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Abstract

Recent advances in 3D scene representation and novel
view synthesis have witnessed the rise of Neural Radiance
Fields (NeRFs). Nevertheless, it is not trivial to exploit
NeRF for the photorealistic 3D scene stylization task, which
aims to generate visually consistent and photorealistic styl-
ized scenes from novel views. Simply coupling NeRF with
photorealistic style transfer (PST) will result in cross-view
inconsistency and degradation of stylized view syntheses.
Through a thorough analysis, we demonstrate that this non-
trivial task can be simplified in a new light: When trans-
forming the appearance representation of a pre-trained
NeRF with Lipschitz mapping, the consistency and pho-
torealism across source views will be seamlessly encoded
into the syntheses. That motivates us to build a concise and
flexible learning framework namely LipRF, which upgrades
arbitrary 2D PST methods with Lipschitz mapping tailored
for the 3D scene. Technically, LipRF first pre-trains a ra-
diance field to reconstruct the 3D scene, and then emulates
the style on each view by 2D PST as the prior to learn a Lip-
schitz network to stylize the pre-trained appearance. In view
of that Lipschitz condition highly impacts the expressivity of
the neural network, we devise an adaptive regularization to
balance the reconstruction and stylization. A gradual gra-
dient aggregation strategy is further introduced to optimize
LipRF in a cost-efficient manner. We conduct extensive ex-
periments to show the high quality and robust performance
of LipRF on both photorealistic 3D stylization and object
appearance editing.

1. Introduction

Photorealistic style transfer (PST) [52] is one of the im-
portant tasks for visual content creation, which aims to au-
tomatically apply the color style of a reference image to an-
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other input (e.g., image [38] or video [65]). In this task,
the stylized result is required to look like a camera shot
and preserve the input structure (e.g., edges and regions).
Benefiting from the launch of deep learning, a series of so-
phisticated deep PST methods [19,30,38,59,65] have been
developed for practical usage. Recent progress in 3D scene
representation has featured Neural Radiance Field [43, 67]
(NeRF) with efficient training and high-quality view syn-
thesis. This inspires us to go one step further to explore
a more challenging task of photorealistic 3D scene styl-
ization, which is to generate visually consistent and pho-
torealistic stylized syntheses from arbitrary views. Such a
task enables an automatic modification of 3D scene appear-
ance with different lighting, time of day, weather, or other
effects, thereby enhancing user experience and stimulating
emotions for virtual reality [57].

Nevertheless, it is not trivial to build an effective frame-
work for photorealistic 3D scene stylization. The diffi-
culty mainly originates from the fact that there is no valid
photorealistic style loss tailored for training NeRF. In gen-
eral, the image-based PST is commonly tackled via either
the neural style transfer [11] combined with complicated
post-processing [30, 38, 41], or particular network struc-
tures [29, 61, 65]. However, none of them can be directly
applied to the learning of NeRF. As shown in Figure 1, sim-
ply employing the state-of-the-art 2D PST on each view
might result in noise, disharmony and even inconsistency
across views, since the PST methods rely on the size or ob-
ject masks of the inputs. Such downsides will be further
amplified after reconstructing the 3D scene with NeRF.

To alleviate these limitations, we start with a basic un-
derstanding of this task: Though preserving the photoreal-
ism and consistency seems to be different in the context of
2D images, they do have the same essence when moving to
3D volume rendering [40]. From this standpoint, the task
is simplified as a problem to regulate the volume rendering
variance of the radiance field before and after stylization.
According to the studies of color mapping [48,51,52], some
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Scene & Style Radiance field Radiance field w/ Lipschitz MLP2D Photorealistc style transfer

Figure 1. Illustrations of different strategies for photorealistic 3D scene stylization. The 2D PST method [9] generates disharmonious
orange color on the stem and petaline edge. The regions bounded by the dotted ellipses are inconsistent due to the white spot in the first
view. When employing a radiance field to reconstruct the results of 2D PST method, the disharmony and inconsistency are still retained.
Our LipRF successfully eliminates these downsides, and renders high-quality stylized view syntheses.

specific linear mappings of image pixels can nicely preserve
the image structures with photorealistic effect. Motivated
by this, we theoretically demonstrate that a simple yet ef-
fective design of Lipschitz-constrained linear mapping over
appearance representation can elegantly control the volume
rendering variance. Furthermore, we prove that replac-
ing linear mapping with a Lipschitz multilayer perceptron
(MLP) also holds these properties under extra assumptions
which can be relaxed in practice. Such a way completely
eliminates the drawbacks of 2D PST when transforming the
radiance field with a Lipschitz MLP (see Figure 1). In a
nutshell, our analysis verifies that Lipschitz MLP can be in-
terpreted as an implicit regularization to safeguard the 3D
photography of stylized scenes.

By consolidating the idea of transforming the radiance
field with the Lipschitz network, we propose a novel NeRF-
based architecture (namely LipRF) for photorealistic 3D
scene stylization. Technically, LipRF contains two stages:
1) training a radiance field to reconstruct the source 3D
scene; 2) learning a Lipschitz network to transform the pre-
trained appearance representation to the stylized 3D scene
with the guidance of style emulation on each view by ar-
bitrary 2D PST. We adopt the Plenoxels [67] as the base
radiance field due to its advanced reconstruction quality
and compressed appearance representation by spheric har-
monics. Considering that the Lipschitz condition greatly
impacts the expressivity of neural networks, we design an
adaptive regularization based on spectral normalization [44]
to allow a mild relaxation of the Lipschitz constant in each
linear layer. Finally, we capitalize on gradual gradient ag-
gregation to optimize LipRF in a cost-efficient fashion.

In summary, we have made the following contributions:
(I) We present a thorough and insightful analysis of photo-
realistic 3D scene stylization on the basis of volume render-
ing and Lipschitz transformation. (II) We build a concise
and flexible framework (LipRF) for photorealistic 3D scene
stylization by novelly transforming the appearance repre-
sentation of a pre-trained NeRF with the Lipschitz Network.
(III) Under the Lipschitz condition, we design adaptive reg-
ularization and gradual gradient aggregation to seek a better

trade-off among the reconstruction, stylization quality, and
computational cost. We evaluate LipRF on both photoreal-
istic 3D stylization and object appearance editing tasks to
validate the effectiveness of our proposal.

2. Related works
2.1. Novel view synthesis

Novel view synthesis aims to synthesize view images
with arbitrary camera poses from given source images.
Many works have been proposed on various discrete rep-
resentations, e.g., multi-plane image [42, 72], point clouds
[13, 32], meshes [10, 58], and voxels [35]. Recently, neu-
ral radiance field approaches [4, 39, 43, 70] encoder the
scene into a continuous implicit volumetric representation
via multilayer perceptron, and render the novel view by
volume rendering integral [40]. Later, Plenoxels [67] re-
veals that the key element of NeRF is the differentiable
volume renderer. By simplifying NeRF into a sparse voxel
grid with spherical harmonics, Plenoxels achieves substan-
tial speedups with comparable rendering quality. Our work
capitalizes on the benefits of Plenoxels, and enables photo-
realistic 3D scene stylization to achieve in a few minutes.

2.2. Style transfer methods

Image stylization. Photorealistic style transfer is a long-
standing topic [2, 5, 48, 50, 52] that focuses on color distri-
bution transfer while maintaining the photorealism of the
image. In the regime of deep learning, since Gatys et al.
[11] present the neural style transfer that matches the fea-
ture distribution [6,21,24,31,49,71] to transfer artistic tex-
ture, many works incorporate neural networks into PST for
more complicated visual effects. One of the early works,
Luan et al. [38] introduces the semantic mask and photore-
alistic regularization [26] to yield impressive results. Pho-
toWCT [30] further improves the regularization [26] into a
closed form. The works [9, 27, 41, 65] propose to preserve
the high frequency to ensure photorealism. For example ,
WCT2 [65] embeds the wavelet transform into neural net-
works to fully retain image structure. Other works adopt



particular style transfer operators [17,19,28,29,37,59] to the
Encoder-Decoder pre-trained on natural image dataset, e.g.,
COCO [33]. The advances [60,61] learn the edge-preserved
local affine grid [12] in bilateral space [5] to transfer the
color locally. Because the input size and semantic mask
heavily influence these methods, directly applying to 3D
scene will produce distortion and inconsistency.
3D scene stylization. Recently, several works [8,18,47,69]
couple NeRF with neural style transfer [11] to tackle artis-
tic 3D scene stylization. For example, [8, 47, 69] finetune
pre-trained NeRFs with the image-based style losses. [18]
adapts the pre-trained NeRF by means of a 2D style transfer
model. These methods enable better stylization in a variety
of scenes, and perform faster training and inference than
the approaches [16,46,64]. However, strict consistency and
photorealism are hardly achieved by these methods, making
them inapplicable to photorealistic stylization.

2.3. Lipschitz network

The Lipschitz network [54], i.e., neural network with
a limited Lipschitz constant, has advantages in robustness
[63], generalization [66], and stability of training [44].
Since computing the exact Lipschitz constant of neural net-
works is NP-hard [54], previous methods usually minimize
[14,34] or specify [15,44] an upper bound of Lipschitz con-
stant as a small value. Due to the small Lipschitz constant
limits the visual effect in synthesis task, these methods can-
not provide a proper constraint for the renderer/generator.
To solve this, we propose to adaptively constrain Lipschitz
property according to the given scene and reference image.

3. Preliminaries
Radiance field. Generally, the radiance field [43] is a 5D
function F that maps any 3D location x and viewing di-
rection d to volume density σ and color c = (r, g, b).
Specifically, F can be further divided into the geometry part
σ = Fgeo(x) and the appearance part c = Fapp(x,d), i.e.,
F = (Fgeo,Fapp). Recently, [67, 68] factorize the appear-
ance via spherical harmonic representation:

c = Fsh(x)Γ(d) + v, (1)

where Γ is the pre-defined basis function to produce the ℓ-
dimensional basis, Fsh computes the corresponding 3× ℓ
coefficient matrix, and v is a fixed vector to normalize the
colors. This form can greatly reduce the redundancy of the
representation, and speed up the training and inference.
Volume rendering. A ray cast into the scene can be formu-
lated as r(t) = o + td, where o and d are the origin and
normalized direction of the ray, and t denotes the distance
along the ray. The color of the ray with near and far bounds
t1 to tT+1 is estimated by the volume rendering

C(r;F) =
∑T

i=1
wici, (2)

Figure 2. Illustrations of image structure (left) and cross-view
consistency (right) from the perspective of volume rendering. For
easy understanding, we placed images behind radiance fields (the
cubes), and the two yellow circles on each ray denote the weighted
colors sampled for volume rendering as Eq. (2). For each case, the
volume rendering variance as Eq. (5) should be a small value.

wi = (1− e−σi(ti+1−ti))e−
∑

i′<i σi′ (ti′+1−ti′ ), (3)

where σ and c are predicted by the radiance field F.
Lipschitz functions. Given two metric spaces X and Y , a
function f : X → Y is Lipschitz, or K-Lipschitz continu-
ous if there exists K ∈ R+ satisfied that:

∀x1, x2 ∈ X , dY (f (x1) , f (x2)) ≤ KdX (x1, x2) , (4)

where dX and dY are metrics in X and Y , respectively. K is
called the Lipschitz constant of f . In this paper, we define
dX and dY as (2-norm) Euclidean distances of vectors.

4. Problem statement
Task and challenges. Given a set of images {Ii}Ni=1 taken
in a 3D scene I with known camera parameters, our goal
is to synthesize novel photorealistic views with the similar
color style to the reference image. As discussed in Sec-
tion 1, the main challenge is to protect photorealism and
consistency while transferring the color style. More specif-
ically, 1) For photorealism, the image structure (e.g., edges
and regions) needs to be well preserved after stylization.
Without loss of generality, considering two nearby pixels
at p1 and p2 in an image I, we succinctly state that if
∥I(p1)− I(p2)∥ < ϵ (ϵ is a small value), the two belong
to the same region; otherwise not. 2) For consistency, we
suppose that one point in the scene can be observed by two
adjacent views I1 and I2 at p1 and p2 (with a slight abuse
of notation), respectively. Thus, the cross-view consistency
should meet ∥I1(p1)− I2(p2)∥ < ϵ. For this task, the
above two relations between pixels in the stylized images
should be consistent with that of the source images.
A novel perspective from volume rendering. Due to the
fact that the intensity of pixels is physically derived from the
volume rendering of corresponding ray castings, we reinter-
pret them from the perspective of rays. Suppose that r1 and
r2 intersect with the single/couple views at p1 and p2, re-
ferring to Eq. (2), we define the volume rendering variance



(vrr) of rays r1 and r2 in the radiance field F by

vrr(r1, r2;F) = ∥C(r1;F)− C(r2;F)∥

=

∥∥∥∥∥
T∑

i=1

wr1
i cr1i −

T∑
i=1

wr2
i cr2i

∥∥∥∥∥ , (5)

where the superscripts denote the ray index. Importantly,
the arrival of vrr integrates the intricate relationships within
(structure) and between (consistency) images into the vari-
ance over rays. Figure 2 depicts a concise example. In this
way, if a radiance field F could represent the scene I, the
core challenge of this task can be streamlined to learn a styl-
ized radiance field F′ satisfying

vrr(r1, r2;F) < ϵ ⇒ vrr(r1, r2;F
′) < ϵ′, (6)

where ϵ′ is a small value. In the following, we prove that
the above demand can be fulfilled elegantly recurring to the
Lipschitz mapping, thereby leading to decent stylization.

5. Methodology
In this section, we introduce a concise and flexible

framework called LipRF to tackle photorealistic 3D scene
stylization. LipRF first obtains the radiance field F of the
source scene (Sec. 5.1). Based on the theoretical analy-
sis (Sec. 5.2) of controlling vrr with Lipschitz mappings,
LipRF transforms the pre-trained radiance field with the
Lipschitz MLP (Sec. 5.3) to reconstruct the views stylized
by 2D PST. The gradual gradient aggregation (Sec. 5.4) is
elaborated to optimize LipRF in a cost-efficient way.

5.1. Scene representation via radiance field

In the first stage, a radiance field F = (Fgeo,Fapp) with
faithful geometry and appearance representation is trained
to reconstruct the real scene I. Following [67], we adopt
the reconstruction loss for training:

Lrec(F, I) =
m∑
i=1

∥C(ri;F)− C(ri)∥2 , (7)

where {ri}mi=1 denotes the set of rays generated under the
given camera parameters, C(ri;F) is the color estimated by
volume rendering as in Eq. (2), and C(ri) is the groundtruth
color of the corresponding image pixel in {Ii}Ni=1.

We assume Fgeo enables fully encoding the geometry of
I after training. Since PST should not change the geometry
of the source scene, we directly set F′

geo = Fgeo. In this
way, C(r;F) and C(r;F′) have the same rendering weights
as in Eq. (3) on the ray path.

5.2. Theoretic form of stylized radiance field

The classic 2D PST methods [51, 52, 62], which sim-
ply transfer the color style by linear mappings of pixels,
can well preserve the image structure. In addition to linear-
ity, we find another commonality of these methods that the

corresponding Lipschitz constants are all of small values,
e.g., usually less than 5 on the PST dataset [38]. The fact
indicates that Lipschitz property may also play an impor-
tant role in maintaining structure of images. Prompted by
this underlying relationship, we prove that the Lipschitz-
constrained linear mapping of Fapp is indeed an optimal
form for holding Cond. (6):

Proposition 1. Considering f(c) = Ac + b, A ∈ R3×3,
b ∈ R3×1, if F′

app = f ◦ Fapp,
∑T

i=1 wi = 1 and
vrr(r1, r2;F) < ϵ, we have vrr(r1, r2;F

′) < Kϵ, where
K = ∥A∥2 is the Lipschitz constant of f 1.

Since the unique assumption of
∑T

i=1 wi = 1 is in accor-
dance with many radiance field models [43, 67, 68] in prac-
tice, Prop. 1 provides an ideal way to establish F′, where
the variational bound ϵ′ in Cond. (6) is influenced by the
Lipschitz constant of transform. Nonetheless, the limited
expressivity of linear mapping definitely affects dramatic
style effects, e.g., the color variation in Figure 1 by the deep
PST method. We propose to mitigate the deficiency while
maintaining Cond. (6) by means of the Lipschitz MLP:

Proposition 2. Considering f = fl ◦ · · · ◦ f1, fj(x) =
Ajx + b if j = l and σ(Ajx) otherwise, where σ =

max(0, x). If F′
app = f ◦ Fapp,

∑T
i=1 wi = 1

and maxi=1,...,T ∥wr1
i cr1i − wr2

i cr2i ∥ < ϵ/T , we have
vrr(r1, r2;F

′) < Kϵ, where K = Πl
i=1 ∥Ai∥2 is the Lips-

chitz constant of f 1.

This proposition further necessitates the vanishing of
∥wr1

i cr1i − wr2
i cr2i ∥, which is valid when the rays are quite

adjacent. Despite the premise seems to hamper the utiliza-
tion of Lipschitz MLP, it can be greatly loosened for the
close relation between Lipschitz MLP and linear mapping
in Prop. 1: 1) The above Lipschitz MLP as a piece-wise lin-
ear function behaves the same as linear mapping in a local
space [45]. 2) The Lipschitz MLP with strict constraint of
Lipschitz condition and gradient norm approximates to the
linear mapping [1]. These properties encourage to form the
stylized radiance field as:

F′ = (Fgeo, f ◦ Fapp), f is K-Lipschitz MLP. (8)

Regarding the training complexity of f , generally if there
are n values sampled for each variable of the position and
direction, f needs to take a large amount of parameters with
high computational costs for predicting O(n5) colors cor-
rectly. Fortunately, we find a nice property1 in Eq. (1):

AFapp(x,d)+b ⇔ AFsh(x)+2
√
π[Av+b−v,0], (9)

which allows to exchange the linear mappings of appear-
ance representation and spherical harmonic representation.

1 Proof is provided in the supplementary materials.



Therefore, F′
app = f ◦ Fapp can be pared down to F′

sh =
f ◦Fsh, while not violating the above propositions. By do-
ing so, it is feasible to design f as a lightweight model to
handle the O(n3) spherical harmonic coefficients.

5.3. Lipschitz transformation of radiance field

Based on the above analysis, the second step of LipRF
is to transform the radiance field F with Lipschitz MLP
f as stylized radiance field F′. Here f is composed of
linear and activation layers. It receives and updates the
flattened spheric harmonic coefficients. We also input the
3D position for spatial inductive bias, namely F′

sh(x) =
f(Fsh(x),x). The training objective is

minf Lrec(F
′,S) + λLLip(f). (10)

S denotes the scene consisting of {pst(Ii)}Ni=1, where pst
is an arbitrary 2D PST method. Lrec(F

′,S) is the recon-
struction loss of the same form as Eq. (7), and LLip is
the proposed adaptive Lipschitz regularization to adjust the
Lipschitz constant of f , and λ is the balance weight.
Lower bound of Lipschitz constant. In practice, it is dif-
ficult to determine the optimal Lipschitz constant K of the
network for different scenes and reference images. Large
values will invalidate the constraint of vrr, while small
values may result in over-constrained conditions for the
color style transfer. To address this problem, we first es-
timate a value Kest as the lower bound of K. Here we
adopt a widely used color transfer method, i.e., Monge-
Kantorovitch linear [51] (MKL) mapping, to compute the
transfer matrix between I and S:

M = Σ
−1/2
I

(
Σ

1/2
I ΣSΣ

1/2
I

)1/2

Σ
−1/2
I , (11)

where ΣI and ΣS are the covariance matrices of pixel col-
ors in {Ii}Ni=1 and {pst(Ii)}Ni=1, respectively. We specify
Kest = ∥M∥2 so that f outperforms the linear mapping.
Adaptive Lipschitz regularization. Since the Lipschitz
constant of network is affected by that of each linear layer
(see Prop. 2), it is hard to optimize K directly. We reform

Ai = squareplus(Ki, b)W i/ ∥W i∥2 , (12)

where W i and Ki are the parameters to optimize for the i-th
linear layer. Here, squareplus(x, b) = 1

2

(
x+

√
x2 + b

)
[3]

is similar to ReLU, but always produces positive values to
prevent the norm of Ai from vanishing. We follow [44] to
fast approximate ∥W i∥2 by one-step power iteration. On
this basis, the regularization is defined as

LLip =

l∑
i=1

squareplus(Ki − l
√

Kest, b). (13)

The Lipschitz constant of network is optimized by con-
straining the norm of each linear layer to the geometric
mean value of Kest, and thus LLip can softly control the
gap between K and Kest during training.

Algorithm 1: PyTorch-style pseudocode for GGA
# f - Lipschitz MLP; Opt - optimizer of f; sh -
[B,ℓ] spheric harmonic coefficients of F; sigma
- [B,1] density of F; rs - rays of a view; C -
groundtruth; idx - indexes for splitting batches

Opt.zero grad()
# 0. feed forward
With torch.no grad():

sh t = cat([f(sh[i:j]) for i,j in idx])
C hat = volume render(rs, sigma, sh t)

# 1. backward from rec loss to image
rec loss(C hat, C).backward()
# 2. backward from image to sh t
p = volume render(rs, sigma, sh t)
p.backward(grad = C hat.grad)
# 3. backward from sh t and Lip loss to f
for i, j in idx:

p = f(sh[i:j])
p.backward(grad = sh t[i:j].grad/B)

(lambda * Lip loss(f)).backward()
Opt.step()

5.4. Optimization by gradual gradient aggregation

For Plenoxels [67], Lipschitz MLP needs to transform
the spherical harmonic coefficients on all vertices at each
iteration due to the structure of voxel grid. Therefore, train-
ing LipRF will cost a massive GPU memory in both feed
forward and back propagation. The intuitive strategy that
optimizes a sparse set of rays [8,47] at once will cause con-
siderable redundancy, since the majority of vertices are not
selected. [69] proposes to defer the back propagation for re-
moving useless gradient cache, but it still fails on LipRF
due to the huge amount of inputs for Lipschitz MLP.

To increase training efficiency, we propose the gradual
gradient aggregation (GGA) detailed in Algorithm 1. First,
GGA does not construct the computation graphs during the
forward process to reduce memory footprint. Then, the
GGA gradually propagates the gradient after redoing each
forward step. Finally, the gradient of Lipschitz MLP is ag-
gregated in a batch-wise way. Since the forward process
costs much less time than the backward propagation, GGA
enables a fast training speed, and tractable memory foot-
print by adjusting the number of batches.

6. Experiments

Settings. The overall architecture of LipRF is implemented
based on the official code of Plenoxels2 [67]. The first stage
of training radiance field is the same as in Plenoxels. In
the second stage of learning Lipschitz network, the MLP
has 5 linear-activation layers and 1 linear output layer. The
middle layer has 64 neural units. Note that taking the (1-
Lipschitz) sinusoidal function [55] as activation can lead to
better results than ReLU or LeakyReLU sometimes. We
use the Adam optimizer [22], where β1 = 0.9, β2 = 0.999,

2https://github.com/sxyu/svox2

https://github.com/sxyu/svox2


𝐔𝐏𝐒𝐓Scene & Style WCT𝟐  WCT𝟐 + LipRFCCPL CCPL +  LipRF

Figure 3. Comparison on “trex” and “room” scenes from LLFF dataset [42], where the image resolution is 1008×756. For the two scenes,
LipRF is learned with the prior knowledge derived from the stylized results of WCT2 [51] and CCPL [51].

Scene & Style MKL 𝐔𝐏𝐒𝐓 𝐋𝐢𝐩𝐑𝐅

Figure 4. Comparison on NeRF-synthetic dataset [43], where the
image resolution is 800 × 800. LipRF is learned with the prior
knowledge derived from the stylized scene of MKL [51].

and the learning rate is reduced from 10−2 to 10−4 by co-
sine annealing [36]. We set λ = 2 × 10−4 in Eq. (10) and
b = 10−12 in squareplus. Unless otherwise stated, the opti-

mization process runs 300 epochs in total and takes no more
than 7 minutes on a single NVIDIA RTX 3090.
Datasets. We conduct qualitative and quantitative evalua-
tions to verify LipRF on various scenes in multiple datasets,
including NeRF-synthetic dataset [43] of synthetic scenes,
LLFF [42] dataset of real forward-facing scenes, and some
scenes from Tanks and Temples dataset [23] of real 360◦

scenes and the multi-view stereo DTU dataset [20]. The
style images are derived from the PST dataset [38]. Due
to space limitations, we present part of them in the paper.
Please refer to the supplementary materials for more results.
Baselines. We leverage three existing 2D PST approaches
as baselines. In particular, MKL [51] is a classic and widely
used color transfer method. WCT2 [65] is recognized as
a typical baseline of 2D PST methods, which is stable for
videos or high-resolution images. CCPL [59] is a recent
state-of-the-art 2D PST method. Besides, we include a con-
current work UPST [7] for comparison, which promotes 2D
PST to tackle the same task of photorealistic 3D stylization.

6.1. Qualitative results

NeRF-synthetic dataset. Figure 4 summarizes the com-
parison between our LipRF and existing 2D/3D PST meth-
ods. Considering that the scenes in synthetic dataset [43]
are constructed with simple texture, we choose the classic
MKL [51] as the only 2D PST baseline. Although MKL
can transfer the colors faithfully, it fails to distinguish be-
tween the foreground and background, resulting in a drastic



Scene & Style WCT𝟐/CCPL 𝐋𝐢𝐩𝐑𝐅

Figure 5. Comparison on Tanks and Temples dataset [23]. For two
scenes, LipRF is learned with the prior knowledge derived from
the stylized results of WCT2 (first) [51] and CCPL [51] (second).

change in the background pixel colors. It is worth noting
that this is indeed a common problem existing in all 2D PST
methods when being simply applied to 3D scene. Moreover,
the stylized results of UPST [7] show some disparity with
the reference color style in vision. In contrast, our approach
manages to integrate the advantages of radiance field with
MKL. Since the densities of background regions are all 0
in the radiance field, they do not contribute to the volume
rendering, encouraging the rendered colors to be consistent
with the source scene background.

LLFF dataset. We further illustrate the comparisons on
LLFF dataset in Figure 3. As shown in the results, the
state-of-the-art 2D PST approach (CCPL [59]) has two
main downsides: First, there are a lot of noises in the styl-
ized scene, like contrasting spots and variegation. Second,
the stylized results are obviously blurred compared to the
source images. This is mainly because it is non-trivial to
apply the Encoder-Decoder architecture in CCPL trained on
COCO dataset [33] for the high-resolution inputs of scene
images. WCT2 [59] performs better than CCPL in structure
preservation due to its wavelet module, but the inevitable
noises and the intense edges (e.g., the bone boundary of
trex) also cause disharmony. By training a high-resolution
2D PST network, UPST [7] is able to preserve the structure
well. However, the color style of stylized scene is different
from the reference. Instead, LipRF completely eliminates
the limitations of CCPL and WCT2, and the stylized results
have clear advantages in photorealism and color style.

Tanks and Temples dataset. Since UPST [7] does not sup-
port this dataset, Figure 5 depicts the comparison between
LipRF and 2D PST methods. Similarly, 2D PST methods
result in cross-view inconsistency like the sky color on the
playground, and strong noises like the messy colors on car
and ground. After transforming radiance field with Lips-

Scene & Style & Mask 𝐖𝐂𝐓𝟐 𝐋𝐢𝐩𝐑𝐅

Figure 6. Object appearance editing. The semantic masks of style
image and scene are provided to guide the style transfer.

chitz Network, our LipRF manages to alleviate these issues
and obtains high-quality stylized results.
Object appearance editing. Another practical application
of PST is object appearance editing [38], which leverages
additional semantic masks of objects to guide style trans-
fer. However, it is difficult to precisely annotate the object
masks of each view. In Figure 6, the first scene comes from
the DTU dataset [20], and the provided inaccurate masks
result in the inconsistency of stylized images. The same
problem is also observed for the second scene taken from
LLFF [42] with automatic annotation. In contrast, LipRF
obtains photorealistic and consistent results.
Style interpolation. Once the training of LipRF is com-
pleted, we can interpolate the source and stylized radiance
fields to obtain Fα

sh = αF′
sh + (1− α)Fsh by adjusting the

factor α ∈ [0, 1] (see Figure 7). This provides an efficient
way to control or serialize the style change of scenes, saving
much time compared with the interpolation of image pixels.

6.2. Quantitative results

Consistency. We take the temporal consistency [25] as the
metric for evaluating the cross-view consistency. Specifi-
cally, given two view synthesis xi and xj of a scene, the
temporal consistency is computed by

TC (xi, xj) =
1

|Oi,j |
∥Oi,jWi,j (xi)−Oi,jxj∥2 , (14)

where Wi,j warps xi to xj according to the optical flow es-
timated by RAFT [56], and mask Oi,j labels non-occluded
pixels [53] in xi and xj . |Oi,j | is the sum of tensor items.
We further convert TC to the readable PSNR form

TCpsnr(xi, xj) = −10 ∗ log10(TC (xi, xj)). (15)

The metric is conducted on 8 scenes of LLFF dataset [42],
and each scene will be stylized based on 4 images from
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Figure 7. Style interpolation within radiance fields.

fern flower fortress horns leaves orchids room trex Avg.
MKL 28.4 32.9 34.2 31.1 26.2 27.0 28.8 27.7 30.0
WCT2 24.0 28.5 24.1 27.9 22.7 24.3 25.9 24.7 25.3
w/ Lip 29.5 34.1 33.4 32.6 25.8 28.0 29.4 28.7 30.3
CCPL 22.0 23.4 22.5 25.1 20.5 21.1 23.9 24.7 22.9
w/ Lip 26.7 30.7 31.0 30.9 26.2 262 28.8 27.4 28.5
UPST 27.6 33.4 31.0 30.5 26.2 26.7 30.4 27.7 28.3

MKL 25.6 26.3 28.0 26.3 22.9 23.6 24.6 23.8 25.1
WCT2 22.1 23.7 19.1 24.4 20.0 21.5 22.2 21.4 21.8
w/ Lip 26.7 28.0 27.9 27.8 22.5 24.6 25.3 24.3 25.9
CCPL 20.5 19.8 18.3 22.5 18.7 18.9 21.5 22.4 20.3
w/ Lip 24.1 24.6 24.1 26.3 22.9 22.9 24.7 23.6 24.2
UPST 24.8 26.6 22.7 26.0 21.2 23.6 25.7 23.7 24.3

Table 1. Comparisons of short (upper) and long (lower) temporary
consistency on LLFF dataset. The higher the value, the better the
consistency. “w/ Lip” means coupling LipRF with the 2D PST
method in the block. The last column shows the average value.

PST dataset [38]. The number of evaluated views is the
same as that of training views. We report the short tempo-
ral consistency taking (xi, xi+1) as the input pair, and the
long temporal consistency taking (xi, xi+5) as input pair.
Table 1 details the average results and we have three main
observations. The first is that LipRF is the only method that
manifests similar or advanced properties over linear method
MKL [51]. Second, LipRF stably promotes the consistency
of 2D PST, thereby upgrading 2D PST to adapt for the 3D
scene. Finally, LipRF does benefit from the improvement
of 2D PST method, as evidenced by exhibiting better con-
sistency of WCT2 with LipRF against CCPL with LipRF.
User study. We further conduct subjective evaluation to
compare the style effects. We operate LipRF with WCT2,
UPST and MKL on 16 pairs of scenes and style images,
then invite 35 volunteers to comprehensively assess and
vote for their favorite rendered videos. Finally, LipRF ob-
tains 79% preference that surpasses the 11% of UPST and
10% of MKL, proving the impressive effects of LipRF.

6.3. Ablation study

Alternative activations. The activation is essential for con-
structing Lipschitz networks, and the commonly used ReLU
(or LeakyReLU), Sigmoid, Sine and Tanh are all Lipschitz
continuous. In the experiments, we found that Sigmoid and
Tanh do not work due to the vanishing gradients sometimes.

LipRF, 𝑲 ൌ 𝟖.𝟓 w/ ReLU,  𝑲 ൌ 𝟖.𝟖𝐖𝐂𝐓𝟐, 𝑲𝒆𝒔𝒕=4.1

w/o 𝓛𝑳𝒊𝒑, 𝑲 ൌ 𝟏𝟏𝟕𝟒.𝟕 w/o 𝑲𝒆𝒔𝒕, 𝑲 ൌ 𝟐.𝟖 w/ SN, 𝑲 ൌ 𝟏.𝟎

Scene

Style

Figure 8. The results with different Lipschitz constants. Kest is
the estimated value in Eq. (11) . “w/ ReLU” replaces the sinu-
soidal activation of LipRF with ReLU. “w/o Kest” sets the lower
bound to zero. “w/ SN” replaces the adaptive regularization with
the spectral normalization that forces the Lipschitz constant to 1.

In the remaining alternatives, the Sine-based LipRF can
obtain more faithful color style compared with the ReLU-
based one. Figure 8 visualizes the comparisons.

Lipschitz regularization. Next, we study the impact of
the proposed adaptive Lipschitz regularization for LipRF.
As shown in Figure 8, LipRF will create noisy details when
removing the regularization. Meanwhile, the Lipschitz con-
stant surges from 8.5 to 1174.7. Furthermore, when remov-
ing or setting Kest to zero, the Lipschitz constant of LipRF
will decrease dramatically from 8.5 to 2.8 after 300 epochs.
Both qualitative results validate our strategy. We also com-
pare our strategy with spectral normalization [44], and the
results indicate that the lower the Lipschitz constant, the
weaker the color change, and the visually smoother the im-
age. The comparison again proves the merits of LipRF.

7. Conclusion

In this paper, we present a novel and well-motivated
framework namely LipRF to tackle photorealistic 3D scene
stylization, where the main challenge is the preservation of
photorealism and consistency during stylization. To this
end, we first show that the two objectives can be simpli-
fied into maintaining volume rendering variance before and
after stylization. Then, we prove that a Lipschitz MLP en-
ables controlling the variance. Third, we propose an adap-
tive regularization to constrain the lower bound of Lipschitz
constant and introduce the gradual gradient aggregation to
optimize LipRF in a cost-efficient manner. Extensive ex-
periments shows the versatility of LipRF. The main limita-
tion is that, LipRF relies on the pre-trained radiance field.
Once the radiance field cannot reconstruct the scene well,
the learning of LipRF would be failed. We think this prob-
lem can be solved with the development of radiance fields.
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