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Dream3D (Ours)

“A park bench overgrown 
with vines.”

“A wide screen TV 
playing The Avengers.”

“A car is burning.” “A lamp imitating 
sunflower.”

“The Iron Throne in 
Game of Thrones.”

Figure 1. By utilizing 3D shape priors and powerful text-to-image diffusion models, our Dream3D can generate 3D content that exhibits
superior visual quality and shape accuracy in accordance with the text prompt when compared to PureCLIPNeRF [25].

Abstract
Recent CLIP-guided 3D optimization methods, such as

DreamFields [20] and PureCLIPNeRF [25], have achieved
impressive results in zero-shot text-to-3D synthesis. How-
ever, due to scratch training and random initialization with-
out prior knowledge, these methods often fail to generate
accurate and faithful 3D structures that conform to the in-
put text. In this paper, we make the first attempt to introduce
explicit 3D shape priors into the CLIP-guided 3D optimiza-
tion process. Specifically, we first generate a high-quality
3D shape from the input text in the text-to-shape stage as a
3D shape prior. We then use it as the initialization of a neu-
ral radiance field and optimize it with the full prompt. To
address the challenging text-to-shape generation task, we
present a simple yet effective approach that directly bridges
the text and image modalities with a powerful text-to-image
diffusion model. To narrow the style domain gap between
the images synthesized by the text-to-image diffusion model
and shape renderings used to train the image-to-shape
generator, we further propose to jointly optimize a learn-
able text prompt and fine-tune the text-to-image diffusion
model for rendering-style image generation. Our method,

*Work done during an internship at ARC Lab, Tencent PCG.
†Corresponding Author.

Dream3D, is capable of generating imaginative 3D con-
tent with superior visual quality and shape accuracy com-
pared to state-of-the-art methods. Our project page is at
https://bluestyle97.github.io/dream3d/.

1. Introduction
Text-to-3D synthesis endeavors to create 3D content that

is coherent with an input text, which has the potential to
benefit a wide range of applications such as animations,
games, and virtual reality. Recently developed zero-shot
text-to-image models [36,46,47,50,52] have made remark-
able progress and can generate diverse, high-fidelity, and
imaginative images from various text prompts. However,
extending this success to the text-to-3D synthesis task is
challenging because it is not practically feasible to collect
a comprehensive paired text-3D dataset.

Zero-shot text-to-3D synthesis [20,23,25,42,53], which
eliminates the need for paired data, is an attractive approach
that typically relies on powerful vision-language models
such as CLIP [62]. There are two main categories of this
approach. 1) CLIP-based generative models, such as CLIP-
Forge [53]. They utilize images as an intermediate bridge
and train a mapper from the CLIP image embeddings of
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ShapeNet renderings to the shape embeddings of a 3D shape
generator, then switch to the CLIP text embedding as the in-
put at test time. 2) CLIP-guided 3D optimization methods,
such as DreamFields [20] and PureCLIPNeRF [25]. They
continuously optimize the CLIP similarity loss between a
text prompt and rendered images of a 3D scene representa-
tion, such as neural radiance fields [1,27,34,43]. While the
first category heavily relies on 3D shape generators trained
on limited 3D shapes and seldom has the capacity to ad-
just its shape structures, the second category has more cre-
ative freedom with the “dreaming ability” to generate di-
verse shape structures and textures.

We develop our method building upon CLIP-guided 3D
optimization methods. Although these methods can pro-
duce remarkable outcomes, they typically fail to create pre-
cise and accurate 3D structures that conform to the input
text (Fig. 1, 2nd row)). Due to the scratch training and ran-
dom initialization without any prior knowledge, these meth-
ods tend to generate highly-unconstrained “adversarial con-
tents” that have high CLIP scores but low visual quality.
To address this issue and synthesize more faithful 3D con-
tents, we suggest generating a high-quality 3D shape from
the input text first and then using it as an explicit “3D shape
prior” in the CLIP-guided 3D optimization process. In the
text-to-shape* stage, we begin by synthesizing a 3D shape
without textures of the main common object in the text
prompt. We then use it as the initialization of a voxel-based
neural radiance field and optimize it with the full prompt.

The text-to-shape generation itself is a challenging task.
Previous methods [20, 53] are often trained on images and
tested with texts, and use CLIP to bridge the two modali-
ties. However, this approach leads to a mismatching prob-
lem due to the gap between the CLIP text and image embed-
ding spaces. Additionally, existing methods cannot produce
high-quality 3D shapes. In this work, we propose to di-
rectly bridge the text and image modalities with a powerful
text-to-image diffusion model, i.e., Stable Diffusion [50].
We use the text-to-image diffusion model to synthesize an
image from the input text and then feed the image into
an image-to-shape generator to produce high-quality 3D
shapes. Since we use the same procedure in both training
and testing, the mismatching problem is largely reduced.
However, there is still a style domain gap between the im-
ages synthesized by Stable Diffusion and the shape render-
ings used to train the image-to-shape generator. Inspired by
recent work on controllable text-to-image synthesis [12,51],
we propose to jointly optimize a learnable text prompt and
fine-tune the Stable Diffusion to address this domain gap.
The fine-tuned Stable Diffusion can reliably synthesize im-
ages in the style of shape renderings used to train the image-

*Throughout this paper, we use the term “shape” to refer to 3D geomet-
ric models without textures, while some works [7,29] also use this term for
textured 3D models.

to-shape module without suffering from the domain gap.
To summarize, 1) We make the first attempt to introduce

the explicit 3D shape prior into CLIP-guided 3D optimiza-
tion methods. The proposed method can generate more ac-
curate and high-quality 3D shapes conforming to the corre-
sponding text, while still enjoying the “dreaming” ability
of generating diverse shape structures and textures (Fig. 1,
1st row). Therefore, we name our method “Dream3D” as
it has both strengths. 2) Regarding text-to-shape genera-
tion, we present a straightforward yet effective approach
that directly connects the text and image modalities using a
powerful text-to-image diffusion model. To narrow the style
domain gap between the synthesized images and shape ren-
derings, we further propose to jointly optimize a learnable
text prompt and fine-tune the text-to-image diffusion model
for rendering-style image generation. 3) Our Dream3D can
generate imaginative 3D content with better visual quality
and shape accuracy than state-of-the-art methods. Addition-
ally, our text-to-shape pipeline can produce 3D shapes of
higher quality than previous work.

2. Related Work
3D Shape Generation. Generative models for 3D shapes
have been extensively studied in recent years. It is more
challenging than 2D image generation due to the expensive
3D data collection and the complexity of 3D shapes. Var-
ious 3D generators employ different shape representations,
e.g., voxel grids [3, 26, 59], point clouds [2, 65, 67, 69, 72],
meshes [14,15,17,35], and implicit fields [8,30,63,64,71].
These generators are trained to model the distribution of
shape geometry (and optionally, texture) from a collection
of 3D shapes. Some methods [4, 5, 13, 38, 40, 41, 55] at-
tempt to learn a 3D generator using only 2D image su-
pervision. These methods incorporate explicit 3D repre-
sentations, such as meshes [13, 40, 41] and neural radiance
fields [4, 5, 38, 55], along with surface or volume-based dif-
ferentiable rendering techniques [21, 22, 34, 37], to enable
the learning of 3D awareness from images.
Text-to-Image. Previous studies in text-to-image synthe-
sis [44, 48, 66, 70] have focused mainly on domain-specific
datasets and utilized GANs [16]. However, recent advances
in scalable generative architectures and large-scale text-
image datasets [54] have enabled unprecedented perfor-
mance in zero-shot text-to-image synthesis. DALL·E [47]
and GLIDE [36], as pioneering works, employ auto-
regressive model [11] and diffusion model [19, 57] as their
architectures, respectively. DALL·E 2 [46] utilizes a dif-
fusion prior network to translate CLIP text embeddings to
CLIP image embeddings, and an unCLIP module to synthe-
size images from CLIP image embeddings. In Imagen [52]
and Stable Diffusion [50], a large pre-trained text encoder
is employed to guide the sampling process of a diffusion
model in pixel space and latent space, respectively.
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“A park bench overgrown with vines”

Fine-tuned 
Stable Diffusion

3D 
Generator

CLIP Image 
Encoder
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CLIP Text 
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(a) 3D Shape Prior from Text-to-Shape Generation (b) CLIP-Guided 3D Optimization with Prior

𝐺𝐺𝐶𝐶 𝐺𝐺𝑀𝑀 𝐺𝐺𝑆𝑆

𝐸𝐸𝑇𝑇
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Text-to-Image Image-to-Shape

initialization

Figure 2. Overview of our text-to-3D synthesis framework. (a) In the first text-to-shape stage, a fine-tuned Stable Diffusion GI is employed
to synthesize a rendering-style image Ir from the input text prompt y. This image is then used to generate a latent shape embedding eS

with the assistance of a shape embedding generation network GM . Finally, the high-quality 3D shape generator GS leverages eS to
produce a 3D shape S, which is used as an explicit 3D shape prior. (b) In the second optimization stage, the 3D shape prior S is utilized to
initialize a neural radiance field, which is further optimized with CLIP guidance to synthesize 3D content that is consistent with the input
text prompt y.

Zero-Shot Text-to-3D. Zero-shot text-to-3D generation
techniques [20,23,25,33,42,53] exploit the joint text-image
modeling capability of pre-trained vision-language models
such as CLIP [45] to obviate the need for paired text-3D
data. CLIP-Forge [53] trains a normalizing flow [10, 49]
model to convert CLIP image embeddings to VAE [24]
shape embeddings, and switches the input to CLIP text em-
beddings at the inference time. ISS [28] trains a mapper
to map the CLIP image embedding into the latent shape
code of a pre-trained single-view reconstruction (SVR) net-
work [37], which is then fine-tuned by taking the CLIP text
embedding as input. DreamFields [20] and CLIP-Mesh [23]
are pioneering works that explore zero-shot 3D content cre-
ation using only CLIP guidance. The former optimizes
a randomly-initialized NeRF, while the latter optimizes a
spherical template mesh as well as random texture and nor-
mal maps. PureCLIPNeRF [25] enhances DreamFields
with grid-based representation [58] and more diverse im-
age augmentations. Recently, DreamFusion [42] has gained
popularity in the research community due to its impressive
results. Powered by a strong text-to-image model, Ima-
gen [52], it can generate high-fidelity 3D objects using the
score distillation loss.

3. Method

Our objective is to generate 3D content that aligns with
the given input text prompt y. As illustrated in Fig. 2,
our framework for text-guided 3D synthesis comprises two
stages. In the first stage (Sec. 3.2), we obtain an explicit 3D
shape prior S using a text-guided 3D shape generation pro-
cess. The text-guided shape generation process involves a
text-to-image phase that employs a fine-tuned Stable Diffu-
sion model [50] GI (Sec. 3.3), and an image-to-shape phase

that employs a shape embedding generation network GM

and a high-quality 3D shape generator GS . In the second
stage (Sec. 3.1), we utilize the 3D prior S to initialize a
neural radiance field [34], and optimize it with CLIP [45]
guidance to generate the 3D content. Our framework only
requires a collection of textureless 3D shapes without any
text labels to train the 3D generator GS , and the fine-tuning
process of GI converges rapidly.

3.1. CLIP-Guided 3D Optimization with explicit 3D
Shape Prior

Background: 3D Optimization with CLIP Guidance.
CLIP [45] is a powerful vision-language model that com-
prises a text encoder ET , and an image encoder EI . By
maximizing the cosine similarity between the text embed-
ding and the image embedding encoded by ET and EI re-
spectively on a large-scale paired text-image dataset, CLIP
aligns the text and image modalities in a shared latent em-
bedding space.

Prior research [20, 23, 25] leverages the capability of
CLIP [45] to generate 3D contents from text. Starting from
a randomly-initialized 3D representation parameterized by
θ, they render images from multiple viewpoints and opti-
mize θ by minimizing the CLIP similarity loss between the
rendered image R(vi; θ) and the text prompt y:

LCLIP = −EI(R(θ;vi))
TET (y), (1)

where R denotes the rendering process, and vi denotes the
rendering viewpoint at the i-th optimization step. Specif-
ically, DreamFields [20] and PureCLIPNeRF [25] employ
neural radiance fields [34] (NeRF) as the 3D representation
θ, while CLIP-Mesh [23] uses a spherical template mesh
with associated texture and normal maps.
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Observations and Motivations. Though these CLIP-
guided optimization methods can generate impressive re-
sults, we observe that they often fall short in producing pre-
cise and detailed 3D structures that accurately match the
text description. As depicted in Fig. 1, we employ these
methods to create 3D content featuring common objects, but
the outcomes exhibited distortion artifacts and appeared un-
usual, adversely affecting their visual quality and hindering
their use in real-world applications.

We attribute the failure of previous works to generate
accurate and realistic objects to two main factors: (i) The
optimization process begins with a randomly-initialized 3D
representation lacking any explicit 3D shape prior, mak-
ing it very challenging for the models to conjure up the
scene from scratch. (ii) The CLIP loss in Eq. (1) prioritizes
global consistency between the rendered image and the text
prompt, rather than offering robust and precise guidance on
the synthesized 3D structure. As a result, the optimization
output is significantly unconstrained.
Optimization with 3D Shape Prior as Initialization. To
address the aforementioned issue and generate more faith-
ful 3D content, we propose to use a text-to-shape generation
process to create a high-quality 3D shape S from the input
text prompt y. Subsequently, we use it as an explicit “3D
shape prior” to initialize the CLIP-guided 3D optimization
process. As illustrated in Fig. 2, for the text prompt “a park
bench overgrown with vines”, we first synthesize “a park
bench” without textures in the text-to-shape stage. We then
use it as the initialization of a neural radiance field and op-
timize it with the full prompt, following previous works.

Our optimization process utilizes DVGO [58], an effi-
cient NeRF variant that represents NeRF using a density
voxel grid V density ∈ RNx×Ny×Nz and a shallow color
MLP frgb. We start by taking a 3D shape S generated
by the text-to-shape process, represented as an SDF grid
Ṽ sdf ∈ RNx×Ny×Nz , and transform it into the density voxel
grid V density using the following equations [39,58,68]:

Σ =
1

β
sigmoid

(
− Ṽ sdf

β

)
, (2a)

V density = max(0, softplus−1(Σ)) (2b)

Here, sigmoid(x) = 1/(1 + e−x) and softplus−1(x) =
log(ex−1). Eq. (2a) converts SDF values to density for vol-
ume rendering, where β > 0 is a hyper-parameter control-
ling the sharpness of the shape boundary (smaller β leads
to sharper shape boundary, β = 0.05 in our experiments).
Eq. (2b) transforms the density into pre-activated density.
To ensure that the distribution of the accumulated transmit-
tance is the same as DVGO, we clamp the minimum value
of the density outside the shape prior as 0.

With the density grid V density initialized by the 3D shape
S and the color MLP frgb initialized randomly, we render

image R(V density, frgb;vi) from viewpoint vi and optimize
θ = (V density, frgb) with the CLIP loss in Eq. (1). Fol-
lowing DreamFields [20] and PureCLIPNeRF [25], we per-
form background augmentations for the rendered images
and leverage the transmittance loss introduced by [20] to
reduce noise and spurious density. Besides, since CLIP
loss cannot provide accurate geometrical supervision, the
3D shape prior may be gradually disturbed and “forgotten”,
thus we also adopt a shape-prior-preserving loss to preserve
the global structure of the 3D shape prior:

Lprior = −
∑

(x,y,z)

1(Ṽ sdf < 0) · alpha(V density), (3)

where 1(·) is the indicator function, and alpha(·) trans-
forms the density into the opacity representing the proba-
bility of termination at each position in volume rendering.

By initializing NeRF with an explicit 3D shape prior, we
give extra knowledge on how the 3D content should look
like and prevent the model from imagining from scratch
and generating “adversarial contents” that have high CLIP
scores but low visual quality. Based on the initialization, the
CLIP-guided optimization further provides flexibility and is
able to synthesize more diverse structures and textures.

3.2. Stable-Diffusion-Assisted Text-to-Shape Gen-
eration as 3D Shape Prior

To obtain the 3D shape prior, a text-guided shape gen-
eration scheme is required, which is a challenging task
due to the lack of paired text-shape datasets. Previous
approaches [28, 53] typically first train an image-to-shape
model using rendered images, and then bridge the text and
image modalities using the CLIP embedding space.

CLIP-Forge [53] trains a normalizing flow network to
map CLIP image embeddings of shape renderings to la-
tent embeddings of a volumetric shape auto-encoder, and
at test time, it switches to CLIP text embeddings as input.
However, the shape auto-encoder has difficulty in generat-
ing high-quality and diverse 3D shapes, and directly feeding
CLIP text embeddings to the flow network trained on CLIP
image embeddings suffers from the gap between the CLIP
text and image embedding spaces. ISS [28] trains a mapper
network to map CLIP image embeddings of shape render-
ings to the latent space of a pre-trained single-view recon-
struction (SVR) model, and fine-tunes the mapper at test
time by maximizing the CLIP similarity between the text
prompt and the images rendered from synthesized shapes.
While the test-time fine-tuning alleviates the gap between
the CLIP text and image embeddings, it is cumbersome to
fine-tune the mapper for each text prompt.

In contrast to the aforementioned methods that connect
the text and image modalities in the CLIP embedding space,
we use a powerful text-to-image diffusion model to directly
bridge the two modalities. Specifically, we first synthesize
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an image from the input text and then feed it into an image-
to-shape module to generate a high-quality 3D shape. This
pipeline is more concise and naturally eliminates the gap be-
tween CLIP text and image embeddings. However, it intro-
duces a new domain gap between the images generated by
the text-to-image diffusion model and the shape renderings
used to train the image-to-shape module. We will introduce
a novel technique to alleviate this gap in Sec. 3.3.
Text-to-Image Diffusion Model. Diffusion models [19,57]
are generative models trained to reverse a diffusion process.
The diffusion process begins with a sample from the data
distribution, x0 ∼ q (x0), which is gradually corrupted
by Gaussian noise over T timesteps: xt =

√
αtxt−1 +√

1− αtϵt−1, t = 1, 2, . . . , T , where αt defines the noise
level and ϵt−1 denotes the noise added at timestep t − 1.
To reverse this process, a denoising network ϵθ is trained
to estimate the added noise at each timestep. During in-
ference, samples can be generated by iteratively denoising
pure Gaussian noise. Text-to-image diffusion models fur-
ther condition the denoising process on texts. Given a text
prompt y and a text encoder cθ, the training objective is:

Ldiffusion = Ex0,t,ϵt,y ∥ϵt − ϵθ (xt, t, cθ(y))∥22 (4)

In this work, we use Stable Diffusion† [50], an open-
source text-to-image diffusion model, which employs a
CLIP ViT-L/14 text encoder as cθ and is trained on the
large-scale LAION-5B dataset [54]. Stable Diffusion is
known for its ability to generate diverse and imaginative im-
ages in various styles from heterogeneous text prompts.
High-quality 3D generator. To provide a more pre-
cise initialization for optimization, high-quality 3D shapes
are highly desirable. In this work, we utilize the SDF-
StyleGAN [71], a state-of-the-art 3D generative model,
to generate high-quality 3D priors. SDF-StyleGAN is a
StyleGAN2-like architecture that maps a random noise z ∼
N (0, I) to a latent shape embedding eS ∈ W and synthe-
sizes a 3D feature volume F V , which is an implicit shape
representation. We can query the SDF value at arbitrary po-
sition x by feeding the interpolated feature from F V at x
into a jointly trained MLP. We improve upon the original
SDF-StyleGAN, which trains one network for each shape
category, by training a single 3D shape generator GS on the
13 categories of ShapeNet [6]. This modification provides
greater flexibility in the text-to-shape process.
Shape Embedding Mapping Network. To bridge the im-
age and shape modalities, we further train a shape embed-
ding mapping network GM . Firstly, we utilize GS to gen-
erate a large set of 3D shapes {Si}Ni=1 and shape embed-
dings {eiS}Ni=1. Then, we render Si from K viewpoints
to obtain shape renderings {Ij

r}NK
j=1 and the correspond-

ing image embeddings {ejI}NK
j=1 with the CLIP image en-

coder EI , forming a paired image-shape embedding dataset
†https://github.com/CompVis/stable-diffusion

Stable Diffusion

“A [car | airplane | chair] 
in the style of *”

“A [car | airplane | chair]”

Fine-tuned 
Stable Diffusion

“A [suv | fighter jet | egg 
chair | motocycle | guitar | 

girl] in the style of *” 

𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟

𝐷𝐷𝑆𝑆

(a) Fine-tuning (b) Inference

Figure 3. Fine-tuning Stable Diffusion into a stylized generator.
(a) We fine-tune the text embedding v∗ of a placeholder token ∗
and the weights of Stable Diffusion using a dataset DS that con-
tains ShapeNet renderings and text descriptions in the format of
“a CLS in the style of ∗”. Additionally, we use another dataset
Dreg , which contains images synthesized by the original Stable
Diffusion with text prompts in the format of “a CLS”, for regular-
ization purposes. (b) With the fine-tuned Stable Diffusion, we can
synthesize images that match the style of ShapeNet renderings by
appending the postfix “in the style of ∗” to the text prompt.

{(ejI , e
j
S)}NK

j=1 . Finally, we use this dataset to train a con-
ditional diffusion model GM which can synthesize shape
embeddings from image embeddings of shape renderings.

To prepare the dataset for training GM , we generate N =
64000 shapes using GS and render K = 24 views for each
shape. The ranges of azimuth and elevation angles of the
rendered views are [−90◦, 90◦] and [20◦, 30◦], respectively.
We employ an SDF renderer [21] since we represent the
synthesized shapes with SDF grids.

3.3. Fine-tuning Stable Diffusion for Rendering-
Style Image Generation

As stated in Sec. 3.2, we use Stable Diffusion to directly
bridge the text and image modalities for text-to-shape gen-
eration. Nonetheless, the image-to-shape module is trained
on shape renderings, which exhibit a significant style do-
main gap from the images produced by Stable Diffusion.
Previous research [28, 53] has attempted to combine a text-
to-image model with an image-to-shape model for text-to-
shape generation. However, this approach is plagued by the
aforementioned style domain gap, leading to flawed geo-
metric structures and diminished performance.

Inspired by recent work on controllable text-to-image
generation such as textual inversion [12] and Dream-
Booth [51], we propose a method for addressing the do-
main gap problem by fine-tuning Stable Diffusion into a
stylized generator. Our core idea is to enable Stable Diffu-
sion to replicate the style of shape renderings used to train
the image-to-shape module outlined in Sec. 3.2. This al-
lows us to seamlessly input the generated stylized images
into the image-to-shape module without being affected by
the domain gap.
Fine-tuning Process. The fine-tuning process is illustrated
in Fig. 3. To fine-tune Stable Diffusion, we need a dataset

5
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Figure 4. Qualitative comparison on text-guided 3D synthesis. The 3D shape prior used to initialize the CLIP-guided optimization process
for each of our results (the last row) is also visualized below.

that consists of shape renderings and related stylized text
prompts. For each shape S in the ShapeNet dataset, we
generate a set of shape renderings {Ij

S}
NS
j=1. Subsequently,

each rendering Ij
S is linked with a stylized text prompt yjS in

the format of “a CLS in the style of ∗”, where CLS denotes
the shape category name and ∗ represents a placeholder to-
ken that requires optimization for its text embedding. For
instance, if the image is rendered from a chair shape, then
the associated text prompt will be “a chair in the style of
∗”. The paired dataset DS = (Ij

S , y
j
S)

NS

j=1 is then utilized
to fine-tune Stable Diffusion by minimizing Ldiffusion pre-
sented in Eq. (4).

During fine-tuning, we freeze the CLIP text encoder of
Stable Diffusion, and optimize two objectives: (i) the text
embedding of the placeholder token ∗, denoted as v∗, and
(ii) the parameters θ of the diffusion model ϵθ. Optimiz-
ing the text embedding v∗ aims to learn a virtual word
that captures the style of the rendered images best, even
though it is not present in the vocabulary of the text en-
coder. Fine-tuning the parameters θ of the diffusion model
further enhances the ability to capture the style precisely
since it is hard to control the synthesis of Stable Diffusion
solely on the language level. Our experiments demonstrate
stable convergence of the fine-tuning process in approxi-
mately 2000 optimization steps, requiring only 40 minutes
on a single Tesla A100 GPU. We show some synthesized
results using the fine-tuned model in Fig. 3.
Dataset Scale and Background Augmentation. We have
identified two essential techniques empirically that enable
the fine-tuned model to synthesize stylized images in a sta-
ble manner. Firstly, unlike textual inversion [12] or Dream-

Booth [51] which utilize only 3−5 images, fine-tuning with
a larger set of shape renderings containing thousands of
images helps the model capture the style more precisely.
Secondly, fine-tuning Stable Diffusion using shape ren-
derings with a pure-white background results in a chaotic
and uncontrollable background during inference. However,
augmenting the shape renderings with random solid-color
backgrounds allows the fine-tuned model to synthesize im-
ages with solid-color backgrounds stably, making it easy to
remove the background if necessary. Further details can be
found in the supplementary material.

4. Experiments
In this section, we evaluate the efficacy of our proposed

text-to-3D synthesis framework. Initially, we compare our
results with state-of-the-art techniques (Sec. 4.1). Subse-
quently, we demonstrate the effectiveness of our Stable-
Diffusion-assisted approach for text-to-shape generation
(Sec. 4.2). Furthermore, we conduct ablation studies to as-
sess the effectiveness of critical components of our frame-
work (Sec. 4.3).
Dataset. Our framework requires only a set of untextured
3D shapes for training the 3D shape generator GS . Specif-
ically, we employ 13 categories from ShapeNet [6] and uti-
lize the data preprocessing procedure of Zheng et al. [71]
to generate 1283 SDF grids from the original meshes. Dur-
ing the fine-tuning of Stable Diffusion, we employ the SDF
renderer [21] to produce a shape rendering dataset.
Implementation details. The 3D generator GS utilizes the
SDF-StyleGAN architecture. The diffusion-model-based
shape embedding mapping network GM is based on an
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Method CLIP R-Precision ↑
ViT-B/32 ViT-B/16

DreamFields [20] 63.24 92.65
CLIP-Mesh [23] 75.00 91.18
PureCLIPNeRF [25] 73.53 88.24
Ours w/o 3D prior 75.47 94.34
Ours 85.29 98.53

Table 1. Quantitative comparison on Text-guided 3D synthesis.
All methods employ CLIP ViT/16 as the guiding model for opti-
mization, while two distinct CLIP models are utilized to compute
the CLIP retrieval precision.

open-source DALL·E 2 implementation‡. We train GM

by extracting image embeddings from shape renderings us-
ing the CLIP ViT-B/32 image encoder. The stylized text-
to-image generator GI is fine-tuned from Stable Diffusion
v1.4. In the optimization stage, we set the learning rates for
the density grid V density and color MLP frgb to 5×10−1 and
5× 10−3 respectively, and we adopt the CLIP ViT-B/16 en-
coder as the guidance model. For each text prompt, we opti-
mize for 5000 steps, while previous NeRF-based text-to-3D
methods [20, 25] typically require 10000 steps or more.
Evaluation Metrics. Regarding the primary results of our
framework, i.e., text-guided 3D content synthesis, we report
the CLIP retrieval precision on a manually created dataset
of diverse text prompts and objects. For specifics regarding
the dataset, please refer to the supplementary material. This
metric quantifies the percentage of generated images that
the CLIP encoder associates with the correct text prompt
used for generation. We utilize Fréchet Inception Distance
(FID) [18] to evaluate the shape generation quality for the
initial text-to-shape generation stage.

4.1. Text-Guided 3D Synthesis

We compare our method with three state-of-the-art base-
line methods on the task of text-guided 3D synthesis,
i.e., DreamFields [20], CLIP-Mesh [23], and PureCLIPN-
eRF [25]. We conduct tests using the default settings and
official implementations for all baseline methods. In partic-
ular, we utilize the medium-quality configuration of Dream-
Fields and the implicit architecture variant of PureCLIPN-
eRF owing to its superior performance.
Time cost. Thanks to the shape prior initialization, our
CLIP-guided optimization process exhibits significantly im-
proved efficiency compared to previous NeRF-based meth-
ods. Dream3D optimizes for only 5000 steps within 25 min-
utes, while DreamFields and PureCLIPNeRF require more
than 10000 steps, taking over an hour (measured on 1 A100
GPU). Training the 3D shape generator GS takes 7 days on
4 A100 GPUs and training the shape embedding generation
network GM takes 1 day on 1 A100 GPU. It is worth noting
that these models are only trained once and their inference

‡https://github.com/lucidrains/DALLE2-pytorch

“An SUV” “A barber chair” “A boeing”

“A race car” “A cabin cruiser” “A gun”

CLIP-Forge

Ours

CLIP-Forge

Ours

Figure 5. Text-guided 3D shape generation results. All the vi-
sualized meshes are extracted at the resolution of 643. We can
observe that our method can generate significantly more plausible
3D shapes benefitting from the high-quality 3D shape generator.

Method FID ↓
CLIP-Forge [53] 112.38
Ours w/o text-to-image 58.36
Ours w/o fine-tuning SD 61.88
Ours 40.83

Table 2. Quantitative comparison on text-to-shape generation and
ablation studies on the efficacy of fine-tuning Stable Diffusion.

time can be neglected compared to the optimization cost.
Quantitative Results. We report the CLIP retrieval preci-
sion metrics in Tab. 1. It is noteworthy that both the base-
line methods and our approach utilize the CLIP ViT-B/16
encoder for optimization, and both the CLIP ViT-B/16 and
CLIP ViT-B/32 encoders are employed as retrieval mod-
els. As Table Tab. 1 shows, our method achieves the high-
est CLIP R-Precision with both retrieval models. More-
over, our framework exhibits a significantly smaller perfor-
mance gap between the two retrieval models compared to
the baseline methods. By leveraging the 3D shape prior, our
method initiates the optimization from a superior starting
point, thereby mitigating the adversarial generation problem
that prioritizes obtaining high CLIP scores while neglecting
the visual quality. Consequently, our method demonstrates
more robust performance across different CLIP models.
Qualitative Results. The qualitative comparison is pre-
sented in Fig. 4, indicating that the baseline methods [20,
23, 25] encounter challenges in generating precise and real-
istic 3D objects, resulting in distorted and unrealistic visu-
als. DreamFields’ results are frequently blurry and diffuse,
while PureCLIPNeRF tends to synthesize symmetric ob-
jects. CLIP-Mesh experiences difficulties in generating in-
tricate visual effects due to its explicit mesh representation.
In contrast, our method effectively generates higher-quality
3D structures by incorporating explicit 3D shape priors.

7

https://github.com/lucidrains/DALLE2-pytorch


4.2. Text-to-Shape Generation

The research on zero-shot text-to-shape generation
is limited, and we compare our approach with CLIP-
Forge [53] and measure the quality of shape generation us-
ing the Fréchet Inception Distance (FID). Specifically, we
synthesize 3 shapes for each prompt from a dataset of 233
text prompts provided by CLIP-Forge. Then, we render 5
images for each synthesized shape and compare them to
a set of ground truth ShapeNet renderings to compute the
FID. The ground truth images are obtained by randomly
choosing 200 shapes from the test set of each ShapeNet cat-
egory and rendering 5 views for each shape.

As shown in Tab. 2, our approach achieves a lower FID
than CLIP-Forge. CLIP-Forge employs a volumetric shape
auto-encoder to generate 3D shapes. However, the qualita-
tive results in Fig. 5 indicate poor shape generation capa-
bility, making it difficult to generate plausible 3D shapes.
A high-quality 3D shape prior is also advantageous for the
optimization process as an excellent initialization.

4.3. Ablation Studies

Effectiveness of Fine-tuning Stable Diffusion. Our ap-
proach employs a fine-tuned Stable Diffusion to establish
a connection between the text and image modalities. To
evaluate its efficacy, we employ the original Stable Dif-
fusion model to produce images from the text prompts of
CLIP-Forge [53]. Subsequently, we employ these images
to generate 3D shapes using the image-to-shape module.
The results in the 3rd row of Tab. 2 indicate a decline in
FID performance, suggesting that this approach would neg-
atively impact the shape generation process. Furthermore,
we directly test using text embedding to generate shape em-
beddings with GM , which also leads to a decline in perfor-
mance as seen in the 2nd row of Tab. 2.
Effectiveness of 3D Shape Prior. To validate the efficacy
of the 3D shape prior, we eliminate the first stage of our
framework and optimize from scratch using the same text
prompts as presented in Sec. 4.1. Subsequently, we eval-
uate the CLIP retrieval precision. The outcomes presented
in Tab. 1 indicate that optimizing without 3D shape prior
results in a considerable decline in performance, thereby
demonstrating its effectiveness.
Effectiveness of Lprior. The 3D prior preserving loss Lprior
shown in Eq. (3) aims to reinforce the 3D prior during the
optimization process in case that the prior is gradually dis-
turbed and discarded. To demonstrate its effectiveness, we
synthesized “a park bench” as a prior for the prompt “A
park bench overgrown with vines”, and then optimize with
and without Lprior and compared the results, which are visu-
alized in Fig. 6. The results indicate that using Lprior during
optimization helps maintain the structure of the 3D prior
shape, while discarding it causes distortion and discontinu-
ity artifacts, thereby disturbing the initial shape.

with ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

without ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

“A park bench overgrown with vines”

Figure 6. The effect of the 3D prior preserving loss Lprior .

5. Limitations and Future Work
Our framework relies on a fine-tuned Stable Diffusion to

generate rendering-style images. Despite its strong genera-
tion capability, Stable Diffusion may produce shape images
that fall outside the distribution of the training data of the
image-to-shape module. This is due to the fact that Stable
Diffusion is trained on an internet-scale text-image dataset,
whereas the 3D shape generator is trained on ShapeNet.
Furthermore, the quality of text-to-shape synthesis in our
framework is heavily reliant on the generation capability of
the 3D generator. Our future work will explore incorporat-
ing stronger 3D priors into our framework to enable it to
work with a wider range of object categories.

Additionally, our framework is indeed orthogonal to
score distillation-based text-to-3D methods [32, 42, 60], as
we can also utilize the score distillation sampling objective
for optimization. We believe that incorporating 3D shape
priors can enhance the quality and diversity of the genera-
tion results, as DreamFusion [42] acknowledged.

6. Conclusion
This paper introduces Dream3D, a text-to-3D synthesis

framework that can generate diverse and imaginative 3D
content from text prompts. Our approach incorporates ex-
plicit 3D shape priors into the CLIP-guided optimization
process to generate more plausible 3D structures. To ad-
dress the text-to-shape generation, we propose a straightfor-
ward yet effective method that utilizes a fine-tuned text-to-
image diffusion model to bridge the text and image modal-
ities. Our method is shown to generate 3D content with
superior visual quality and shape accuracy compared to pre-
vious work, as demonstrated by extensive experiments.
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A. Details of 3D Generator GS

We adopt the architecture of SDF-StyleGAN [71] as our
3D generator. As Fig. 7 shows, it maps a random noise
z ∼ N (0, I) to a latent shape embedding eS ∈ W and
synthesizes a 3D feature volume F V , which is an implicit
representation of the generated shape. We can query the
SDF value at arbitrary position x by feeding the interpo-
lated feature from F V at x into a jointly trained MLP net-
work. During training, a global discriminator and a local
discriminator are used simultaneously to supervise the gen-
erated SDF grids at the coarse and fine level respectively.
Different from the original SDF-StyleGAN that trains one
network for one shape category, we train one 3D shape gen-
erator GS on 13 categories of the ShapeNet [6] dataset to
enlarge the shape generation capability.

B. Details of Shape Embedding Mapping Net-
work GM

The shape embedding mapping network GM is a
diffusion-model-based generative network that can gener-
ate shape embeddings eS from the CLIP image embeddings
eI of shape renderings. The network architecture and train-
ing strategy of GM are based on an open-source DALL-E-
2 [46] implementation§. Specifically, GM is equivalent to
the diffusion prior network in DALL-E-2 which generates
CLIP image embeddings from CLIP text embeddings. Here
we replace the input with CLIP image embeddings of shape
renderings and the output with shape embeddings. We use
the DiffusionPrior class in the codebase to implement GM

and the train diffusion prior.py script to train GM . The
model and training hyperparameters are listed in Tab. 3.

C. Details of Fine-tuning Stable Diffusion
In our framework, we connect the text and image modal-

ities by fine-tuning the Stable Diffusion into a stylized gen-
erator with a set of shape renderings {Ij

S}
NS
j=1 and give it

the ability to synthesize images in the “rendering” style. In
experiments, we find it crucial to utilize a large set of shape
renderings for fine-tuning and to augment the backgrounds
of the shape renderings with random colors.

We tried fine-tuning Stable Diffusion using shape ren-
derings with three different types of backgrounds: 1)
solid white background, 2) solid green background and 3)
random-color background. We visualize the shape render-
ings used for fine-tuning and the images synthesized by
the fine-tuned Stable Diffusion in Fig. 8. As Fig. 8a and
Fig. 8b show, although shape renderings with solid-white
or solid-green backgrounds can make the fine-tuned Stable
Diffusion capture the “rendering” style of the object suc-
cessfully, the backgrounds in the synthesized images are

§https://github.com/lucidrains/DALLE2-pytorch

Model Parameter Value Training Parameter Value
timesteps 100 iterations 500,000
beta schedule cosine max grad norm 0.5
predict x start True batch size 1024
cond drop prob 0 learning rate 1.1× 10−4

dim 512 weight decay 6.02× 10−2

depth 6 ema beta 0.9999
dim head 64 ema update every 10
heads 8 Adam β1, β2 0.9, 0.999

Table 3. Model details and training hyper-parameters of the shape
embedding mapping network GM .

Background FID ↓
Solid white 60.61
Solid green 71.04
Random-color 33.71

Table 4. The Fréchet Inception Distance (FID) between the shape
renderings used for fine-tuning and the images synthesized by the
fine-tuned Stable Diffusion.

out of control, i.e., the fine-tuned Stable Diffusion fails to
synthesize images with solid-color backgrounds. This will
increase the difficulty of separating the foreground objects
from the backgrounds and affect the stability of the sub-
sequent image-to-shape generation since the shape embed-
ding mapping network GM is trained on shape renderings
with solid-color backgrounds. In comparison, augmenting
the backgrounds of the shape renderings with random colors
leads to a stable stylized generator that can synthesize solid-
color-background images consistently, as Fig. 8c shows.

During fine-tuning, we indeed expect the Stable Diffu-
sion model to capture two types of styles: 1) the “render-
ing” style of the foreground object and 2) the “solid-color”
style of the background. Similar to the observation that the
foreground “rendering” style requires a large set of rendered
images to learn, we consider that a single-color background
is too few to be recognized as a “solid-color background
style” by the Stable Diffusion model, while showing a lot
of different solid-color examples to the model can make it
notice the solid-color background style and capture it dur-
ing fine-tuning.

To better demonstrate the importance of the random-
color background augmentation, we also evaluate the
Fréchet Inception Distance (FID) between the shape ren-
derings used for fine-tuning and the images synthesized by
the fine-tuned Stable Diffusion in Tab. 4. For each type of
background, we render 1000 images with that background
for each ShapeNet [6] category, forming a shape render-
ing dataset containing 13000 images in total (denoting as
DS). Then we leverage DS to fine-tune the Stable Diffu-
sion model for 5000 steps, and utilize the fine-tuned Sta-
ble Diffusion to synthesize 100 images for each shape cate-
gory using the text prompt ”a CLS in the style of *”, lead-
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Figure 7. The network architecture of the 3D generator based on SDF-StyleGAN [71].

(a) Solid white background.

(b) Solid green background.

(c) Random-color background.

Figure 8. The results of fine-tuning Stable Diffusion using shape
renderings with different backgrounds. For each type of back-
ground, we visualize the shape renderings used to fine-tune Stable
Diffusion on the left and the images synthesized by the fine-tuned
Stable Diffusion on the right.

ing to a set of 1300 generated images (denoting as Dgen).
Finally, we compute the FID between DS and Dgen. As
Tab. 4 shows, augmenting the backgrounds of shape render-
ings with random colors significantly boosts the FID, which
demonstrates its effectiveness.

D. Details of 3D Optimization with 3D Shape
Prior

D.1. DVGO-based Volume Rendering

In the optimization stage, we adopt DVGO [58] as our
3D scene representation which represents NeRF [34] with a
density voxel grid V density ∈ RNx×Ny×Nz and a shallow
color MLP network frgb for efficient optimization. Given a
3D position x, we query its density σ and color c by:

σ̃ = interp(x,V density), (5a)
σ = softplus(σ̃) = log(1 + exp(σ̃ + b)), (5b)
c = frgb(γ(x)), (5c)

where γ(·) denotes a positional encoding function.
interp(·) denotes the trilinear interpolation. The shifted
softplus function softplus(·) is applied to transform the raw
density value σ̃ into activated density value σ (i.e., a map-
ping of R → R≥0), the shift b is a hyperparameter. To
be noted, the density grid V density stores the raw den-
sity values instead of the activated ones. DVGO [58] calls
the scheme of interpolating on the raw density values first
and then performing softplus activation as ”post-activation”
and demonstrates its advantages on producing sharper shape
boundaries over other choices.

To render the color of a pixel Ĉ(r), we cast the ray r
from the camera center through the pixel, and sample K
points between the pre-defined near and far planes. We then
query the densities and colors of the K ordered sampled
points {(σi, ci)}Ki=1 using Eq. (5). Finally, we accumulate
the K queried results into a single color with the volume
rendering process:

Ĉ(r) =

(
K∑
i=1

Tiαici

)
+ TK+1cbg, (6a)

αi = alpha (σi, δi) = 1− exp (−σiδi) , (6b)

Ti =

i−1∏
j=1

(1− αj) , (6c)
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step=0 step=5000

Figure 9. Illustration on 3D optimization with 3D shape prior. The
text prompt is ”A lamp imitating sunflower”. We visualize the
contours of the density grid (up) and the volume-rendered images
(bottom) at the 0th and 5000th optimization steps to show how the
density grid is initialized and optimized.

where αi denotes the opacity representing the probability
of termination at point i, Ti denotes the accumulated trans-
mittance from the near plane to point i, δi denotes the dis-
tance to the adjacent sampled point, and cbg demotes a pre-
defined background color.

Following DVGO, all values in V density are initialized
as 0 and the bias term in Eq. (5b) is set to

b = log
(
(1− αinit)

− 1
s − 1

)
, (7)

where αinit is a hyperparameter and is set to 10−6 in prac-
tice. With such an initialization, the accumulated transmit-
tance Ti is decayed by 1−αinit ≈ 1 for a ray that traces for-
ward a distance of a voxel size s, making the scene “trans-
parent” at the beginning of optimization.

D.2. Shape Prior Initialization and Optimization

A big difference between our text-guided 3D synthesis
framework and previous methods [20, 23, 25] is that we use
an explicit 3D shape prior to initialize the CLIP-guided op-
timization process, instead of optimizing from a randomly-
initialized 3D representation. Given a 3D shape prior S rep-
resented by an SDF grid Ṽ sdf ∈ RNx×Ny×Nz , we use it to
initialize the density voxel grid V density with the following
equations [39, 58, 68]:

Σ =
1

β
sigmoid

(
− Ṽ sdf

β

)
, (8a)

V density = max(0, softplus−1(Σ)), (8b)

Method FID ↓ FPD ↓ MMD ↑
CLIP-Forge [53] 112.38 6.896 0.670
Ours 40.83 1.301 0.725

Table 5. Additional quantitative results compared with CLIP-
Forge on text-guided shape generation.

where sigmoid(x) = 1/(1 + e−x) and softplus−1(x) =
log(ex − 1). Eq. (8a) converts SDF values to activated den-
sity values (equivalent to the σ in Eq. (5b)), where β > 0
controls the sharpness of the shape boundary, and smaller
β leads to a sharper shape boundary. We set β = 0.05 in
our experiments. Eq. (8b) further transforms the activated
density values into raw density values (equivalent to the σ̃
in Eq. (5a)).

With such an initialization, the density values on the
shape surface will be close to 1

2β (log(exp( 1β ·sigmoid(0))−
1) ≈ 1

2β ). The area inside the shape surface will have larger
density values (> 1

2β ), and the density values outside the
shape will decrease with the distance from the shape sur-
face. We set the minimum density value outside the shape
to 0 so the area far from the shape surface has the same
initialization as the original DVGO.

As Fig. 9 shows, at the beginning of the 3D optimization
process (step=0), the 3D shape prior is visible due to the
larger density values around the shape surface. As a result,
the area around the shape surface will dominate the volume
rendering, and the density/color values in this area will be
updated faster than the area far from the surface. Based on
the initialization, Then subsequent CLIP-guided optimiza-
tion process further provides more flexibility and is able to
synthesize more diverse structures and textures.

E. Additional Results on Text-to-Shape Gener-
ation

We show additional qualitative text-guided 3D shape
generation results in Fig. 10. Compared to CLIP-
Forge [53], our method produces more plausible 3D shapes
thanks to the high-quality 3D generator, while the shapes
generated by [53] suffer from rough surfaces and disconti-
nuities.

Besides, we also provide more quantitative comparisons
with CLIP-Forge on text-to-shape generation. We generate
3 shapes for each text prompt in the text prompt set pro-
vided by CLIP-Forge and measure three metrics: 1) Fréchet
Inception Distance (FID) [18] between 5 rendered images
for each shape with different camera poses and a set of im-
ages rendered from the ground truth shapes in the ShapeNet
dataset with the same camera poses. 2) Fréchet Point Dis-
tance (FPD) [56], for each generated shape and each ground
truth shape in the ShapeNet test set, we extract the mesh at
643 resolution and sample 2048 points from the mesh sur-
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“A jet” “A limo” “A round table”

“A jeep” “A circular lamp” “A phone”

CLIP-Forge

Ours

CLIP-Forge

Ours

Figure 10. Additional text-guided shape generation results. All
meshes are extracted at 643 resolution.

face, then pass the points to a DGCNN [61] backbone net-
work pre-trained on the point cloud classification task and
use the feature of the last layer to compute this metric. 3)
Maximum Measure Distance (MMD), for each generated
shape represented by a 323 occupancy grid, we match a
shape in the ShapeNet test set based on the highest IOU,
and then average the IOU across all the text queries. As
Tab. 5 shows, our text-to-shape generation method outper-
forms CLIP-Forge on all three metrics.

F. Additional Results on Text-to-3D Synthesis
In this section, we show additional qualitative compari-

son results on text-to-3D synthesis with baseline methods
in Fig. 11 and more diversified generation results of our
method in Fig. 12. It can be seen that our method can syn-
thesize plausible 3D structures with the help of 3D shape
priors. To better visualize the 3D structures generated by
different methods, we also show video examples in the at-
tached MP4 file.
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“A car from the Cars 
movie.”

“A cabinet designed by 
van Gogh.”

“A chair imitating 
cactus.”

“An aircraft carrier.” “A fishing boat floating 
on the water.”
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Figure 11. Additional qualitative comparisons on text-guided 3D synthesis. For each of our results (the last row), we also visualize the 3D
shape prior used to initialize the CLIP-guided optimization process below it.

16



“A car from the future.” “A race car.” “A car from the Cars 
movie.”

“A camouflaged 
armored vehicle.”

“A lamp imitating a 
Christmas tree.”

“A lamp imitating a 
mushroom.”

“A lamp imitating a 
rocket.”

“A lamp imitating an 
umbrella.”

“A wide screen TV 
playing Avatar.”

“A wide screen TV 
playing a football 

match.”

“A wide screen TV 
playing Tom and Jerry.”

“A wide screen TV 
playing Interstellar.”

“A cabinet designed by 
van Gogh.”

“An old wooden 
cabinet.”

“A steel cabinet.” “A glass cabinet full of 
clothes inside.”

“A chair imitating 
cactus.”

“A chair made of 
bamboo.”

“A frozen ice chair.” “A chair overgrown with 
vines.”

“An aircraft carrier.” “A spaceship in the 
Star War.”

“A luxury cruise ship.”

“A car.”

“A lamp.”

“A wide screen TV.”

“A cabinet.”

“A chair.”

“A boat.” “A large cargo ship.”

“A monster truck 
imitating Optimus 

Prime.”

“A monster truck 
imitating tiger.”

“A monster truck 
imitating snail.”

“A monster truck 
imitating monster.”

“A monster truck.”

Figure 12. Additional text-to-3D synthesis results. We visualize the 3D shape prior used for optimization in the first column.
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G. Integration with SVR Models

G.1. Text-to-Shape Generation using SVR models

Single-view reconstruction (SVR) models can recon-
struct a 3D shape from a single input image. We then ask,
can we use an SVR model directly as the image-to-shape
module in our framework? To answer this question, we
conduct the same fine-tuning process to fine-tune a Stable
Diffusion model with the ShapeNet renderings provided by
Choy et al. [9] which are commonly used by many SVR
methods. We find that although the shape renderings in
Choy et al. [9] have more complex textures, the fine-tuned
model can still capture the style successfully and synthesize
novel images imitating the style. With such a fine-tuned
Stable Diffusion, we can solve the text-to-shape generation
in a precise way: synthesize an image using the fine-tuned
Stable Diffusion with text prompt in the format of ”a CLS
in the style of *”, and then directly feed the synthesized im-
age into the SVR model. We show some text-guided shape
generation results using two SVR methods, i.e., occupancy
networks [31] and DVR [37], in Fig. 13 and Fig. 14, re-
spectively. Both methods are trained with the shape render-
ings provided by Choy et al. [9]. The occupancy networks
only predict shape, while DVR can predict both shape and
color. As Fig. 13 and Fig. 14 show, we achieve text-to-shape
generation successfully with the synthesized images, which
proves the strong generation ability of Stable Diffusion and
the effectiveness of our fine-tuning pipeline.

A recent work named ISS [28] also utilizes an SVR
model to perform text-to-shape generation. However, the
pipeline of ISS is much more complicated. It trains a map-
per network to map CLIP features to the latent space of the
SVR model, which requires a two-stage fine-tuning to align
the text and shape feature spaces. At inference time, ISS
needs to fine-tune the mapper network for each text prompt,
which is redundant in our pipeline. With the help of the
fine-tuned Stable Diffusion, we can directly generate an im-
age from the text prompt and feed the image into the SVR
model to synthesize a 3D shape. Besides, thanks to the
strong generation ability of Stable Diffusion, we can enjoy
a much larger generation diversity and synthesize as many
3D shapes as we want for each text prompt.

G.2. Text-to-3D Synthesis using SVR models

Despite the success in text-guided shape generation with
SVR models, we find that current SVR models are very
sensitive to the input images. Although we can success-
fully capture the style of the shape renderings using the
fine-tuned Stable Diffusion, some minor flaws in the syn-
thesized images such as offsets of the objects from the im-
age center and unrealistic artifacts (e.g., a chair lacks a leg)
are inevitable. These minor flaws may lead to failed shape
reconstructions, whose quality affects 3D shape priors. This

“A boat with sail” “A children chair with little legs”

“A swivel chair”

“A mushroom-like lamp”

“A wooden table”

“A sofa with legs”

Figure 13. Text-guided shape generation using fine-tuned Stable
Diffusion and Occupancy Networks [31]. For each text prompt, we
visualize the image synthesized by the fine-tuned Stable Diffusion
on the left and the reconstructed shape on the right.

“A green SUV” “A computer monitor”

“A red recliner seems comfortable”

“Lamp supported by a long pillar”

“A round shaped single legged 
wooden table”

“A long luxury black car”

Figure 14. Text-guided shape generation using fine-tuned Stable
Diffusion and DVR [37]. For each text prompt, we visualize the
image synthesized by the fine-tuned Stable Diffusion on the left
and the reconstructed shape on the right.

sensitiveness makes the 3D prior generation in the first stage
of our framework unstable. Therefore, we choose to use a
3D generator associated with a shape embedding mapping
network to generate 3D shapes in the latent shape embed-
ding space, instead of directly using an SVR model in our
framework.

We visualize six text-to-3D synthesis results using 3D
shape priors produced by the occupancy networks [31] in
Fig. 15. The successful results in the first two rows show
the probability of integrating as SVR model into our frame-
work. In the last row, we show two failure cases in which
the SVR model fails to reconstruct plausible 3D shape pri-
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“A minecraft suv.” “A wooden boat floating on the water.”

“A sofa made of bricks.” “A wooden table with metal legs.”

“A bedside lamp emitting warm lights.” “A large monster truck.”

Figure 15. Text-to-3D synthesis results using occupancy networks. For each text prompt, we visualize the shape rendering image synthe-
sized by the fine-tuned Stable Diffusion on the left, the shape reconstructed by the SVR model in the middle, and the optimization result
on the right. The last row shows two failure cases.

ors to illustrate the drawbacks of using SVR models. We
can observe that the discontinuity in the “bedside lamp”
shape leads to discontinuity in the final optimization result,
while the failed truck shape results in total chaos.
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