeepAugment Vanilla SIN Debiased Augmix ANT DeepAugment

Figure 15. Heat maps under different backgrounds.

Table 13. More evaluations on state-of-the-art models including CLIP and EfficientNet-L2-Noisy-Student.

Models Ori Background changes Size changes Position Direction Avg.Inver λ = −20 λ = 20 λ = 20-Adv Random Full 0.1 0.08 0.05 rp rd
ViT-B/16 95.38% 0.83% 5.32% 8.43% 26.60% 10.98% 0.62% 4.00% 6.30% 14.51% 18.82% 14.95% 11.05%

Zero-shot
CLIP RN50 72.38% 6.03% 11.64% 16.72% 35.07% 21.82% 8.78% 14.39% 17.69% 26.48% 29.79% 25.31% 20.77%

CLIP RN101 73.35% 4.51% 10.77% 14.42% 33.42% 19.63% 6.39% 14.53% 18.19% 26.58% 30.08% 24.51% 19.85%
CLIP RN50x4 77.18% 4.64% 10.44% 13.27% 31.39% 18.51% 7.46% 12.37% 15.66% 24.23% 27.19% 24.25% 18.48%
CLIP RN50x16 82.10% 4.39% 10.10% 12.41% 27.14% 16.62% 6.62% 11.10% 13.53% 22.09% 25.27% 23.13% 16.80%
CLIP RN50x64 85.66% 4.77% 8.89% 10.79% 23.75% 13.44% 6.39% 9.20% 11.92% 19.17% 21.62% 20.57% 14.57%
CLIP ViT-B/32 74.08% 5.55% 13.24% 18.64% 43.26% 26.39% 2.99% 15.59% 19.74% 29.05% 33.37% 24.89% 22.72%
CLIP ViT-B/16 80.01% 4.88% 11.56% 15.28% 36.14% 20.09% 4.88% 12.67% 15.77% 25.31% 28.87% 21.57% 19.21%
CLIP ViT-L/14 87.61% 4.35% 11.04% 14.46% 33.69% 18.35% 1.81% 11.67% 15.09% 23.66% 27.19% 18.05% 17.50%

CLIP ViT-L/14-336 88.01% 3.16% 9.07% 12.25% 29.69% 16.08% 3.16% 9.20% 11.78% 19.94% 22.89% 16.15% 15.02%
CLIP ViT-L/14-336 88.01% 3.16% 9.07% 12.25% 29.69% 16.08% 3.16% 9.20% 11.78% 19.94% 22.89% 16.15% 15.02%

Finetune
CLIP ViT-B/16-FT 93.68% 2.17% 9.82% 11.83% 38.33% 18.19% 4.66% 9.25% 12.67% 23.32% 28.56% 22.00% 17.86%

CLIP ViT-L/14-336-FT 96.97% 1.29% 5.16% 6.18% 19.93% 8.09% 1.29% 3.47% 4.90% 10.98% 13.74% 10.96% 8.47%
EF-B0 92.85% 1.07% 7.10% 10.71% 34.88% 15.64% 3.03% 8.00% 11.57% 23.28% 27.91% 19.11% 16.12%

EF-B0-NT 94.30% 1.97% 8.43% 10.51% 34.93% 15.99% 1.79% 7.91% 11.50% 22.96% 27.62% 19.07% 16.07%
EF-B7 97.10% 1.80% 6.37% 7.20% 23.36% 10.78% 1.65% 4.16% 6.25% 14.13% 17.12% 10.56% 10.16%

EF-B7-NT 97.38% 1.30% 5.26% 6.10% 19.96% 9.15% 0.55% 3.31% 4.75% 10.67% 12.87% 7.98% 8.06%
EF-L2-NT-475 97.84% 1.08% 3.60% 4.51% 14.88% 7.14% 0.51% 2.21% 2.71% 5.50% 7.35% 4.58% 5.30%

EF-L2-NT 97.63% 1.26% 3.50% 4.06% 12.73% 6.90% 0.71% 2.27% 2.79% 5.01% 6.03% 4.55% 4.85%



Figure 16. The failure cases of attribute editing.
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