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Figure 1. We propose a novel semantic-driven image-based editing approach, which allows users to edit a photo-realistic NeRF with a
single-view image or with text prompts, and renders edited novel views with vivid details and multi-view consistency.

Abstract

Despite the great success in 2D editing using user-
friendly tools, such as Photoshop, semantic strokes, or even
text prompts, similar capabilities in 3D areas are still lim-
ited, either relying on 3D modeling skills or allowing edit-
ing within only a few categories. In this paper, we present
a novel semantic-driven NeRF editing approach, which en-
ables users to edit a neural radiance field with a single im-
age, and faithfully delivers edited novel views with high fi-
delity and multi-view consistency. To achieve this goal, we
propose a prior-guided editing field to encode fine-grained
geometric and texture editing in 3D space, and develop a
series of techniques to aid the editing process, including
cyclic constraints with a proxy mesh to facilitate geomet-
ric supervision, a color compositing mechanism to stabi-
lize semantic-driven texture editing, and a feature-cluster-
based regularization to preserve the irrelevant content un-
changed. Extensive experiments and editing examples on
both real-world and synthetic data demonstrate that our
method achieves photo-realistic 3D editing using only a
single edited image, pushing the bound of semantic-driven
editing in 3D real-world scenes.

1. Introduction
Semantic-driven editing approaches, such as stroke-

based scene editing [36, 41, 70], text-driven image synthe-
sis and editing [1, 53, 56], and attribute-based face edit-
ing [28, 64], have greatly improved the ease of artistic cre-
ation. However, despite the great success of 2D image edit-

*Authors contributed equally.
†Corresponding authors.

ing and neural rendering techniques [14, 44], similar edit-
ing abilities in the 3D area are still limited: (1) they re-
quire laborious annotation such as image masks [28, 75]
and mesh vertices [73, 78] to achieve the desired manipula-
tion; (2) they conduct global style transfer [12,13,16,21,79]
while ignoring the semantic meaning of each object part
(e.g., windows and tires of a vehicle should be textured
differently); (3) they can edit on categories by learning
a textured 3D latent representation (e.g., 3D-aware GANs
with faces and cars etc.) [6, 8, 9, 18, 48, 60, 63, 64], or at a
coarse level [37, 68] with basic color assignment or object-
level disentanglement [32], but struggle to conduct texture
editing on objects with photo-realistic textures or out-of-
distribution characteristics.

Based on this observation, we believe that, on the way
toward semantic-driven 3D editing, the following proper-
ties should be ensured. First, the operation of editing
should be effortless, i.e., users can edit 3D scenes on a sin-
gle 2D image in convenient ways, e.g., using off-the-shelf
tools such as GAN-based editing [29, 36], text-driven edit-
ing [1, 56], Photoshop, or even a downloaded Internet im-
age without pixel-wise alignment, rather than steering 3D
modeling software with specific knowledge [73], or repeat-
edly editing from multi-view images. Second, the editing
method should be applicable to real-world scenes or objects
and preserve vivid appearances, which is beyond existing
3D-aware generative models [8, 9] due to the limited cate-
gories and insufficient data diversity on real-world objects.

To fulfill this goal, we propose a novel Semantic-driven
Image-based Editing approach for Neural radiance field in
real-world scenes, named SINE. Specifically, our method
allows users to edit a neural radiance field with a sin-
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gle image, i.e., either by changing a rendered image us-
ing off-the-shelf image editing tools or providing an im-
age for texture transferring (see Sec. 4.4), and then deliv-
ers edited novel views with consistent semantic meaning.
Unlike previous works that directly fine-tune the existing
NeRF model [32, 37, 68], SINE learns a prior-guided edit-
ing field to encode geometric and texture changes over the
original 3D scene (see Fig. 2), thus enabling fine-grained
editing ability. By leveraging guidance from existing neu-
ral priors (shape prior models [15] and Vision Transformer
models [7], etc.), SINE can directly perform semantic-
driven editing on photo-realistic scenes without pre-training
a category-level latent space. For example, in Fig. 1, users
can stretch a car’s back or change all four tires to cook-
ies by only editing a single image, and can even cooperate
with text-prompts editing [1] to modify a specific object of
a scene with vivid appearances.

However, even when guided with neural priors, editing
NeRF from a single image with multi-view consistency and
accuracy is still challenging. (1) The generic NeRF does
not necessarily provide an explicit surface or signed dis-
tance field, such that it cannot directly work with shape pri-
ors [15]. Therefore, we propose to use cyclic constraints
with a proxy mesh to represent the edited NeRF’s geom-
etry, which facilitates guided editing using coarse shape
prior. (2) Learning a coordinate-based 3D editing field us-
ing a single edited view is not sufficient to capture fine-
grained details, and applying semantic supervision [7, 55]
directly to the editing field leads to sub-optimal conver-
gence (see Sec. 4.5). To tackle these challenges, we propose
a color compositing mechanism by first rendering the tem-
plate NeRF color and modification color individually, and
then deferred blending them to yield the edited view, which
significantly improves semantic-driven texture editing. (3)
Ideally, a user’s editing should only affect the desired re-
gions while maintaining other parts untouched. However,
in semantic-driven editing, the prior losses require taking
the full shape or image as input, which leads to appearance
or shape drifting at the undesired area. To precisely con-
trol the editing while excluding irrelevant parts from being
affected, we generate feature clusters of the editing area us-
ing the ViT-based feature field [7,32], and use these clusters
to distinguish whether a location is allowed to be edited or
should remain unchanged.

In summary, the contributions of our paper are as fol-
lows. (1) We propose a novel semantic-driven image-based
NeRF editing approach, called SINE, which allows users to
edit a neural radiance field simply on just a single view of
the rendering. SINE leverages a prior-guided editing field to
encode fine-grained geometry and texture changes over the
given pre-trained NeRF, thus delivering multi-view consis-
tent edited views with high fidelity. (2) To achieve seman-
tic editing functionality, we develop a series of techniques,

including cyclic constraints with a proxy mesh for geomet-
ric editing, the color compositing mechanism to enhance
texture editing, and the feature-cluster-based regularization
to control the affected editing area and maintain irrelevant
parts unchanged. (3) Experiments and editing examples
on both real-world/synthetic and object-centric/unbounded
360◦ scenes data demonstrate superior editing capabilities
and quality with effortless operations.

2. Related Works
Neural rendering with external priors. Neural render-
ing techniques aim at rendering novel views with high-
quality [44] or controllable properties [28, 51] by learn-
ing from 2D photo capture. Recently, NeRF [44] achieves
photo-realistic rendering with volume rendering and in-
spires many works, including surface reconstruction [33,69,
77], scene editing [4, 19, 71, 74, 75] and generation [23, 54],
inverse rendering [5, 80], SLAM [76, 81], etc. For learning
from few-shot images [24] or 3D inpainting [45], NeRF’s
variants use hand-crafted losses [47] or large language-
image models [24, 72] as external priors. However, due
to insufficient 3D supervision, such methods cannot recon-
struct accurate geometry and only produce visually plau-
sible results. Besides, some works [22, 34, 42] use the
symmetric assumption to reconstruct category-level objects
(e.g., cars, chairs) but cannot generalize on complex scenes.
Neural 2D & 3D scene editing. With the development of
neural networks, semantic-driven 2D photo editing allows
user editing in various friendly ways, such as controlling at-
tribute of faces [20, 29], stroke-based editing [36, 41, 70],
sketch-to-image generation [11, 58], image-to-image tex-
ture transferring [66], or text-driven image generation [56]
and editing [31]. Nevertheless, in 3D scene editing, simi-
lar capabilities are still limited due to the high demand for
multi-view consistency. Existing approaches either rely on
laborious annotation [28,73,75,78], only support object de-
formation or translation [32, 65, 67, 78], or only perform
global style transfer [12, 13, 16, 21, 79] without strong se-
mantic meaning. Recently, 3D-aware GANs [8, 9, 18, 25,
48,60,63] and semantic NeRF editing [37,68] learn a latent
space of the category and enable editing via latent code con-
trol. However, the quality and editing ability of these meth-
ods mainly depend on the dataset (e.g., human faces [63,64]
or objects in ShapeNet [10]), and they cannot generalize
to objects with rich appearances or out-of-distribution fea-
tures [1]. In contrast, our method allows for semantic-
driven editing directly on the given photo-realistic NeRF,
and uses a prior-guided editing field to learn fine-grained
editing from only a single image.

3. Method
We first formulate the goal of our semantic NeRF edit-

ing task as follows. As illustrated in the left part of Fig. 2,
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Figure 2. Overview. We encode geometric and texture changes over the original template NeRF with a prior-guided editing field, where
the geometric modification field F∆G transformed the edited space query x into the template space x′, and the texture modification field
F∆T encodes modification colors m′. Then, we render deformed template image Îo and color modification image Îm with all the queries,
and use a color compositing layer to blend Îo and Îm into the edited view Î .

given a pre-trained NeRF of a photo-realistic scene (named
template NeRF), we aim at editing the template NeRF us-
ing only a single-view 2D image, and then produce novel
views with consistent semantic meaning (see Sec. 4.3 and
Sec. 4.4). Note that naı̈vely fine-tuning on the edited sin-
gle view cannot obtain satisfactory results due to the spatial
ambiguity and lack of multi-view supervision (see Sec. 4.2).
Therefore, we propose to use a novel prior-guided editing
field to encode fine-grained changes (Sec. 3.1) in 3D space,
which leverages geometry and texture priors to guide the
learning of semantic-driven editing (Sec. 3.2 and Sec. 3.3).
Besides, to precisely control the editing area while main-
taining other parts unchanged, we design editing regulariza-
tion with feature cluster-based semantic masking (Sec. 3.4).

3.1. SINE Rendering Pipeline
As illustrated in Fig. 2, we use a dedicated editing field

to encode geometry and texture changes over the pre-trained
template NeRF. The editing field consists of an implicit ge-
ometric modification field F∆G and a texture modification
field F∆T , where F∆G deforms the query points from the
observed edited space to the original template space, as
x′ := F∆G(x), and F∆T encodes the modification color
m′, as m′ := F∆T (x). Specifically, for each sampled
query point {xi|i = 1, ..., N} along the ray r with view
direction d, we first obtain the deformed points x′ (in tem-
plate space) and modification color m′, and feed x′ and d
to the template NeRF to obtain the density δ′ and template
colors c′. Then, we perform dual volume rendering both on
edited fields and template NeRF following the quadrature
rules [40, 44], which is defined as:

Ĉo(r) =

N∑
i=1

Tiαic
′
i, Ĉe(r) =

N∑
i=1

Tiαim
′
i,

Ti = exp

−
i−1∑
j=1

σ′
jδj

,

(1)

where αi = 1 − exp (−σ′
iδi), and δi is the distance be-

tween adjacent samples along the ray. In this way, we obtain
the deformed template image Îo from the template NeRF’s
pixel color Ĉo(r) and color modification image Îm from
the modification color Ĉe(r). Finally, we apply the color
compositing layer (see Sec. 3.3) to blend Îo and Îm into the
resulting edited views Î .

3.2. Prior-Guided Geometric Editing
In this section, we explain how to learn F∆G(x) with the

geometric prior.
Shape prior constraint on the edited NeRF. We leverage
geometric prior models, such as neural implicit shape rep-
resentation [15, 49] or depth prediction [3], to mitigate the
ambiguity of geometric editing based on editing from a sin-
gle perspective. (1) For objects within a certain shape cat-
egory (e.g., cars, airplanes), we use DIF [15], in which the
implicit SDF field and the prior mesh M̂P can be gener-
ated with the condition of an optimizable latent code ẑ. We
force the edited NeRF’s geometry M̂E to be explainable by
a pre-trained DIF model with the geometric prior loss:

Lgp = min
ẑ

(∑
p′∈M̂E

fSDF(ẑ,p
′) + λ||ẑ||22

)
+

∑
p′

i∈M̂E

min
pt∈M̂P

||p′
i − pt||22

+
∑

pi∈M̂P

min
p′

t∈M̂E

||pi − p′
t||22.

(2)

The first term encourages the sampled surface points on the
edited NeRF’s geometry M̂E to lie on the manifold of DIF’s
latent space with an SDF loss fSDF and the latent code regu-
larization [15]. The last two terms are Chamfer constraints,
which enforce the M̂E close to the DIF’s periodically up-
dated prior mesh M̂P [38] by minimizing the closest sur-
face points. (2) For objects without a category-level prior,
we can build a finalized shape prior M̂P beforehand. Prac-
tically, we find 3D deforming vertices with 2D correspon-



dence [27] and monocular depth prediction [3], and use
ARAP [61] to deform the proxy triangle mesh MΘ to M̂P .
Then, we can inherit the Chamfer loss term in Eq. (2) for
prior-guided supervision.

Representing edited NeRF’s geometry as a deformed
proxy mesh. The edited NeRF has no explicit surface defi-
nition or SDF field to directly apply the geometric prior loss
(Eq. (2)). Therefore, to obtain the edited mesh surface M̂E ,
as illustrated in Fig. 3 (a), we first fit the template NeRF
geometry with a proxy mesh MΘ [38, 69], and then learn a
forward modification field F ′

∆G to warp the template proxy
mesh to the edited space. F ′

∆G is an inverse of the editing
field F∆G, which maps from the template space to the query
space [35, 43], as x := F ′

∆G(x
′), and can be supervised us-

ing a cycle loss Lcyc (see the supplementary material for de-
tails). Note that the deformed mesh proxy might not reflect
fine-grained details of the specific shape identity. It facili-
tates applying shape priors to the edited field and provides
essential guidance during geometric editing.

Learning geometric editing with users’ 2D editing. The
goal of geometric editing is to deform the given NeRF ac-
cording to the edited target image while satisfying semantic
properties. To this end, apart from the geometric prior loss
in Eq. (2), we add the following geometric editing loss in
two folds. (1) We encourage the edited NeRF to satisfy the
user’s edited image by directly supervising rendering colors
and opacity on Nr rays, which is defined as:

Lgt =
1

|Nr|
∑
r∈Nr

||Ĉ(r)− Ct(r)||22 + BCE(Ô(r), Oe(r)).

(3)
The first photometric loss term encourages the rendered
color Ĉ(r) close to the edited target color Ct(r). The sec-
ond silhouette loss term enforces the rendered opacity Ô(r)
close to the edited object’s silhouette Oe(r) (derived from
users’ editing tools) by minimizing the binary cross-entropy
loss, where Ô(r) =

∑N
i=1 Tiαi. (2) To obtain a spatially

smooth deformation and mitigate overfitting to the mesh’s
surface points, inspired by previous works [15, 51, 52], we
also add deformation regularization as:

Lgr =
1

M

N∑
i=1

||∇F∆G(pi)||2+||F∆G(pi)−F∆G(pi+ϵ)||1,

(4)
where the first term penalizes the spatial gradient of the ge-
ometric editing, and the second term encourages the editing
to be smooth under a mild 3D positional jitter ϵ.

The overall geometric editing loss is defined as:
Lgeo = λgpLgp + Lgt + λgrLgr + λcycLcyc, (5)

where we set λgp = 0.03, λgr = 0.1 and λcyc = 10. In-
tuitively, the geometric editing loss Lgeo jointly optimizes
edited NeRF’s geometry M̂E and the latent shape code ẑ
(for category-level objects) to best fit the user’s 2D editing
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Figure 3. We leverage geometric [3, 15] and texture [7, 66] priors
to guide the learning of semantic-driven NeRF editing.

while maintaining shape prior’s semantic properties (i.e.,
shape symmetry or physical conformity).

3.3. Prior-Guided Texture Editing
Semantic texture prior supervision. In our task, users
only conduct editing on a single image, but we hope to natu-
rally propagate editing effects to multi-views with semantic
meaning (see Fig. 1). Therefore, we need to utilize seman-
tic texture supervision that supports transferring the editing
to the given NeRF across views, rather than using a pixel-
aligned photometric loss. Inspired by Tumanyan et al. [66],
we use a pre-trained ViT model [7] as the semantic texture
prior, and apply the texture transferring loss in a multi-view
manner as illustrated in Fig. 3 (b), which is defined as:
Ltex = ||tCLS(It)− tCLS(Î)||2 + ||S(Îo)− S(Î)||F , (6)

where It is the user’s edited image, Îo and Î are the template
image and edited image as introduced in Sec. 3.1. tCLS(·)
and S(·) are the extracted deepest CLS token and the struc-
tural self-similarity defined by Tumanyan et al. [66]. Essen-
tially, this loss encourages Îo and Î to share a similar spatial
structure, and Ît and Î to contain similar image cues.
Decoupled rendering with color compositing layer. To
achieve texture modification, a naı̈ve approach is to directly
add the modification color m′ from the editing field to the
template NeRF’s radiance color c′ during volume render-
ing. However, we find it suffers from sub-optimal con-
vergence when cooperating with texture transferring loss
(see Sec. 4.5), since NeRF struggles to learn the global-
consistent appearance under the variational supervisory as
shown in Fig. 8(a). To tackle this issue, we re-design the
rendering pipeline in a decoupled manner. As shown in
Fig. 2, we first render the deformed template image Îo with



template NeRF and the color modification Îm with F∆T ,
and then use a 2D CNN-based color compositing layer to
deferred blend the modification Îm into the template im-
age Îo, which yields final edited view Î . Intuitively, the
coordinate-based editing field can encode fine-grained de-
tails from photometric constraints but cannot easily learn
from coarse semantic supervision, while the proposed color
compositing layer can reduce the difficulty by using easy-
to-learn CNN layers before applying texture transferring
loss. Besides, it also learns view-dependent effects from the
semantic prior, making the rendering results more realistic
(e.g., the shining diamond effect in Fig. 1).

3.4. Editing Regularization
Feature-cluster-based semantic masking. To precisely
edit the desired region while preserving other content un-
changed, inspired by previous works [32, 65, 67], we learn
a distilled feature field with DINO-ViT [7] to reconstruct
scenes/objects with semantic features. However, existing
semantic field decomposing approaches [32,65] are limited
to the query-based similarity and require all the editing to
be finalized on the 3D field, which is not compatible with
our color compositing mechanism. Therefore, we leverage
users’ editing silhouette Me to generate several feature clus-
ters from the distilled feature map, and compute semantic
masks M̂e using the closest cosine similarity to cluster cen-
ters with a threshold, which will be served for image-based
editing regularization.
Regularization on geometric and texture editing. With
the semantic masks that indicate the editing area, we can ap-
ply editing regularization to the geometric and texture edit-
ing, i.e., by enforcing the rendered pixels and the queries at
the irrelevant part unchanged, which is defined as:

Lreg =
∑

x∈Î\M̂e

||F∆G(x)||1 +
∑

r∈Î\M̂e

||Ĉ(r)− Ĉo(r)||22, (7)

where the sampled points x and rays r are both from the
background area of the computed semantic masks M̂e.

4. Experiments
4.1. Datasets

We evaluate SINE on both real-world/synthetic and ob-
ject/scene datasets, including real-world car dataset [57],
PhotoShape datasets (synthetic chairs) [50], “pinecone”,
“vasedeck”, and “garden” from NeRF real-world 360◦

scenes [2, 44], “chairs” and “hotdog” from NeRF photo-
realistic synthetic data [44], bird status from DTU [26]
dataset, and “airplane” from BlenderSwap [39]. Please re-
fer to the supplementary materialfor more details.

4.2. Semantic-driven vs. Manual Editing
We first clarify the difference between our semantic-

driven NeRF editing and manual NeRF editing (e.g.,
NeuMesh [73], NeRF-Editing [78]). As illustrated in Fig. 4

Our Editing on a Single Image

NeuMesh Editing with 3D Skeleton

Our Rendered Edited Views

NeuMesh Rendered Edited Views

Target

Source

Our Rendering Results

Rendered Results from naïve fine-tuning

Single-View

Fine-Tuning

Semantic-driven

Editing

(a) Image-based geometric editing vs. manual geometric editing

(b) Semantic-driven texture editing vs. naïve single-view fine-tuning
Figure 4. We show the difference between our semantic-driven
image-based NeRF editing and manual NeRF editing [73].

(a), our method provides much more effortless ways than
manual approaches. For example, they require 3D modeling
skills to bind the skeleton of the mesh using Blender [73],
or drive models [78] with Mixamo poses [62], while our
method can easily achieve similar geometric editing with
only a single-view image. Besides, naı̈vely fine-tuning
NeRF on a single-view with a pixel-aligned photometric
loss like NeuMesh [73] would only modify visible regions,
which leads to inconsistent novel view rendering (e.g., in
Fig. 4 (b), the car edited by single-view fine-tuning would
expose unpainted red part). On the contrary, our method
leverages semantic priors [7] to naturally edit objects with
multi-view consistency, which does not require pixel-wise
alignment and enables texture transferring between objects
with different shapes (see cars and chairs in Fig. 6 (a)).

4.3. Semantic-driven Geometric Editing
We first show our geometric editing results in Fig. 5

(a), where the objects can be faithfully deformed accord-
ing to users’ 2D editing (e.g., the airplane with warped
wings [39], green chair with bent legs [44] and deformed
bird status [26]). For the usage of geometry prior, we use
a pre-trained DIF [15] model for cars [57], chairs [50] and
planes [39], and use ARAP-based shape priors for general
objects without a category-level prior (i.e., toy in Fig. 4
(a), green chair with unusual shape and status in Fig. 5
(a), etc.). Then, we compare our method with EG3D [9], a
3D-aware generative model that learns a latent representa-
tion of category-level objects, and EditNeRF [37], a NeRF-
variant that supports object editing with single-view user in-
teraction. In addition to editing comparisons, we also used
PSNR, SSIM, and LPIPS [44] to measure the edited render-
ing quality on synthetic cars and chairs. For the geometric
editing on EG3D, we first conduct 3D GAN inversion to
obtain the style code with multi-view images (same input



(a) Our geometric editing results.
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(b) Comparison with EG3D on the real-world car dataset. (c) Comparison with EditNeRF on the PhotoShape dataset.
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Figure 5. We compare the geometric editing with EG3D [9] and EditNeRF [37] on the real-world cars [57] and PhotoShape [50].

as ours), and then fine-tune the code on the target images.
As shown in Fig. 5 (b), we conduct different editing oper-
ations on four cars from CalWare 360◦ datasets with DIF
shape prior [15], i.e., enlarging/shrinking tires/back. Due to
the difficulty of learning a latent textured 3D representation
and the limitation of data diversity, 3D-aware generative
models like EG3D cannot produce rendering results with
fine-grained details, which also results in lower evaluation
metrics. For the Photoshape [50], EditNeRF [37] does not
provide edited GT images, so we regenerate all testing cases
using Blender, which is more challenging than the original
ones. Then, we evaluate EditNeRF [37] by fine-tuning the
pre-trained models on specific chairs from the PhotoShape
dataset. As shown in Fig. 5 (c), EditNeRF produces more
blurry rendering results than ours, and cannot achieve sat-
isfactory results with single-view editing (e.g., multi-view
inconsistent chair back in the first row, and unmodified or
blurry shapes in the third and fourth rows). By contrast,
our method consistently delivers high-fidelity rendering re-
sults and achieves reliable editing capability by leveraging
geometric priors [3,15]. This demonstrates that, for seman-

tic geometric NeRF editing, learning a prior-guided editing
field like ours can maintain better visual quality and achieve
greater generalization ability than pre-training a textured 3D
generative model or latent model.

4.4. Semantic-driven Texture Editing
We evaluate our semantic texture editing ability on

both objects (cars from CalWare 360◦, chairs from Photo-
Shape [50]) and unbounded 360◦ scenes [2, 44]. Since our
method only requires a single image as editing input, we
exhibit several editing functionalities as shown in Fig. 6.
Users can edit by assigning new textures on the car using
Photoshop (adding sea wave windows in Fig. 6 (a)), us-
ing a downloaded Internet image with different shapes as
a reference (transferring textures of cars and chairs in Fig. 6
(a)). Moreover, we cooperate SINE with off-the-shelf text-
prompts editing methods [1] by using a single text-edited
image as the target, which enables to change the object’s
appearance in the 360◦ scene with vivid effects (e.g., shiny
plastic round table or burning pinecone in Fig.6 (b)) while
preserving background unchanged. It is noteworthy that
our method does not pre-train a latent model within a spe-
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Figure 6. We show our texture editing results when given users’ target images and cooperating with text-prompt-based editing methods [1].

(a) Comparison of texture editing with target images.
ARF Ours ARF CLIP-NeRF Ours

(b) Comparison of texture editing with text-prompts.

“Shining Diamond Vasedeck”

“Silver Round Table”

Source / TargetSource / Target

Figure 7. We compare our texture editing with ARF [79] and CLIP-NeRF [68] on the real-world cars [57] and 360◦ [2, 44] scene dataset.

cific category like cars or chairs, yet still transfers texture
between objects with correct semantic meaning, e.g., the
texture styles of chair legs and cloths in the edited views
are precisely matched to the target images in Fig. 6 (a).
Besides, we also compare our methods with ARF [79], a

NeRF stylization method that also takes a single reference
image as input, and CLIP-NeRF [68], which supports text-
driven NeRF editing using the large language model [55].
As demonstrated in Fig. 7, ARF globally changes appear-
ance colors to the given target images but fails to produce
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Figure 8. We analyze the effectiveness of the color compositing mechanism and editing regularization in texture editing.
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Figure 9. We inspect the efficacy of the geometric prior constraint
and editing regularization in geometric editing.

fine-grained details (e.g., cookie tires in Fig. 7 (a)). For
CLIP-NeRF, since it directly fine-tunes NeRF’s color lay-
ers, the results only show color/hue adjustment on the orig-
inal scene (e.g., in Fig. 7, the round table turns gray instead
of a realistic silver texture, the vasedeck turns blue instead
of a shining diamond). Thanks to the prior-guided editing
field, our method learns more fine-grained editing details
than the others, and achieves texture editing with consistent
semantic meaning to the given target images (e.g., similar
appearance to the Tesla’s cybertruck in Fig. 7 (a)), and de-
livers rich appearance details and vivid effects (e.g., silver
texture and shining diamond effects in Fig. 7 (b)).
User study. We also perform user studies to compare our
texture editing (including target-image-based editing and
text-prompts editing as Fig. 7) with ARF [79] and CLIP-
NeRF [68] on 43 cases with 30 users. The results show that
users prefer our methods (89.5% / 83.3%) to ARF (10.4% /
7.4%) and CLIP-NeRF (9.3%). Please refer to the supple-
mentary material for more details.

4.5. Ablation Studies
Geometric prior constraints. We first analyze the effec-
tiveness of geometric prior constraints (Sec. 3.2) by ablating
geometric prior loss (Eq. (2)) in Fig. 9 (i.e., deforming cars
and airplanes with DIF shape prior, and adding plates with
general shape prior). As shown in Fig. 9 (b), when learning
without geometric prior constraints, the object will be dis-
torted when rendered from other views (e.g., collapsed car
back, twisted airplanes, and warped hotdog plates). By ap-

plying geometric prior constraints, we successfully mitigate
the geometric ambiguity for single-image-based editing and
produce plausible rendering results from novel views.
Color compositing mechanism. We then inspect the ef-
ficacy of the color compositing mechanism (Sec. 3.3) by
disabling the texture modification field F∆T and the color
compositing layer in turn. As demonstrated in Fig. 8 (a),
when learning texture editing without F∆T , the rendered
edited object can show a similar global appearance to the
target, but lose vivid local patterns (e.g., gray and white
grains and blue shininess). When ablating the color com-
positing layers, the editing effect might not be properly ap-
plied to every part of the object (e.g., the uncovered gray
part of the car’s front). When all the compositing mecha-
nism is enabled, we successfully learn NeRF editing with
fine-grained local patterns and globally similar appearance.
Editing regularization. We finally evaluate the editing reg-
ularization (Sec. 3.4) in geometric and texture editing by
ablating regularization loss (Eq. (7)). As shown in Fig. 9
(c) and Fig. 8 (b), when learning editing without regulariza-
tion, the irrelevant part would be inevitably changed (e.g.,
bent car’s front and airplane’s head in Fig. 9 (c), a spurious
cookie at the car’s front and snowy background in Fig. 8
(b)). By adding editing regularization, we can modify the
user-desired objects precisely while preserving other con-
tent unchanged.

Please refer to the supplementary material for more ex-
periments (e.g., ablation on more loss terms, visualization
of color composition layer, discussion with external super-
vision, etc.).

5. Conclusion
We have proposed a novel semantic-driven NeRF editing

approach, which supports editing a photo-realistic template
NeRF with a single user-edited image, and deliver edited
novel views with high-fidelity and multi-view consistency.
As limitation, our approach does not support editing with
topology changes, which can be future work. Besides, our
method assumes users’ editing to be semantically meaning-
ful, so we cannot use target images with meaningless ran-
dom paintings.
Acknowledgment. This work was partially supported by
NSF of China (No. 62102356).
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Supplementary Material

In this supplementary material, we describe more de-
tails of our method, including model architecture in Sec. A,
dataset preparation in Sec. B, and implementation details
in Sec. C. Besides, we also conduct more experiments in
Sec. D. More qualitative results can be found in our supple-
mentary video, and the source code will be released upon
the acceptance of this paper.

A. Model Architecture

We first explain the details of the model architecture.
Specifically, we adopt the multi-resolution voxel-hashing
encoder by Müller et al. [46] as the coordinate-based en-
coder, and build the template NeRF and the editing field
in a decoupled manner. The voxel-hashing encoder is con-
structed with 16 levels with 2-dimensional features for each
level. For the template NeRF, we use the voxel-hashing en-
coder to encode the queries’ coordinates and use spherical
harmonics with 4 degrees to encode the ray direction. The
density and color heads for model output consist of 1 hid-
den layer with 128 hidden size and 2 hidden layers with
64 hidden size, respectively. As introduced in Sec. 3.1,
the editing field consists of a geometric modification field
F∆G and a texture modification field F∆T . The geomet-
ric modification field F∆G and the corresponding forward
modification field F ′

∆G are both constructed with an MLP
of 1 hidden layer and 128 hidden size with the ReLU ac-
tivation, and we adopt the positional encoding [44] (with 4
frequencies) to all input query points. The texture modifica-
tion field F∆T is constructed with a voxel-hashing encoder
(same size as the template NeRF), followed by an MLP of
1 hidden layer and 128 hidden size with ReLU activation.
During the dual volume rendering stage, we follow Milden-
hall et al. [44] by using 64 coarse samples and 128 fine sam-
ples for each ray, and render the deformed template image
Îo and color modification image Îm with the same density
values. Then, as explained in Sec. 3.3, we use a color com-
positing layer to obtain the edited view Î by blending Îm
into Îo, where the color compositing layer is constructed us-
ing a compact UNet-like structure (with 2-layer encoder (3
→ 16 → 32) and a symmetrical decoder, all layers comprise
3×3 convolutions). Besides, we can integrate temporal at-
tribute [51, 52] (from 0 to 1) to the input of F∆G (with the
positional encoding of 4 frequencies), and train the geomet-
ric editing on the edited transitions with temporal attributes
as conditions, e.g., the dynamic motion effect shown in the
supplementary video.

Geometry Editing Texture Editing Our Rendering
Figure J. We show examples of hybrid object editing by combining
geometric and texture editing.

B. Dataset Preparation

We evaluate SINE on both real-world/synthetic and ob-
ject/scene datasets. Specifically, for the real-world car
datasets [57], each sequence contains 72 images with a car
rotating on the turntable. We use Colmap [59] to recover
camera poses w.r.t the cars’ centers for all the images. For
the data of Photoshape [50], EditNeRF [37] does not pro-
vide edited GT images, so we regenerate all testing cases
using Blender, which is more challenging than the origi-
nal ones (e.g., we stretch the whole chair or enlarge holes,
while EditNeRF [37] only fills a tiny hole or removes legs).
For the data Blenderswap [39], we render the scenes with
Blender’s Cycle engine with realistic environment HDR
maps. For users’ 2D image editing, we use Adobe After Ef-
fect / Photoshop to deform images (geometric editing) and
paint patterns (texture editing), and use EditGAN [36] and
Text2LIVE [1] to edit images with semantic strokes or text-
prompts. For users’ target images (e.g., cars and chairs)
from the Internet, we remove their backgrounds using re-
move.bg [17] before conducting texture editing.

C. Implementation Details

Training details. As introduced in the main paper, our
method performs semantic-driven editing upon the given
NeRF model. Specifically, for each object or scene, we
first train a generic template NeRF model. Then, we learn
geometric editing and texture editing with editing from a
single perspective. For geometric editing, since the geo-
metric changes are sometimes combined with minor color
changes, we also fine-tune the color modification field with
a photometric loss (see the first term in Eq. (3)). For tex-
ture editing, the texture transferring loss (Eq.(6))is defined
on a complete image, which is not compatible with NeRF’s
sparse ray supervision. Therefore, we adopt the deferred
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Source / Target Direct Fine-tuning Ours with Texture Mod. Field

(b) Direct fine-tuning NeRF’s color layers vs. Ours with texture modification field(a) Direct fine-tuning NeRF’s density layers vs. Ours with geometric modification field

Source / Target Direct Fine-tuning Ours with Geometry Mod. Field

Figure K. We compare our editing field with directly fine-tuning template NeRF.

2D Editing InputSource EG3D GroundTruth

38.77 / 0.99 / 0.0028

27.89 / 0.96 / 0.0235

35.30 / 0.99 / 0.0050

Our Rendering

18.56 / 0.86 / 0.0934

18.44 / 0.85 / 0.1026

18.97 / 0.89 / 0.1036

Figure L. We show the quantitative comparison between our method and EG3D [9] on the synthetic cars [39], where the metrics of PSNR↑
/ SSIM↑ / LPIPS↓ are annotated above.

back-propagation technique from Zhang et al. [79] for tex-
ture editing. Practically, we first render the full-sized Îo
and Îm and forward the color compositing layer, and then
compute the losses to cache the complete image gradient
w.r.t the Îm and the color compositing layer, and re-render
the Î and back-propagate the gradients to the F∆T and the
color compositing layer in a patch-wise manner. To make
a smooth convergence, we take the coarse-to-fine regular-
ization [51] on the color modification field by progressively
increasing the frequency band of the input features during
the training process. Furthermore, we randomly perturb the
pose to augment the data distribution and avoid the overfit-
ting of the texture editing. The whole training process of the
template NeRF and our editing field takes about 12 hours on
a single Nvidia RTX 3090 graphics card.

Preparation of proxy mesh in geometric editing. As in-
troduced in Sec. 3.2, we use a proxy mesh to represent
NeRF’s geometry during geometric editing. In practice, we
directly obtain the proxy mesh using off-the-shelf tools (i.e.,
implicit surface reconstruction method NeuS [69]). Since
we optimize DIF [15] latent code ẑ and deform the proxy
mesh M̂ during the editing, the initial proxy mesh should be
binding to a latent code beforehand. Therefore, we obtain
the initial latent code ẑ to the corresponding initial proxy
mesh M̂σ in an auto-decoding manner [15,49] before train-
ing.

Cycle loss in geometric editing. During the training of

geometric editing, we additionally train a forward modifica-
tion field F ′

∆G to map the template proxy mesh to the edited
space. The forward modification field F ′

∆G and the implicit
geometric modification field F∆G are both supervised with
an cycle loss [35, 43], which is defined as:

Lcycle =
1

M

M∑
i=1

||F∆G(F
′
∆G(pi))− pi||+

||F ′
∆G(F∆G(pi))− pi||,

(8)

where {pi|i = 1, ...,M} are the uniform point samples in
3D space, and we set M = 1000 in our experiment.

Feature-cluster-based semantic masking. As introduced
in Sec. 3.4, we train a 3D feature field with DINO-ViT’s
feature maps, and generate feature clusters from the user-
painted regions, which will be used to compute semantic
masks to distinguish foreground editing areas and back-
ground areas. Specifically, we first render the feature map
under the specific editing view, and sample 1000 feature
points on the user’s painted region (which is directly ac-
cessible from the editing tools). Then, we use K-Means to
generate K = 15 clusters from the sampled feature points.
During the training stage, we first render the current training
view’s feature map, and compute the L2-normalized pixel-
wise feature distance (from 0 to 1) to the nearest clusters.
The pixels with distances smaller than 0.5 would be marked
as foreground objects, and the others would be marked as
background. These computed editing masks would be used
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Comparison with EditGAN on the real-world car dataset.

EditGAN Ours

Figure M. We show the comparison of our method with Edit-
GAN [36] on the real-world car dataset [57].

(a) Source (b) Target (c) SPLICE Editing (d) Our Editing
(Image-based) (3D-aware)(from Internet)

Figure N. We compare our method with SPLICE-ViT [66] on the
real-world cars [57] and toys [26]. Since our editing method
is built upon 3D-aware models, we consistently achieve better
texture-transferring results than SPLICE-ViT when the source and
target are observed from different perspectives of views (e.g., cars)
or with significant different shapes (e.g., plush toys).

to regularize both geometric and texture editing (see Eq. (7))
to maintain the irrelevant content unchanged.
User study. The questionnaire contains 17 cases, 8 for
target-image-based editing (e.g., Fig. 7 (a)) and 9 for text-
prompts editing (e.g., Fig. 7 (b)). We show the participants a
source image, a target image/text prompts, as well as the re-
sults produced by different methods. Participants are asked
to select one result that best matches the style of the target
image or the text meaning.

D. More Experiments
Hybrid editing with geometric and texture changes. We
can combine geometric and texture editing on the same
object by optimizing geometric-related losses and texture-
transferring losses in turns. As shown in Fig. J, we can edit
objects’ geometries while transferring textures with users’
target images, e.g., the plush toy raises its hands and is
painted in new textures from a yellow bear, and the airplane
extends its wings and is painted golden. Please refer to our
supplementary video for a vivid animation of these effects.
3D editing field vs. template NeRF fine-tuning. In this
experiment, we compare our 3D editing field with the naı̈ve
fine-tuning template NeRF (which is adopted by CLIP-
NeRF [68] and DFF [32]). Editing NeRF with only a sin-
gle image is fairly ambiguous without external supervision
(e.g., semantic hints). For a fair comparison, we provide ex-
ternal supervision for the baseline method (vanilla NeRF).
Specifically, for texture editing, we enable NeRF’s related
network layers to be optimized and use the same texture
editing losses. Directly fine-tuning NeRF’s color layers can
change the objects’ texture to some extent but cannot reach
the same quality as our full model (e.g., uncovered cookie
tires and snowy flowers in Fig. K (b)). For geometry edit-
ing, we fine-tune vanilla NeRF with Lgt and Lreg since it is
not trivial to apply SDF-based shape priors to vanilla NeRF.
As demonstrated in Fig. K (a), naı̈vely fine-tuning NeRF on
geometric editing would lead to the overfitting to a single
view, and the multi-view consistency is no longer ensured
(e.g., broken wings and green floaters in Fig. K (a)).
Quantitative comparison with EG3D on synthetic cars.
We conduct quantitative comparisons with the SOTA 3D-
aware GAN method EG3D [9] on the synthetic car dataset.
To obtain the ground-truth images of the edited results, we
use Blender to render the training and testing views, and
modify the cars’ geometry within the software. As shown
in Fig L, our method achieves better rendering quality than
EG3D on both visual quality and all the metrics (PSNR,
SSIM, and LPIPS). For example, we can preserve the spec-
ular effect even after the editing (e.g., the specular area fac-
ing the light source and the reflection on the windshield),
while EG3D struggles to produce photo-realistic results due
to the limitation of its learned 3D latent representation.
Comparison with 2D GANs. We compare our method
against the SOTA 2D semantic editing method EditGAN
[36] on the real-world car dataset [57]. To make a fair
comparison, we train our NeRF’s backbone and EditGAN’s
style codes on all the multi-view images (i.e., each style
code corresponds to one view). Then, we perform seman-
tic 2D editing on one single view using EditGAN. For our
method, we use the edited view to train our editing field.
And for EditGAN, we save the intermediate editing vec-
tor and add the editing vector to all the style codes, which
yields multi-view edited images. As demonstrated in Fig M,



(a) Source / Target (b) w/o ℒgt (photometric) (c) w/o ℒgt (silhouette)

(d) w/o ℒgr (f) Full Model(e) w/o ℒcyc
Figure O. We inspect the efficacy of different constraints in geo-
metric editing.

(a) Source / Target (b) w/o Tex. Prior (c) Full Model
Figure P. We inspect the efficacy of the texture prior constraint in
texture editing

since EditGAN is agnostic to the 3D geometry, its results
suffer from the inconsistent issue between different views,
e.g., poor inversion results for the head and tail of the car,
and the semantic editing result cannot be precisely applied
to all views. In contrast, our methods can synthesize cars
with multi-view consistency and high-quality editing re-
sults.
More ablation studies on geometric supervision. As
shown in Fig. O, since ablating Lgt (Eq. (3)) makes it no
supervision on editing, we split it into photometric (b) and
silhouette (c) terms, and the absence of either will result in
distorted or washed-out texture. (d): When ablating defor-
mation reg. loss Lgr (Eq. (4)), the edited object is severely
distorted (e.g., the letters are stretched). (e): The cycle loss
Lcyc (Eq. (1) in supp.) brings constraints from shape prior
to geometric mod. field F∆G, and ablating it would lose the
efficacy of semantic guidance (e.g., the twisted airplane).
Ablation study of texture supervision. In Fig. P, we dis-
able texture transfer loss Ltex (Eq. (6)) and utilize photomet-
ric loss to paint the target texture, which leads to incomplete
texture transferring results for invisible parts as shown be-
low. Besides, without texture prior supervision, we cannot
transfer textures between objects with different shapes.
Comparison of texture editing with image-based
SPLICE-ViT. Our texture transferring loss (Eq. (6)) is in-
spired from SPLICE-ViT [66], but fully leverages the multi-
view training scheme. Therefore, we compare our texture
editing with image-based SPLICE-ViT in Fig. N. As shown
in Fig. N, SPLICE-ViT is sensitive to the perspective dif-
ference of the source and target images, which results in
overfitting appearances on the edited view, e.g., horizontal
straight patterns of cars when observing cars from a slightly
tilted view, distorted faces of the plush toy. By contrast,
our method consistently achieves better texture-transferring
results with color patterns properly aligned to the cars’ ge-
ometries and the plush toy’s body parts.

(a) Source/Target (b) Text2LIVE Multi-Views (c) Our Multi-Views

Silver 
Vasedeck

Golden
Pinecone

Figure Q. We compare our method with Text2LIVE on texture
editing, where our method achieves better multi-view consistency.
See the text for details.w/o noise

Proxy Mesh

Our Rendering

~𝑁(0, 0.01!)~𝑁(0, 0.004!)~𝑁(0, 0.001!)

Figure R. We show the robustness of geometric editing on proxy
meshes with different qualities. The proxy meshes are jittered
by adding gaussian noise with different variances (from 0.0012

to 0.012).

Comparison of texture editing with Text2LIVE. As
shown in Sec. 4.4 from the main paper, since our method
only requires one single-view image as editing input, we
can naturally achieve text-prompt-based texture editing by
cooperating with off-the-shelf text-driven editing methods
(such as Text2LIVE [1]). A follow-up question is, how
does the Text2LIVE itself perform to the same 360◦ dataset
in our texture editing task? For video editing, Text2LIVE
uses layered atlas [30] to convert objects and backgrounds
into separated 2D layers. However, in the unbounded
360◦ dataset (e.g., pinecone and vasedeck [44]), there is no
proper way to unwrap 3D objects and scenes into 2D lay-
ers (and we also failed to train layered atlas on these 360◦

datasets). Therefore, we directly apply its converged editing
generator to the multi-view images. As shown in Fig. Q, al-
though Text2LIVE produces similar-looking edited images,
it cannot maintain multi-view consistency when the view-
point changes (e.g., blurry edges at the golden pinecone,
uncovered petals at the silver vasedeck, and the occasion-
ally affected background). On the contrary, our method
naturally takes advantage of multi-view training and con-
sistently delivers more plausible and realistic novel views.
Robustness to the noise of proxy mesh. The geometry
prior guidance uses the proxy mesh to supervise the ge-



(b) ARF (c) CLIP-NeRF (Image) (d) CLIP-NeRF (Text)(a) Source/Target (f) Ours

“Ice Sculpture Car”

“Stained Glass Vasedeck”

“Burning Pinecone”

“Plastic Round Table”

(e) DFF

N / A

Figure S. We show more comparison results of texture editing with ARF, CLIP-NeRF, and DFF on the real-world car [57] and 360◦ scene
dataset [44]. Our method consistently achieves more realistic and appealing editing results than the others.

Color Modification Final Rendering

“Silver Round Table”

Source / Target

(from Internet)

(User Editing)

Figure T. We show more rendering results from color modification
field and compositional layer.

ometry modification field. Therefore, we analyze the ef-
fect of mesh quality on our editing results. Specifically, we
add 3 groups of gaussian noise to the vertices of the proxy
mesh and conduct training of our editing field. As shown
in Fig R, our method can robustly learn geometric editing
even with noisy proxy mesh (e.g., with the gaussian noise
of N(0, 0.0042) in the third column).

More comparison results on texture editing. We show
more comparison results on the texture editing task with
ARF [79], CLIP-NeRF [68] and DFF [32] in Fig. S (where
Fig. S (a) is the source view and the target view produced
by Text2LIVE [1]). For CLIP-NeRF [68], since the official
codebase has not been fully released, we use our own im-
plementation by fine-tuning NeRF’s color-related field with
CLIP loss, and both use the target features from text em-
bedding and the image embedding (with the same target im-
ages in Fig. S (a)), which are denoted as CLIP-NeRF (Im-
age) and CLIP-NeRF (Text), respectively. For DFF [32], we
adopt the official codebase and use the texts for NeRF edit-
ing and background ray-filtering according to the document.
In Fig. S, we omit the DFF’s object-centric comparison on
the car, since it mainly focuses on scene-level decomposi-
tion and editing. As demonstrated in Fig. S, NeRF styliza-
tion methods like ARF cannot precisely edit fine-grained ef-
fects on the desired location. NeRF fine-tuning approaches
like CLIP-NeRF and DFF only change appearance colors,
but cannot produce vivid effects (e.g., the burning pinecone
or ice sculpture cars). Note that although DFF uses the
semantic-field guided decomposed rendering to maintain
the background color unchanged, this strategy is not com-



2D EditingOriginal View Edited Novel View Edited Reconstruction
Figure U. We show the results of geometry editing with topology
changes.

patible with our color compositing mechanism since we in-
troduce an additional 2D CNN layer to blend the template
and editing color for better visual appearance.

By contrast, our method both achieves realistic and ap-
pealing editing effects, and also effectively preserves back-
ground content, and the results are consistently preferred by
most of the participants in the user study (see Sec. 4.4).
Impact of texture modification field & color composi-
tional layer. The texture modification field learns detailed
modifications and the compositional layer blends the orig-
inal and modified rendering to produce the final edited re-
sults, as demonstrated in Sec. 4.5 and Fig. 8 (a). Here we
show more rendered texture mod. field (a.k.a. color mod.
Îm) in Fig T.
Deformation with topology changes. Our method does not
support deformation with topology changes such as break-
ing the plate, but can provide a visually plausible result by
making the “broken part” white, as shown in Fig U. In the
future, we can integrate more flexible representations such
as ambient slicing surface [52] into our model.
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