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RobustNeRF: Ignoring Distractors with Robust Losses
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Abstract

Neural radiance fields (NeRF) excel at synthesizing new
views given multi-view, calibrated images of a static scene.
When scenes include distractors, which are not persistent
during image capture (moving objects, lighting variations,
shadows), artifacts appear as view-dependent effects or
floaters’. To cope with distractors, we advocate a form
of robust estimation for NeRF training, modeling distrac-
tors in training data as outliers of an optimization problem.
Our method successfully removes outliers from a scene and
improves upon our baselines, on synthetic and real-world
scenes. Our technique is simple to incorporate in mod-
ern NeRF frameworks, with few hyper-parameters. It does
not assume a priori knowledge of the types of distractors,
and is instead focused on the optimization problem rather
than pre-processing or modeling transient objects. More
results on our page https://robustnerf.github.
io/public.

1. Introduction

The ability to understand the structure of a static 3D
scene from 2D images alone is a fundamental problem is
computer vision [44]. It finds applications in AR/VR for
mapping virtual environments [6, 36, 61], in autonomous
robotics for action planning [1], and in photogrammetry to
create digital copies of real-world objects [34].

Neural fields [55] have recently revolutionized this clas-
sical task, by storing 3D representations within the weights
of a neural network [39]. These representations are opti-
mized by back-propagating image differences. When the
fields store view-dependent radiance and volumetric ren-
dering is employed [21], we can capture 3D scenes with
photo-realistic accuracy, and we refer to the generated rep-
resentation as Neural Radiance Fields, or NeRF [25]).

Training of NeRF models generally requires a large
collection of images equipped with accurate camera cali-
bration, which can often be recovered via structure-from-
motion [37]. Behind its simplicity, NeRF hides several as-
sumptions. As models are typically trained to minimize
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Figure 1. NeRF assumes photometric consistency in the observed
images of a scene. Violations of this assumption, as with the im-
ages in the top row, yield reconstructed scenes with inconsistent
content in the form of “floaters” (highlighted with ellipses). We
introduce a simple technique that produces clean reconstruction
by automatically ignoring distractors without explicit supervision.

error in RGB color space, it is of paramount importance
that images are photometrically consistent — two photos
taken from the same vantage point should be identical up
to noise. Unless one employs a method explicitly account-
ing for it [35], one should manually hold a camera’s focus,
exposure, white-balance, and ISO fixed.

However, properly configuring one’s camera is not all
that is required to capture high-quality NeRFs — it is also
important to avoid distractors: anything that isn’t persistent
throughout the entire capture session. Distractors come in
many shapes and forms, from the hard-shadows cast by the
operators as they explore the scene to a pet or child casually
walking within the camera’s field of view. Distractors are
tedious to remove manually, as this would require pixel-by-
pixel labeling. They are also tedious to detect, as typical
NeRF scenes are trained from hundreds of input images,
and the types of distractors are not known a priori. If dis-
tractors are ignored, the quality of the reconstruction scene
suffers significantly; see Figure 1.

In a typical capture session, one does not have the ability
to capture multiple images of the same scene from the same
vantage point, rendering distractors challenging to model
mathematically. More specifically, while view-dependent
effects are what give NeRF their realistic look, how can the
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model tell the difference between a distractor and a view-

dependent effect?

Despite the challenges, the research community has de-
vised several approaches to overcome this issue:

« If distractors are known to belong to a specific class (e.g.,
people), one can remove them with a pre-trained seman-
tic segmentation model [35, 43] — this process does not
generalize to “unexpected” distractors such as shadows.

* One can model distractors as per-image transient phe-
nomena, and control the balance of transient/persistent
modeling [23] — however, it is difficult to tune the losses
that control this Pareto-optimal objective.

* One can model data in time (i.e., high-framerate video)
and decompose the scene into static and dynamic (i.e.,
distractor) components [53] — but this clearly only applies
to video rather than photo collection captures.

Conversely, we approach the problem of distractors by mod-

eling them as outliers in NeRF optimization.

We analyze the aforementioned techniques through the
lens of robust estimation, allowing us to understand their be-
havior, and to design a method that is not only simpler to im-
plement but also more effective (see Figure 1). As a result,
we obtain a method that is straightforward to implement, re-
quires minimal-to-no hyper-parameter tuning, and achieves
state-of-the-art performance. We evaluate our method:

* quantitatively, in terms of reconstruction with syntheti-
cally, yet photo-realistically, rendered data;

* qualitatively on publicly available datasets (often fine-
tuned to work effectively with previous methods);

* on a new collection of natural and synthetic scenes, in-
cluding those autonomously acquired by a robot, allow-
ing us to demonstrate the sensitivity of previous methods
to hyper-parameter tuning.

2. Related Work

We briefly review the basics and notation of Neural Ra-
diance Fields. We then describe recent progress in NeRF
research, paying particular attention to techniques for mod-
eling of static/dynamic scenes.

Neural Radiance Fields. A neural radiance field (NeRF)
is a continuous volumetric representation of a 3D scene,
stored within the parameters of a neural network 6. The
representation maps a position x and view direction d to a
view-dependent RGB color and view-independent density:

c(x,d)

o(x)

}f(x,d;B) (1)

This representation is trained from a collection, {(C;, T;)},
of images C,; with corresponding calibration parame-
ters T; (camera extrinsics and intrinsics).

During training the calibration information is employed
to convert each pixel of the image into a ray r=(o, d), and

rays are drawn randomly from input images to form a train-
ing mini-batch (r~C;). The parameters 6 are optimized to
correctly predict the colors of the pixels in the batch via the
L2 photometric-reconstruction loss:

Li(8) = Y Eec, [£1(6)] @)
L54(0) = [1C(x:0) — Ci(x) )

Parameterizing the ray as r(t) = o + td, the NeRF model
image C(r; 0) is generated pixel-by-pixel volumetric ren-
dering based on o(-) and c(-) (e.g., see [25,42]).

Recent progress on NeRF models. NeRF models have re-
cently been extended in several ways. A major thread has
been the speedup of training [15,27] and inference [0, 13],
enabling today’s models to be trained in minutes [27], and
rendered on mobile in real-time [6]. While initially re-
stricted to forward-facing scenes, researchers quickly found
ways to model real-world 360° scenes [4,59], and to reduce
the required number of images, via sensor fusion [35] or
hand-designed priors [28]. We can now deal with image
artifacts such as motion blur [22], exposure [24], and lens
distortion [14]. And the requirement of (precise) camera
calibrations is quickly being relaxed with the introduction
of techniques for local camera refinement [8, 19], or direct
inference [58]. While a NeRF typically represents geometry
via volumetric density, there exist models custom-tailored
to predict surfaces [29, 51], which can be extended to use
predicted normals to significantly improve reconstruction
quality [50, 57]. Given high-quality normals [47], infer-
ring the (rendering) structure of a scene becomes a possibil-
ity [5]. We also note recent papers about additional appli-
cations to generalization [56], semantic understanding [48],
generative modeling [33], robotics [1], and text-to-3D [31].

Modeling non-static scenes. For unstructured scenes
like those considered here, the community has focused
on reconstructing both static and non-static elements from
video. The most direct approach, treating time as an
auxiliary input, leads to cloudy geometry and a lack of
fine detail [11, 54]. Directly optimizing per-frame la-
tent codes as an auxiliary input has proved more effec-
tive [17,30,53]. The most widely-adopted approach is to
fit a time-conditioned deformation field mapping 3D points
between pairs of frames [18,49] or to a canonical coordi-
nate frame [9, 10, 20, 32, 45]. Given how sparsely space-
time is sampled, all methods require careful regularization,
optimization, or additional training signals to achieve ac-
ceptable results.

Relatively little attention has been given to removing
non-static elements. One common approach is to segment
and ignore pixels which are likely to be distractors [35,43].
While this eliminates larger objects, it fails to account for
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Figure 2. Ambiguity — A simple 2D scene where a static object (blue) is captured by three cameras. During the first and third capture
the scene is not photo-consistent as a distractor was within the field of view. Not photo-consistent portions of the scene can end up being
encoded as view-dependent effects — even when we assume ground truth geometry.

secondary effects like shadows. Prior attempts to model dis-
tractors as outliers still leave residual cloudy geometry [23].

3. Method

The classical NeRF training losses (3) are effective for
capturing scenes that are photometrically consistent, lead-
ing to the photo-realistic novel-view synthesis that we are
now accustomed to seeing in recent research. However,
“what happens when there are elements of the scene that
are not persistent throughout the entire capture session?”
Simple examples of such scenes include those in which an
object is only present in some fraction of the observed im-
ages, or may not remain in the same position in all observed
images. For example, Figure 2 depicts a 2D scene compris-
ing a persistent object (the truck), along with several tran-
sient objects (e.g., people and a dog). While rays in blue
from the three cameras intersect the truck, the green and or-
ange rays from cameras 1 and 3 intersect transient objects.
For video capture and spatio-temporal NeRF models, the
persistent objects comprise the “static” portion of the scene,
while the rest would be called the “dynamic”.

3.1. Sensitivity to outliers

For Lambertian scenes, photo-consistent structure is
view independent, as scene radiance only depends on the
incident light [16]. For such scenes, view-dependent NeRF
models like (1), trained by minimizing (3), admit local
optima in which transient objects are explained by view-
dependent terms. Figure 2 depicts this, with the outgoing
color corresponding to the memorized color of the outlier
— i.e. view-dependent radiance. Such models exploit the
view-dependent capacity of the model to over-fit observa-
tions, effectively memorizing the transient objects. One can
alter the model to remove dependence on d, but the L2
loss remains problematic as least-squares (LS) estimators
are sensitive to outliers, or heavy-tailed noise distributions.

Under more natural conditions, dropping the Lambertian
assumption, the problem becomes more complex as both
non-Lambertian reflectance phenomena and outliers can be
explained as view-dependent radiance. While we want the

models to capture photo-consistent view-dependent radi-
ance, outliers and other transient phenomena should ideally
be ignored. And in such cases, optimization with an L2
loss (3) yields significant errors in reconstruction; see Fig-
ure 1. Problems like these are pervasive in NeRF model fit-
ting, especially in uncontrolled environments with complex
reflectance, non-rigidity, or independently moving objects.

3.2. Robustness to outliers

Robustness via semantic segmentation. One way to re-
duce outlier contamination during NeRF model optimiza-
tion is to rely on an oracle S that specifies whether a given
pixel r from image ¢ is an outlier, and should therefore be
excluded from the empirical loss, replacing (3) with:

Cr,i

oracle

(6) = S;(r) - ||C(r; 0) — Ci(r)[[3 ©)

In practice, a pre-trained (semantic) segmentation network
S might be used as an oracle, S;=S5(C;). For example,
Nerf-in-the-wild [23] employed a semantic segmenter to re-
move pixels occupied by people, as they represent outliers
in the context of photo-tourism. Urban Radiance Fields [35]
segmented out sky pixels, while LOL-NeRF [33] ignored
pixels not belonging to faces. The obvious problem with
this approach is the need for an oracle that detects outliers
for arbitrary distractors.

Robust estimators. Another way to reduce sensitivity to
outliers is to replace the conventional L2 loss (3) with a ro-
bust loss (e.g., [2,41]), so that photometrically-inconsistent
observations can be down-weighted during optimization.
Given a robust kernel (-), we rewrite our training loss as:

robust(0) = £(||C(r; 8) — Ci(r)][2) (5)
where «(+) is positive and monotonically increasing. Mip-
NeRF [3], for example, employs an L1 loss x(€)=|e|, which
provides some degree of robustness to outliers during NeRF
training. Given our analysis, a valid question is whether we
can straightforwardly employ a robust kernel to approach
our problem, and if so, given the large variety of robust ker-
nels [2], which is the kernel of choice.



Figure 3. Histograms — Robust estimators perform well when the
distribution of residuals agrees with the one implied by the esti-
mator (e.g., Gaussian for L2, Laplacian for L1). Here we visualize
the ground-truth distribution of residuals (bottom-left), which is
hardly a good match with any simple parametric distribution.

Unfortunately, as discussed above, outliers and non-
Lambertian effects can both be modelled as view-dependent
effects (see Figure 3). As a consequence, with simple appli-
cation of robust estimators it can be difficult to separate sig-
nal from noise. Figure 4 shows examples in which outliers
are removed, but fine-grained texture and view-dependent
details are also lost, or conversely, fine-grained details are
preserved, but outliers cause artifacts in the reconstructed
scene. One can also observe mixtures of these cases in
which details are not captured well, nor are outliers fully
removed. We find that this behaviour occurs consistently
for many different robust estimators and parameter settings.

Training time can also be problematic. The robust es-
timator gradient w.r.t. model parameters can be expressed
using the chain rule as
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The second factor is the classical NeRF gradient. The first
factor is the kernel gradient evaluated at the current er-
ror residual e(B(t)). During training, large residuals can
equivalently come from high-frequency details that have not
yet been learnt, or they may arise from outliers (see Fig-
ure 4 (bottom)). This explain why robust optimization, im-
plemented as (5), should not be expected to decouple high-
frequency details from outliers. Further, when strongly ro-
bust kernels are employed, like redescending estimators,
this also explains the loss of visual fidelity. That is, because
the gradient of (large) residuals get down-weighted by the
(small) gradients of the kernel, slowing down the learning
of these fine-grained details (see Figure 4 (top)).

3.3. Robustness via Trimmed Least Squares

In what follows we advocate a form of iteratively
reweighted least-squares (IRLS) with a Trimmed least
squares (LS) loss for NeRF model fitting.

Figure 4. Kernels — (top-left) The family of robust kernels
from [2], including L2 (a«=2), Charbonnier (o«=1) and Geman-
McClure (a=—2). (top-right) Mid-training, residual magnitudes
are similar for distractors and fine-grained details, and pixels with
large residuals are learned more slowly, as the gradient of re-
descending kernels flattens out. (bottom-right) Kernels that are too
aggressive in down-weighting large residuals remove both outliers
and high-frequency detail. (bottom-left) Less aggressive kernels
do not effectively remove outliers.

Iteratively Reweighted least Squares. IRLS is a widely
used method for robust estimation that involves solving a
sequence of weighted LS problems, the weights of which
are adapted to reduce the influence of outliers. To that end,
at iteration ¢, one can write the loss as

Lihi(0) = w(e" D (x)) - ||C(r; 6V) - Ci(r)|13

robust

7V (r) = [|C(r;017Y) — Ci(r)] |2 M

For weight functions given by w(e)=¢~!- k() /e one can
show that, under suitable conditions, the iteration converges
to a local minima of (5) (see [41, Sec. 3]).

This framework admits a broad family of losses, includ-
ing maximum likelihood estimators for heavy-tailed noise
processes. Examples in Figure 4 include the Charbonnier
loss (smoothed L1), and more aggressive redescending esti-
mators such as the Lorentzian or Geman-McClure [2]. The
objective in (4) can also be viewed as a weighted LS objec-
tive, the binary weights of which are provided by an oracle.
And, as discussed at length below, one can also view several
recent methods like NeRFW [23] and D2NeRF [53] through
the lens of IRLS and weighted LS.

Nevertheless, choosing a suitable weight function w(e)
for NeRF optimization is non-trivial, due in large part to the
intrinsic ambiguity between view-dependent radiance phe-
nomena and outliers. One might try to solve this problem
by learning a neural weight function [40], although gener-
ating enough annotated training data might be prohibitive.
Instead, the approach taken below is to exploit inductive
biases in the structure of outliers, combined with the sim-
plicity of a robust, trimmed LS estimator.
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Figure 5. Algorithm — We visualize our weight function computed by residuals on two examples: (top) the residuals of a (mid-training)
NeRF rendered from a training viewpoint, (bottom) a toy residual image containing residual of small spatial extent (dot, line) and residuals
of large spatial extent (squares). Notice residuals with large magnitude but small spatial extent (texture of the box, dot, line) are included
in the optimization, while weaker residuals with larger spatial extent are excluded. Note that while we operate on patches, we visualize the

weight function on the whole image to facilitate visualization.

Trimmed Robust Kernels. Our goal is to develop a weight
function for use in iterative weighted LS optimization that
is simple and captures useful inductive biases for NeRF op-
timization. For simplicity we opt for a binary weight func-
tion with intuitive parameters that adapts naturally through
model fitting so that fine-grained image details that are not
outliers can be learned quickly. It is also important to cap-
ture the structured nature of typical outliers, contrary to the
typical i.i.d. assumption in most robust estimator formula-
tions. To this end the weight function should capture spatial
smoothness of the outlier process, recognizing that objects
typically have continuous local support, and hence outliers
are expected to occupy large and connected regions of an
image (e.g., the silhouette of a person to be segmented out
from a photo-tourism dataset).

Surprisingly, a relatively simple weight function embod-
ies these properties and performs extremely well in practice.
The weight function is based on so-called trimmed estima-
tors that are used in trimmed least-squares, like that used in
trimmed ICP [7]. We first sort residuals, and assume that
residuals below a certain percentile are inliers. Picking the
50% percentile for convenience (i.e., median), we define

O(r) =¢€(r) < T, Tc=Median,{e(r)}. (3)

To capture spatial smoothness of outliers we further spa-
tially diffuse inlier/outlier labels w with a 3x3 box kernel
Bsxs. Formally, we define

W(r) = (@(r) ® Bsxs) > T, Te=05. (9

This tends to remove high-frequency details from being
classified as outliers, allow them to be captured by the NeRF
model during optimization (see Figure 5).

While the trimmed weight function (9) improves the ro-
bustness of model fitting, it also misclassifies fine-grained
texture details early in training where the NeRF model
first captures coarse-grained structure. These localized tex-
ture elements may emerge but only after very long train-
ing times. We find that stronger inductive bias to spatially
coherence allows fine-grained details to be learned more
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Figure 6. Residuals — For the dataset shown in the top row,
we visualize the dynamics of the RobustNeRF training residu-
als, which show how over time the estimated distractor weights
go from being random ((t/7)=0.5%) to identify distractor pix-
els ((t/T)=100%) without any explicit supervision.

quickly. To that end, we aggregate the detection of outliers
on 16x16 neighborhoods; i.e., we label entire 8x8 patches as
outliers or inliers based on the behavior of W in the 16x16
neighborhood of the patch . Formally, denoting the N x N
neighborhood of pixels around r as R 5 (r), we define

w(Rg(r)) = Esryor) W(s)] 2 TR, Tr =0.6. (10)

Note that this robust weight function evolves during opti-
mization, as one expects with IRLS where the weights are
a function of the residuals at the previous iteration. That
is, the labeling of pixels as inliers/outliers changes during
training, and settles around masks similar to the one an ora-
cle would provide as training converges (see Figure 6).

4. Experiments

We implement our robust loss function in the MultiN-
eRF codebase [260] and apply it to mip-NeRF 360 [4]. We
dub this method “RobustNeRF”. To evaluate RobustNeRF,
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Figure 7. Dataset — Sample training images showing the distrac-
tors in each scene. Statue and Android were acquired manually,
and the others with a robotic arm. In the robotic setting we have
pixel-perfect alignment of distractor vs. distractor-free images.

Statue

we compare against baselines on several scenes containing
different types of distractors. Where possible, we quantita-
tively compare reconstructions to held-out, distraction-free
images; we report three metrics, averaged across held-out
frames, namely, PSNR, SSIM [52], and LPIPS [60].

We compare different methods on two collections of
scenes, i.e., those provided by the authors of D2NeRF, and
novel datasets described below. We also present a series of
illustrative experiments on synthetic scenes, shedding light
on RobustNeRF’s efficacy and inner workings.

4.1. Baselines

We compare RobustNeRF to variants of mip-NeRF 360
optimized with different loss functions (L2, L;, and Char-
bonnier). These variants serve as natural baselines for mod-
els with limited or no robustness to outliers.We also com-
pare to D2NeRF, a recent method for reconstructing dy-
namic scenes from monocular video. Unlike our method,
D2NeRF is designed to reconstruct distractors rather than
discard them. While D?NeRF is presented as a method for
monocular video, it does not presuppose temporal continu-
ity, and can be directly applied to unordered images. We
omit additional comparisons to NeRF-W as its performance
falls short of D2NeRF [53]. For more details on model
training, see the supplementary material (Section 6.2).

4.2. Datasets — Figure 7

In addition to scenes from D2NeRF, we introduce a set of
natural and synthetic scenes. They facilitate the evaluation
of RobustNeRF’s effectiveness on illustrative use cases, and
they enable empirical analysis under controlled conditions.

Natural scenes. We capture four natural scenes exempli-
fying different types of distractors. Scenes are captured in
two settings, an apartment and a robotics lab. Distractor ob-
jects are moved, or are allowed to move, between frames to

simulate capture over extended periods of time. We vary
the number of unique distractors from 1 (Statue) to 150
(BabyYoda), and their movements. Unlike prior work on
monocular video, frames are captured without a clear tem-
poral ordering (see Figure 7). We capture additional frames
without distractors to enable quantitative evaluations. Cam-
era poses are estimated using COLMAP [38]. We provide
a full description of each scene in the supplementary mate-
rial (subsubsection 6.1.1).

Synthetic scenes. To further evaluate RobustNeRF, we
generate synthetic scenes using the Kubric dataset gener-
ator [12]. Each scene is constructed by placing a set of
simple geometries in an empty, texture-less room. In each
scene, a subset of objects remain fixed while the other ob-
jects (i.e., distractors) change position from frame to frame.
By varying the number of objects, their size, and the way
they move, we control the level of distraction in each scene.
We use these scenes to examine RobustNeRF’s sensitivity
to its hyperparameters, see supplementary material (subsub-
section 6.3.3).

4.3. Evaluation

We evaluate RobustNeRF on its ability to ignore distrac-
tors while accurately reconstructing the static elements of
a scene. We train RobustNeRF, D2NeRF, and variants of
mip-NeRF 360 on scenes where distraction-free frames are
available. Models are trained on frames with distractors and
evaluated on distractor-free frames.

Comparison to mip-NeRF 360 — Figure 8. On natu-
ral scenes, RobustNeRF generally outperforms variants of
mip-NeRF 360 by 1.3 to 4.7 dB in PSNR. As Lo, Lj,
and Charbonnier losses weigh all pixels equally, the model
is forced to represent, rather than ignore, distractors as
“clouds” with view-dependent appearance. We find clouds
to be most apparent when distractors remain stationary for
multiple frames. In contrast, RobustNeRF’s loss isolates
distractor pixels and assigns them a weight of zero (see
Figure 6). To establish an upper bound on reconstruction
accuracy, we train mip-NeRF 360 with Charbonnier loss
on distraction-free versions of each scene, the images for
which are taken from (approximately) the same viewpoints.
Reassuringly, RobustNeRF when trained on distraction-free
frames, achieves nearly identical accuracy; see Figure 11.

While RobustNeRF consistently outperforms mip-NeRF
360, the gap is smaller in the Apartment scenes (Statue,
Android) than the Robotics Lab scenes (Crab, BabyYoda).
This can be explained by challenging background geome-
try, errors in camera parameter estimation, and impercep-
tible changes to scene appearance. For further discussion,
see the supplementary material (subsubsection 6.3.1).

Comparison to D>NeRF - Figure 9. Quantitatively, Ro-
bustNeRF matches or outperforms D?NeRF by as much
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LPIPS, SSIM{ PSNR?T | LPIPS|  SSIMt

Statue
LPIPS, SSIMt

BabyYoda
PSNRT | LPIPS| SSIM{ PSNR?

mip-NeRF 360 (L2) 036 066 19.09 | 040 065 1935 | 027 0.77 2573 | 031 075 2297
mip-NeRF 360 (L;) 030 072 1955 | 040 066 1938 | 022 079 2669 | 022 080 26.15
mip-NeRF 360 (Ch.) 030 073 19.64 | 040 066 1953 | 0.21 0.80 2772 | 0.23 0.80 25.22
D?NeRF 0.48 049 19.09 | 043 0.57 2061 | 042 068 21.18 | 044  0.65 17.32
RobustNeRF 0.28 0.75 20.89 | 0.31 0.65 21.72 | 0.21 081 3075 | 020 083 30.87

mip-NeRF 360 (clean) | 0.19 080 2357 | 031 071 2310 | 0.16 084 3255 | 016 084 32.63

PSNR?

MipNeRF360 (L2) RobustNeRF

MipNeRF360 (L1)

MipNeRF360 (Ch) D2NeRF

Figure 8. Evaluation on Natural Scenes — RobustNeRF outperforms baselines and D?NeRF [53] on novel view synthesis with real-world
captures; see supplementary material (subsubsection 6.3.4) for more qualitative results. D*NeRF underperforms on robotic scenes with
multiple, varied distractors. On manually acquired scenes, Statute and Android, RobustNeRF yields accurate, detailed models without
floaters; the corresponding evaluation ground truth images are captured in the wild, with imperfections that yield lower PSNR for all
methods.

as 12 dB PSNR depending on the number of unique out-
lier objects in the capture. In Statue and Android, one and
three non-rigid objects are moved around the scene, respec-
tively. D?NeRF is able to model these objects and thus sep-
arate them from the scenes’ static content. In the remaining
scenes, a much larger pool of 100 to 150 unique, non-static
objects are used — too many for D?NeRF to model effec-
tively. As a result, “cloud” artifacts appear in its static rep-
resentation, similar to those produced by mip-NeRF 360. In
contrast, RobustNeRF identifies non-static content as out-
liers and omits it during reconstruction. Although both
methods use a similar number of parameters, D?NeRF’s

peak memory usage is 2.3x higher than RobustNeRF and
37x higher when normalizing for batch size. This is a di-
rect consequence of model architecture: D?NeRF is tailored
to simultaneously modeling static and dynamic content and
thus merits higher complexity. To remain comparable, we
limit image resolution to 0.2 megapixels for all experiments.

Ablations — Figure 10. We ablate each element of the Ro-
bustNeRF loss on the crab scene, and compare to an upper
bound on reconstruction accuracy provided by mip-NeRF
360 trained on distractor-free (clean) images taken from the
same viewpoints. Our trimmed robust estimator (8) suc-
cessfully eliminates distractors at the expense of high fre-
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‘LPIPSJ, MS-SSIM?t PSNR?|LPIPS| MS-SSIM? PSNR?|LPIPS| MS-SSIMt PSNR?|LPIPS| MS-SSIMT PSNRT|LPIPS| MS-SSIM{ PSNR?
NeRF-W [23] | .218  .814 24.23| .243 873 24.51| .139 791 20.65| .150 .681 23.77| .088 935 28.24
NSFF [18] 200 .806 24.90| .620 .376 10.29| .108 892 2562|.682 284 12.82| 782 343 455
NeuralDiff [46]| .065 952 31.89| .098 921  2593| .117 910 29.02| .112 722 24.42]| .565 652 20.09
D2NeRF [53] |.062 975 3427|.090 953 26.27| .076 979 34.14| .095 707 24.63| 076 979 36.58
RobustNeRF | .013 988 37.73| .063 957 26.31| .006 .995 41.82| .007 .992 41.23| .018 .990 38.95

Train View Test View NeRF-W NSFF Neural Diff D?NeRF RobustNeRF

Figure 9. Evaluations on D>NeRF Synthetic Scenes — Quantitative and qualitative evaluations on the Kubric synthetic dataset introduced
by D2NeRF, consisting of 200 training frames (with distractor) and 100 novel views for evaluation (without distractor).

LPIPS, SSIMt PSNRt Updates to PSNR=30
mip-NeRF 360 (L)  0.31 0.75 2297 -
+ robust (8) 0.39 0.60 18.21 -
+ smoothing (9) 0.22 0.81  30.01 250K
+ patching (10) 0.21 0.81 30.75 70K
oracle (clean) 0.16 0.84 3255 25K

+ patching

+ robust + smoothing
Figure 10. Ablations — Blindly trimming the loss causes details
to be lost. Smoothing recovers fine-grained detail, while patch-
based evaluation speeds up training and adds more detail. Patching

enables the model to reach PSNR of 30, almost 4 x faster.

quency texture, yielding lower PSNR. Adding smoothing
(9), high frequency detail is recovered, at the cost of longer
training times. With the spatial window (10), RobustNeRF
training time is on-par with mip-NeRF 360.

Sensitivity — Figure 11. We find that RobustNeRF is re-
markably robust to the amount of clutter in a dataset. We
define an image as “cluttered” if it contains some num-
ber of distractor pixels. The figure shows how the recon-
struction accuracy of RobustNeRF and mip-NeRF 360 de-
pends on the fraction of training images with distractors,
keeping the training set size constant. As the fraction in-
creases, mip-NeRF 360’s accuracy steadily drops from 33
to 25 dB, while RobustNeRF’s remains steadily above 31
dB throughout. In the distraction-free regime, we find that
RobustNeRF mildly under-performs mip-NeRF 360, both
in reconstruction quality and the time needed for training.
This follows from the statistical inefficiency induced by the
trimmed estimator (8), for which a percentage of pixels will
be discarded even if they do not correspond to distractors.

33

—— RobustNeRF
—— mip-NeRF 360

PSNR

0% 20% 40% 60% 80% 100%

% Training Iteration

0% 20% 40% ©60% B80%
% Cluttered Images

100%

Figure 11. Sensitivity and Limitations — (left) Reconstruction
accuracy for BabyYoda as we increase the fraction of train im-
ages with distractors. (right) Accuracy vs training time on clean
BabyYoda images (distractor-free).

5. Conclusions

We address a central problem in training NeRF models,
namely, optimization in the presence of distractors, such
as transient or moving objects and photometric phenomena
that are not persistent throughout the capture session.

Viewed through the lens of robust estimation, we for-
mulate training as a form of iteratively re-weighted least
squares, with a variant of trimmed LS, and an inductive
bias on the smoothness of the outlier process. Robust-
NeRF is surprisingly simple, yet effective on a wide range
of datasets. RobustNeRF is shown to outperform recent
state-of-the-art methods [4, 53], qualitatively and quantita-
tively, on a suite of synthetic datasets, common benchmark
datasets, and new datasets captured by a robot, allowing
fine-grained control over distractors for comparison with
previous methods. While our experiments explore robust
estimation in the context of mip-NeRF 360, the Robust-
NeRF loss can be incorporated within other NeRF models.

Limitations. While RobustNeRF performs well on scenes
with distractors, the loss entails some statistical inefficiency.
On clean data, this yields somewhat poorer reconstructions,
often taking longer to train (see Figure 11). Future work
will consider very small distractors, which may require
adaptation of the spatial support used for outlier/inlier de-



cisions. It would also be interesting to learn a neural weight
function, further improving RobustNeRF; active learning
may be useful in this context. Finally, it would be inter-
esting to include our robust loss in other NeRF frameworks.
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RobustNeRF: Ignoring Distractors with Robust Losses*
(Supplementary Material)

6.1. Dataset Description

To investigate RobustNeRF and its baselines, we capture
and generate a collection of natural and synthetic scenes.
With the goal of reconstructing the static elements of a
scene, we capture frames both with and without distractors
present. We describe the details of the capture below.

6.1.1 Natural Scenes

We introduce four natural scenes, two captured in an apart-
ment setting, and two in a robotics lab. See Figure 12 for
key details.

Apartment (Statue & Android). To mimic a casual home
scenario, we capture two tabletop scenes in an apartment us-
ing a commodity smartphone. Both captures focus on one
or more objects on a table top, with photos taken from dif-
ferent viewpoints from a hemisphere of directions around
the objects of interest. A subset of objects on the table move
from photo to photo as described below. The photos within
each scene do not have a clear temporal order.

The capture setup is as follows. We employ an iPhone
12 mini and use ProCamera v15 to control camera expo-
sure settings. We use a fixed shutter speed of 1/60, 0.0 ex-
posure bias, and a fixed ISO of 80 or 200 for the Statue
and Android scenes, respectively. We use the iPhone’s stan-
dard wide lens with an aperture of f/1.6 and resolution of
4032x3024. A tripod is used to reduce the effects of the
rolling shutter.

The Android dataset comprises 122 cluttered photos and
10 clean photos (i.e., with no distractors). This scene de-
picts two Android robot figures standing on a board game
box, which in turn is sitting on a table with a patterned table
cloth. We pose three small wooden robots atop the table in
various ways in each cluttered photo to serve as distractors.

For the Statue scene, we capture 255 cluttered photos and
19 clean photos. The scene depicts a small statue on top of
a highly-detailed decorative box on a wooden kitchen ta-
ble. To simulate a somewhat persistent distractor, we float
a balloon over the table which, throughout the capture, nat-
urally changes its position slightly with each photo. Un-
like the Android scene, where distractors move to entirely
new poses in each frame, the balloon frequently inhabits the
same volume of space for multiple photos. The decorative
box and kitchen table both exhibit fine grained texture de-
tails.

We run COLMAP’s [37] Structure-from-Motion
pipeline using the SIMPLE_RADIAL camera model.
While COLMAP’s camera parameter estimates are only

‘ #Clut. #Clean #Extra Paired? Res. Setting
Android 122 122 10 No 4032x3024 Apartment
Statue 255 132 19 No 4032x3024  Apartment
Crab 109 109 194 Yes 3456x3456  Robotics Lab

BabyYoda 109 109 202 Yes 3456x3456  Robotics Lab

Figure 12. Natural Scenes — Key facts about natural scenes in-
troduced in this work. Includes number of paired photos with (#
Clut.) and without (# Clean) distractors. Extra photos (# Extra) do
not contain distractors and are taken from unpaired camera poses.

approximate, we find that they are sufficient for training
NeRF models with remarkable detail.

The apartment scenes are considerably more challeng-
ing to reconstruct than the robotics lab scenes (described
below). An accurate NeRF reconstruction must model not
only the static, foreground content but also the scene’s back-
ground. Unlike the foreground, each object in the back-
ground is partially over- or underexposed and appears in a
limited number of photos. We further found it challenging
to maintain a controlled, static scene during capture. As
a result, some objects in the background move by a small,
unintended amount between photos (e.g., see Figure 14).

Robotics Lab (Crab & BabyYoda). In an effort to con-
trol confounding factors in data acquisition, we capture two
scenes in a Robotics Lab setting. In these scenes, we em-
ploy a robotic arm to randomly position a camera within
1/4 of the hemisphere over a table. The table is placed in
a closed booth with constant, indoor lighting. A series of
toys are placed on the table, a subset of which are glued to
the table’s surface to prevent them from moving. Between
photos, distractor toys on the table are removed and/or new
distractor toys are introduced.

For capture, we use a Blackfly S GigE camera with a
TECHSPEC 8.5mm C Series fixed length lens. Photos are
center-cropped from their original resolution of 5472x3648
to 3456x3456 to eliminate lens distortion. We capture 12-
bit raw photos with an aperture of {f/8 and exposure time
of 650 ms. Raw photos are automatically color-calibrated
afterwards according to a reference color palette.

In each scene, we capture 109 pairs of photos from iden-
tical camera poses, one with distractors present and another
without. This results in a large number of unique distractors
which are challenging to model directly. This further allows
us to investigate the counterfactual: What if distractors were
not present? We further capture an additional ~200 photos
from random viewpoints, not aligned with those for train-
ing and without distractors, for the purposes of evaluation.
In total, because the placement of objects is done manually,
one capture session often takes several hours.



Figure 13. Synthetic Kubric Scenes — Example Kubric synthetic
images for three datasets with different ratio of outlier pixels. The
sofa, lamp, and bookcase are static objects in all three setups. The
easy setup has 1 small distractor, the medium setup has 3 medium
distractors, and the hard setup has 6 large distractors.

6.1.2 Synthetic Scenes

We generate three Kubric [I2] scenes similar to the
D2NeRF synthetic scenes with different difficulty levels:
easy, medium, and hard. These datasets are used to ablate
our method with control on the proportion of outlier occu-
pancy (see Sec. 6.3.3).

Each dataset contains 200 cluttered images for training
and 100 clean images for evaluation. In all three scenes the
static objects include a sofa, a lamp and a bookshelf. Fig-
ure 13 shows one example image from the training set for
each dataset. The easy scene contains only one small dis-
tractor object (a bag). This dataset is similar to Kubric Bag
dataset of D?NeRF. The medium scene has three distrac-
tors (a bag, a chair, and a car) which are larger in size and
hence the outlier occupancy is 4x the outlier occupancy of
the easy scene. The hard scene has six large distractors (a
bag, a chair, and four cars). They occupy on average 10X
more pixels than the easy setup, covering roughly half of
each image.

6.2. Training Details

While camera parameters are estimated on the full-
resolution imagery, we downsample images by 8x for each
natural scene dataset. While mip-NeRF 360 and Robust-
NeRF are capable of training on high resolution photos, we
limit the resolution to accommodate D?NeRF. Unless oth-
erwise stated, we train on all available cluttered images, and
evaluate on a holdout set; i.e., 10 images for Android; 19 for
the Statue dataset; 194 for Crab; and 202 for the BabyYoda
dataset (see Figure 12).

RobustNeRF. We implement RobustNeRF by incorporat-
ing our proposed loss function into the MultiNeRF code-
base [26], replacing mip-NeRF 360’s [4] reconstruction
loss. All other terms in the loss function, such as regulariz-
ers, are included as originally published in mip-NeRF 360.

We train RobustNeRF for 250,000 steps with the Adam
optimizer, using a batch size of 64 image patches randomly
sampled from training images. Each pixel within a 16x16
patch contributes to the loss function, except those identi-

fied as outliers (see Figure 6 for a visualization). The learn-
ing rate is exponentially decayed from 0.002 to 0.00002
over the course of training with a warmup period of 512
steps.

Our model architecture comprises a proposal Multilayer
Perceptron (MLP) with 4 hidden layers and 256 units per
layer, and a NeRF MLP with 8 hidden layers, each with
1024 units. We assign each training image a 4-dimensional
GLO vector to account for unintended appearance variation.
Unless otherwise stated, we use the robust loss hyperparam-
eters given in the main body of the paper. All models are
trained on 16 TPUV3 chips over the course of 9 hours.

mip-NeRF 360 [4]. We use the reference implementation
of mip-NeRF 360 from the MultiNeRF codebase. Simi-
lar to RobustNeRF, we train each variant of mip-NeRF 360
with the Adam optimizer, using the same number of steps,
batch size, and learning rate schedule. mip-NeRF 360 uses
a random sample of 16384 rays per minibatch. Proposal
and NeRF MLP depth and width are identical to those for
RobustNeRF. Training hardware and duration are also the
same as RobustNeRF.

D2NeRF [53]. We use the reference implementation of
D?NeRF [53] provided by the authors. Model architecture,
hierarchical volume sampling density, and learning rate are
the same as published in [53]. As in the original work, we
train the model for 100,000 iterations with a batch size of
1024 rays, though over the course of 3 hours. Due to hard-
ware availability, we employ four NVIDIA V100 GPUs in
place of the A100 GPUs used in the original work.

Images are kept in the order of provided by the file
system (i.e., ordered by position information alphanumer-
ically). However, this image order is not guaranteed to rep-
resent a continuous path in space since the images were not
captured along a continuous path, but rather at random loca-
tions. Below we discuss the effects of random ordering ver-
sus ordering the views along a heuristically identified path.

D2NeRF training is controlled by five key hyperparam-
eters, namely, skewness (k), which encourages a binariza-
tion loss to favor static explanations, and four regularization
weights that scale the skewed binarization loss (\y), ray reg-
ularization loss (), static regularization loss (A ), and the
view-correlated shadow field loss ()\,). A hyperparameter
search is performed in D?NeRF for 16 real world scenes to
identify combinations best suited for each scene, and four
primary configurations of these parameters are identified as
optimal. In particular, the first configuration (i.e., k = 1.75,
As=1le7* 5 lem2 N\, =1le 3, A\ps =0,and A, = le™ 1)
was reported to be most effective across the largest number
of scenes real world (10 of 16). We additionally conduct a
tuning experiment (see Figure 16) and confirm the first con-
figuration as best suited. We apply this configuration in all
additional D?NeRF experiments.



Ground Truth

RobustNeRF Error

Figure 14. Challenges in Apartment Scenes — Each row, from left to right, shows a ground truth photo, a RobustNeRF render, and
the difference between the two. Best viewed in PDF. (Top) Note the fold in the table cloth in ground truth image and the lack of fine-
grained detail on the covered chair in the background. The table cloth moved during capture, and the background was not captured
thoroughly enough for a high-fidelity reconstruction. (Bottom) The ground truth image for the Statue dataset exhibits overexposure and

color calibration issues, and hence do not exactly match the RobustNeRF render.

6.3. Experiments

6.3.1 Comparison to mip-NeRF 360

In experiments on natural scenes, as reported in Figure 8,
the performance gap between mip-NeRF 360 (Ch.) and Ro-
bustNeRF is markedly higher for the two scenes captured in
the robotics lab (i.e., Crab, BabyYoda), compared to those
in the apartment (i.e., Statue, Android). We attribute this
to the difficulty in reconstructing the apartment scenes, re-
gardless of the presence of distractors. This statement is
supported by metrics for reconstruction quality of a mip-
NeRF 360 model trained on clean, distractor-free photos. In
particular, while mip-NeRF 360 achieves over 32 dB PSNR
on Crab and BabyYoda scenes, its PSNR is nearly 10 dB
lower on Statue and Android.

Upon closer inspection of the photos and our reconstruc-
tions, we identified several reasons for this. First, the apart-
ment scenes contain non-trivial background content with
3D structure. As the background was not the focus of these
captures, background content is poorly reconstructed by all
models considered. Second, background content illumi-
nated by sunlight is overexposed in some test images (see
Figure 14). While this challenge has already been addressed
by RawNeRF [24], we do not address it here as it is not a
focus of this work. Lastly, we find that some static objects
were unintentionally moved during our capture. The most

Crab
LPIPS| SSIMt PSNR?t

Order 1 | 0.43 066 20.19 | 044 0.66 18.17
Order2 | 042 068 2095 | 044 0.66 17.13

BabyYoda
LPIPS| SSIM{ PSNRt

Figure 15. Effect of Image Order on D>NeRF — As this model is
based on space-time NeRFs [30], to make it compatible with our
setting we create a "temporal’ indexing of the photos. Here, we
visualize: (left) with our heuristic ordering; (right) with another
random order. We observe similar distractor-related artifacts in
both cases.

challenging form of this is the movement of a table cloth
prominently featured in the Android scene which lead to
perturbed camera parameter estimates (e.g., see Figure 14).

6.3.2 Comparison to D?°NeRF

Unlike RobustNeRF, D2NeRF makes use of a time signal
in the form of provided appearance and warp IDs to gen-



Statue Crab
LPIPS, SSIMt PSNRY | LPIPS| SSIMt PSNRf

Configl | 0.48 049 19.09 | 042 0.68 21.18
Config2 | 0.49 048 1820 | 0.51 059 17.02
Config3 | 0.51 047 1828 | 0.46 0.63 19.01
Config4 | 0.49 048 18.18 | 0.49 058 16.77

Config # k As Ar Ags Ap
Config 1 1.75 le-4 — le-2 1e-3 0 le-1
Config 2 3 le-4 =1 le-3 0 le-l
Config3 | 2.75 le-5=1 le-3 O -

Config4 | 2.875 Se-4 =1 0 0 -

Figure 16. D?NeRF HParam Tuning — The performance of
D2NeRF is heavily influenced by the choice of hyperparameters.
In particular, optimal choices of hyperparameters are noted to be
strongly influenced by the amount of object and camera motion,
as well as video length. We tune by applying four recommended
configurations, and identify the first as optimal across the Statue
and Crab datasets. Please note that — indicates linear increase in
value and = indicates exponential increase in value.

erate a code as additional input to the HyperNeRF model.
This explicitly models dynamic content alongside the static
component of the scene. Two assumptions of D>NeRF are
broken in our datasets: 1) the objects sporadically appear
(by design); and 2) the views are not necessarily captured in
a video-like order. Sporadic object appearance is central to
our task, so we do not ablate this property. However, we do
evaluate the effect of heuristically reordering camera views
according to z position and radial angle of the robotic arm,
thereby producing an image order for an imagined “con-
tinuous” path. As a control, we pseudorandomly scramble
the view order, and train D®NeRF in both settings. The re-
sults for BabyYoda and Crab can be seen in Figure 15. We
observe no consistent discernable improvement in perfor-
mance as a result of view reordering and hypothesize that
the major hurdle for D?NeRF is rather the modeling of spo-
radic artifacts.

We also evaluate the effect of applying the four hyper-
parameter configurations provided by D?NeRF [53]. We
observe, as expected, that the first configuration performs
best across our datasets. Due to limited access to appro-
priate compute architecture for D2NeRF, we were not able
to tune every scene, but selected configuration 1 for all ex-
periments as it performed best in 10/16 real world scenes
for D?NeRF as well as tuning experiments on two of our
example datasets as see in in Figure 16.

6.3.3 Sensitivity to Hyperparameters

We find that the choice of thresholds and filter sizes, de-
scribed in Section 3, suffices for a wide range of datasets.
As long as the threshold 7. is greater than the proportion of

42

39 /dn
- 36 —— Easy
Z 33 ./_\ —— Medium
a 2 —— Hard

27 ﬁ‘_—'ﬁ\'&\’ﬁ\‘%_lf“

24

20% 40% 60% 80%
% Inlier Residuals
Figure 17. Sensitivity to 7. — RobustNeRF’s reconstruction qual-
ity as a function of 7¢ on scenes with different inlier/outlier propor-
tions. Overestimating 7. increases training time without affecting
final reconstruction accuracy.

outlier pixels in a dataset, RobustNeRF will reliably iden-
tify and ignore outlier pixels; see Figure 17. Easy has less
than 10% outlier pixels so any 7. less than 80% works. In
the medium case at least a 7, of 60% is required to remove
the outliers. In the hard case 44% of pixels are on average
occupied so any 7. above 50% has worse results. Training
with less than 50% of the loss slows down training signifi-
cantly. Therefore, we observe that after the 250k iterations
the model has not converged yet. On average training with
30% of loss requires twice the number of training iterations
to catch up. In contrast, D2NeRF requires careful, manual
hyperparameter tuning for each scene (e.g., see Figure 16)
for several hyperparameters.

6.3.4 More Qualitative Results

We render images from different NerF models from more
viewpoints from each of our datasets to further expand
the comparison with baselines, D2NeRF, and RobustNeRF.
Looking at Figures 18 through 21 one can see that D?NeRF
is only able to remove the outliers when there is a single dis-
tractor object (Statue dataset) and it fails on the other three
datasets. The Android dataset has three wooden robots with
articulated joints as distractors, and even in this setup where
the texture of the distractor objects are similar to one an-
other, D2NeRF fails to fully remove the outliers. In compar-
ison, RobustNeRF is able to remove the outliers irrespective
of their number and diversity.

For all four datasets mip-NeRF 360, with either L1, L2,
or Charbonnier loss, fails to detect the outliers; one can see
“clouds’ or even distinct floaters for these methods. The
worst performing loss is L2, as expected. L1 and Charbon-
nier behave similarly in terms of outlier removal. Changing
the loss to RobustNeRF eliminates the floaters and artifacts
in all datasets. Video renderings for these scenes are also in-
cluded in the zipfile with the supplementary material. The
floaters in mip-NeRF 360 are easier to resolve in the videos.
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