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Abstract

StyleGAN has achieved great progress in 2D face recon-
struction and semantic editing via image inversion and la-
tent editing. While studies over extending 2D StyleGAN to
3D faces have emerged, a corresponding generic 3D GAN
inversion framework is still missing, limiting the applica-
tions of 3D face reconstruction and semantic editing. In
this paper, we study the challenging problem of 3D GAN
inversion where a latent code is predicted given a single
face image to faithfully recover its 3D shapes and detailed
textures. The problem is ill-posed: innumerable composi-
tions of shape and texture could be rendered to the cur-
rent image. Furthermore, with the limited capacity of a
global latent code, 2D inversion methods cannot preserve
faithful shape and texture at the same time when applied to
3D models. To solve this problem, we devise an effective
self-training scheme to constrain the learning of inversion.
The learning is done efficiently without any real-world 2D-
3D training pairs but proxy samples generated from a 3D
GAN. In addition, apart from a global latent code that cap-
tures the coarse shape and texture information, we augment
the generation network with a local branch, where pixel-
aligned features are added to faithfully reconstruct face de-
tails. We further consider a new pipeline to perform 3D
view-consistent editing. Extensive experiments show that
our method outperforms state-of-the-art inversion methods
in both shape and texture reconstruction quality. Code and
data will be released.

1. Introduction

The main goal of this work is to devise an effective ap-
proach for encoder-based 3D Generative Adversarial Net-
work (GAN) inversion. In particular, we focus on the re-
construction of 3D face, requiring just a single 2D face im-
age as the input. In the inversion process, we wish to map a
given image to the latent space and obtain an editable latent
code with an encoder. The latent code will be further fed to
a generator to reconstruct the corresponding 3D shape with
high-quality shape and texture. Further to the learning of an
inversion encoder, we also wish to develop an approach to

synthesize 3D view-consistent editing results, e.g., chang-
ing a neutral expression to smiling, by altering the estimated
latent code.

GAN inversion [49] has been extensively studied for 2D
images but remains underexplored in the 3D world. Inver-
sion can be achieved via optimization [1,2,38], which typi-
cally provides a precise image-to-latent mapping but can be
time-consuming, or encoder-based techniques [37, 44, 47],
which explicitly learn an encoding network that maps an
image into the latent space. Encoder-based techniques en-
joy faster inversion, but the mapping is typically inferior to
optimization. In this study, we extend the notion of encoder-
based inversion from 2D images to 3D shapes.

Adding the additional dimension makes inversion more
challenging beyond the goal of reconstructing an editable
shape with detail preservation. In particular, 1) Recovering
3D shapes from 2D images is an ill-posed problem, where
innumerable compositions of shape and texture could gen-
erate identical rendering results. 3D supervisions are cru-
cial to alleviate the ambiguity of shape inversion from im-
ages. Though high-quality 2D datasets are easily accessi-
ble, owing to the expensive cost of scans there is currently a
lack of large-scale labeled 3D datasets. 2) The global latent
code, due to its compact and low-dimensional nature, only
captures the coarse shape and texture information. With-
out high-frequency spatial details, we cannot generate high-
fidelity outputs. 3) Compared with 2D inversion methods
where the editing view mostly aligns with the input view,
in 3D editing we expect the editing results to perform well
over the novel views with large pose variations. There-
fore, 3D GAN inversion is non-trivial task and could not
be achieved by directly applying existing approaches.

To this end, we propose a novel Encoder-based 3D GAN
invErsion framework, E3DGE, which addresses the afore-
mentioned three challenges. Our framework has three novel
components with a delicate model design. Specifically:
Learning Inversion with Self-supervised Learning - The
first component focuses on the training of the inversion en-
coder. To address the shape collapse of single-view 3D re-
construction without external 3D datasets, we retrofit the
generator of a 3D GAN model to provide us with diverse
pseudo training samples, which can then be used to train
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our inversion encoder in a self-supervised manner. Specif-
ically, we generate 3D shapes from the latent space W of
a 3D GAN, and then render diverse 2D views from each
3D shape given different camera poses. In this way, we can
generate many pseudo 2D-3D pairs together with the corre-
sponding latent codes. Since the pseudo pairs are generated
from a smooth latent space that learns to approximate a nat-
ural shape manifold, they serve as effective surrogate data
to train the encoder, avoiding potential shape collapse.
Local Features for High-Fidelity Inversion - The second
component learns to reconstruct accurate texture details.
Our novelty here is to leverage local features to enhance the
representation capacity, beyond just the global latent code
generated by the inversion encoder. Specifically, in addi-
tion to inferring an editable global latent code to represent
the overall shape of the face, we further devise an hour-glass
model to extract local features over the residuals details that
the global latent code fails to capture. The local features,
with proper projection to the 3D space, serve as conditions
to modulate the 2D image rendering. Through this effective
learning scheme, we marry the benefits of both global and
local priors and achieve high-fidelity reconstruction.
Synthesizing View-consistent Edited Output - The third
component addresses the problem of novel view synthesis,
a problem unique to 3D shape editing. Specifically, though
we achieve high-fidelity reconstruction through aforemen-
tioned designs, the local residual features may not fully
align with the scene when being semantically edited. More-
over, the occlusion issue further degrades the fusion perfor-
mance when rendering from novel views with large pose
variations. To this end, we propose a 2D-3D hybrid align-
ment module for high-quality editing. Specifically, a 2D
alignment module and a 3D projection scheme are intro-
duced to jointly align the local features with edited images
and inpaint occluded local features in novel view synthesis.

Extensive experiments show that our method achieves
3D GAN inversion with plausible shapes and high-fidelity
image reconstruction without affecting editability. Owing
to the self-supervised training strategy with delicate global-
local design, our approach performs well on real-world 2D
and 3D benchmarks without resorting to any real-world 3D
dataset for training. To summarize, our main contributions
are as follows:

• We propose an early attempt at learning an encoder-
based 3D GAN inversion framework for high-quality
shape and texture inversion. We show that, with care-
ful design, samples synthesized by a GAN could serve
as proxy data for self-supervised training in inversion.

• We present an effective framework that uses local fea-
tures to complement the global latent code for high-
fidelity inversion.

• We propose an effective approach to synthesize view-

consistent output through a 2D-3D hybrid alignment
module.

2. Related Work
3D-aware Image Synthesis. Generative Adversarial Net-
work [13] has shown promising results in generating pho-
torealistic images [6, 21, 22] and inspired researchers to
put efforts on 3D aware generation [15, 29, 32]. How-
ever, these methods use explicit shape representations,
i.e., voxels [15, 29] and meshes [32] as the intermediate
shape models, which lacks photorealism and is memory-
inefficient. Motivated by the recent success of neural ren-
dering [26, 27, 35], researchers shift to implicit function
along with the volume rendering process as the incorpo-
rated 3D inductive bias. Among them, NeRF [27] pro-
posed an implicit 3D representation for novel view synthe-
sis which defines a scene as {c, σ} = FΦ(x,v), where x
is the query point, v is the viewing direction from camera
origin to x, c is the emitted radiance (RGB value), σ is the
volume density. Researchers further extend NeRF to gener-
ation task [7, 42] and show impressive view-consistency on
the synthesized results. To increase the generation resolu-
tion, recent works [8,16,51] resort to voxel-based represen-
tations or adopting a hybrid design [8,14,30,31]. By lifting
the intermediate low-resolution 2D features to high resolu-
tion with a 2D super-resolution decoder, the hybrid design
achieves view-consistent synthesis at high resolution, e.g.,
10242. Beyond synthesizing realistic and diverse images,
previous works [4, 17, 18, 34, 52, 54] have shown that pre-
trained generators of GAN can be viewed as a compressed
and organized training dataset. Through careful design in
the sampling strategy [18], loss functions [34] and genera-
tion process [54], off-the-shelf image generators could fa-
cilitate a series of downstream visual applications.
2D GAN Inversion. To leverage the strong priors en-
coded in GANs, GAN inversion techniques on 2D GANs
are well developed. Optimization-based methods [1, 2]
could achieve photorealistic reconstruction at the cost of
slow inference and lack of editability. Encoder-based meth-
ods [9, 37, 44, 47, 55] have been developed to speed up
the inversion and show better properties in editing through
specific model design [37, 47] and training strategies [44].
pSp [37] proposed an encoder architecture designed for hu-
man faces, serving as the backbone for many approaches.
e4e [44] analyzed the trade-offs between editability and fi-
delity. However, they [1,2,37,44,55] all adopt global latent
code alone for GAN inversion task, thus failing to recover
high-fidelity details. Recently, HFGI [47] introduce an ex-
tra spatial consultation map to mitigate this issue, though
still designed to restore 2D textures without considering 3D
shape modeling. In this work, we propose a delicate de-
sign that exploits local features to recover texture details
and achieves view-consistent synthesis.
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Figure 1. StyleSDF. Given a sampled latent code w and a camera
pose ξ, StyleSDF generates object SDF d to depict the shape and
the corresponding face image I.

3. Preliminaries
Hybrid 3D-aware Generation. To achieve high-resolution
novel view synthesis, hybrid 3D-aware generator [8, 14, 30,
31] is proposed. It is a cascade model G = G0 ◦ G1 com-
posed of a NeRF-based renderer G0 [7] and a 2D super-
resolution networkG1, as shown in Fig. 1. BothG0 andG1

follow the style-based architecture [21,23] to accept a latent
code w to control the style of the generated object. During
generation, G0 captures the underlying geometry with the
full control of w and camera pose ξ, and renders a low res-
olution image I0 and an intermediate feature map F. Then,
G1 further upsamples F to obtain a high-resolution image I
with added high-frequency details.

Among them, StyleSDF [31] introduces signed distance
function (SDF) to serve as a proxy for the density function
σ(x) used for the volume rendering in NeRF. Specifically,
StyleSDF usesG0 to predict the distance d(x) = G0(w,x)
between the query point x and the shape surface, where
the density function σ(x) can be transformed from d(x)
for NeRF [27] to render. The incorporation of SDF leads
to higher-quality geometry in terms of expressiveness view-
consistency and clear definition of the surface. StyleSDF
also enjoys the flexible style control for semantic editing as
in StyleGAN [21]. Therefore, in this paper we mainly use
StyleSDF as the base model for GAN inversion study. Note
that our method is not limited to StyleSDF and could be
easily extended to other style-based 3D GAN variations.

4. E3DGE
An effective 3D GAN inversion shall be capable of 1)

reconstructing plausible 3D shape given single-view input,

2) maintaining high-fidelity texture, and 3) allowing view-
consistent semantic edits. To achieve these goals, we pro-
pose the E3DGE framework with three novel components:
In Sec. 4.1, we leverage 3D GAN to generate pseudo 2D-3D
paired samples for 3D supervisions, and train an inversion
encoder E0 to estimate the latent of plausible 3D shapes
from a 2D image; In Sec. 4.2, we train a local encoder E1

to extract pixel-aligned features to enrich texture details for
high-fidelity inversion; Finally, Sec. 4.3 introduces a hybrid
alignment module for view-consistent semantic editing.

4.1. Self-supervised Inversion Learning

In this section, we propose to mitigate the lack of large-
scale high-quality 2D-3D paired datasets by retrofitting pre-
trained 3D GANs to provide pseudo samples for training
our inversion encoder. We demonstrate the model trained
from pseudo samples can rival and even outperform the
methods learned from real data on the 3D GAN inversion
task. We detail the process as follows.
Global Encoder for 3D GAN Inversion. With the style-
basedG, we build our encoder E0 based on pSp [37] for in-
version. Given a target image I, E0 predicts its latent code
ŵ = E0(I). Given the corresponding camera pose ξ, the
reconstructed image is obtained by Ĩ = G(ŵ, ξ) to approx-
imate I. In addition, we would like its 3D shape predicted
by G0 to be plausible enough.
Distill 3D GANs as 3D Supervisions. Different compo-
sitions of shape and texture could lead to identical 2D-
rendered images. 3D supervision is needed to alleviate such
shape-texture ambiguity. In the lack of large-scale high-
quality 2D-3D paired samples, we formulate GAN Inver-
sion as a self-training task, where samples synthesized from
itself are leveraged to boost the reconstruction fidelity in
both 2D and 3D domains.

As shown in Fig 1, we synthesize paired 3D shape infor-
mation S and 2D image I from latent code w and camera
pose ξ using G to train E0. To extract the 3D shape infor-
mation S of each synthetic shape, we first sample a point set
P = {PO,PF} where PO and PF contain points sampled
from the surface and around the surface, respectively. Then,
we calculate the geometry descriptor di and ni for each 3D
point xi ∈ P , and S is defined as the set of geometry de-
scriptors of all 3D point in P:

S = {{di,ni}|P|
i=1 |

xi ∈ P, di = G0(w,xi),ni = ∇xidi},
(1)

where di is the distance from xi to the shape surface and ni

is the surface normal defined by the gradient of the distance
w.r.t. xi. Note our method is not limited to the SDF-based
shape representation and can be easily extended to radiance-
based methods [7, 8, 33]. Moreover, given different camera
poses, we can generate a diverse 2D-3D dataset to help al-
leviate the shape-texture ambiguity, i.e., for each shape S,



various images I = G(w, ξ) can be rendered by randomly
sampling ξ from a predefined pose distribution pξ. Finally,
we define X = {S, ξ, I} as a training sample for E0.
3D GAN-Supervised Training. As shown in Fig. 2 (a),
given a training sample X , the forward process is repre-
sented as:

ŵ = E0(I) (2)

{Ĩ, Ŝ} = G(ŵ, ξ,P) (3)

where ŵ is the estimated latent code and Ŝ =
{{d̂i, n̂i}|P|

i=1 | xi ∈ P} is the estimated 3D shape infor-
mation conditioned on w̃ and P .

To achieve 3D supervision, we would like the estimated
Ŝ to approximate the ground truth S. Specifically, for points
over the surface, their distances and normal are both consid-
ered while for points around the surface, we only supervise
their distance following [3, 35], leading to geometry loss:

LO
geo = EX

[
1

|PO|

|PO|∑

i=1

λg1 |d̂i|+ λg2‖n̂i − ni‖1
]

(4)

LF
geo = EX

[
1

|PF |

|PF |∑

i=1

λg3 |d̂i − di|
]

(5)

Lgeo = LO
geo + LF

geo, (6)

where λs are loss weights and di = 0 for points over the
surface. We also impose code reconstruction loss Lcode =
‖ŵ − w‖2 to regularize the learning and 2D supervisions
Lrec to minimize the reconstruction error between Ĩ and I
as in pSp [37]. The overall loss is L = Lgeo+Lcode+Lrec.

4.2. Local Features for High-Fidelity Inversion

To facilitate introductions in the following sections, we
first take a look at the details of StyleSDF. As shown in
Fig. 1, G0 can be further divided into four parts: a 8-layer
MLP encoder EG0 , a SDF decoder φg , a feature decoder
φf and a color decoder φc. EG0 extracts a global fea-
ture fG(x) = EG0(x,w). Based on fG, φg and φf com-
pute SDF d(x) = φg(fG(x)) and the last-layer feature
f(x,v) = φf (fG(x),v) of G0, respectively. f could be di-
rectly transformed to color c(x,v) = φc(f(x,v)) or being
volume integrated to F and sent to G1 for high resolution
synthesis. For simplicity, we will omit v in the following.
Local Feature for Detailed Textures. The global latent
code ŵ is a compact representation of the predicted scene.
However, previous works [9, 47] have validated that a low-
dimensional latent code discards high-frequency spatial de-
tails and fails to reconstruct high-fidelity outputs. This phe-
nomenon becomes more severe when lifting the 2D image
to a 3D scene, which contains exponentially more infor-
mation. Inspired by recent progress in few-shot 3D recon-
struction [3, 10, 39, 40, 46, 50, 53], we propose to make up
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Figure 3. Hybrid alignment for high-quality editing. Given
code prediction ŵ from encoder E0 pre-trained in stage-I, we aim
to generate high-quality view synthesis over the edited code ŵedit.
In (a), the local details ∆ along with the target edited image I′edit

and depth map ts(ŵ, ξ) are sent to pre-trained EADA to predict
aligned residual ∆′

edit. The original aligned residual ∆ along with
the 2D auxiliary residual ∆′

edit are processed by E1 to recover la-
tent maps FL and FADA for later fusion. In (b), the extracted fea-
tures fL(x) and fADA(x) are first fused together with a FiLM layer,
and the fused result f̂L(x) further serve as conditions to modu-
late the global feature fG(x). The final modulated feature f̂(x)
contains complete information, globally and locally. The volume
integrated F̂ is sent to G1 for high-resolution synthesis.

for the lost information by introducing pixel-aligned (local)
features. As shown in Fig. 2 (b), rather than conditioning all
3D points with the same latent code ŵ, we augment the rep-
resentation capacity with local latent codes fL that is depen-
dent on each point x. We introduce a local hourglass [28]



encoder E1 to predict a residual feature map FL based on
the reconstruction residue ∆ = I− Ĩ,

FL = E1(∆, ts(ŵ, ξ)), (7)

where ts(ŵ, ξ) is the depth map of the scene derived from
the SDF to serve as 3D context information. Then, the local
latent code of a point x is its corresponding value in FL:

fL(x) = FL(π(x))⊕ PE(x), (8)

where π maps the 3D point x to its corresponding pixel co-
ordinate on 2D feature map FL. Since in 3D scenes, points
along a ray will be projected to the same coordinate on the
2D plane, to differentiate these points, we additionally con-
catenate their positional encoding PE(x) [27] in Eq. (8). In
this way, the local feature fL only encodes the residual in-
formation at the projected position π(x) but is also capable
of determining where the residual information lies in the 3D
scene, as well as inpainting the occluded areas along the ray.

Finally, we fuse the local latent code fL(x) with the
global latent code fG(x) = EG0(x, ŵ) to supplement
the missing high-frequency details. Specifically, the fea-
ture fusion is based on Feature-wise Linear Modulation
(FiLM) [36]. As shown in Fig. 2, fL(x) is fed into two MLP
layers to obtain the scale and bias modulation parameters
fγL (x) and fβL (x). Then we modulate fG(x) with FiLM

f̂G(x) = FiLM(fG(x), fL(x)) = fγL (x) · fG(x) + fβL (x).

The fused f̂G(x) is volume integrated to F̂ and the fi-
nal high-fidelity reconstructed image can be obtained as
Î = G1(F̂).

Note that through point projection π, the reconstruction
with local prior is not limited to the original view, and natu-
rally works for novel views. However, for views with severe
occlusions or additional editing, the residual features may
not fully align with the scene, leading to a failed feature fu-
sion. We will address this issue in the next subsection with
our hybrid feature alignment.

4.3. Hybrid Alignment for High-Quality Editing

Though we achieve high-fidelity reconstruction with the
aforementioned designs, there is a trade-off between the in-
put view reconstruction quality and novel view editing per-
formance. We first analyze the reasons behind and propose
a hybrid alignment module to address this issue.
Reconstruction Editing Trade-off. Given an input image
I with paired reconstruction Ĩ and residual map ∆ extracted
from the input view ξ with the aforementioned method.
First, at test time when the input image is edited Ĩedit or
query view ξ′ 6= ξ, the residual map no longer aligns and is
likely to result in wrong predictions. Second, if we super-
vise the models to reconstruct the input itself, the learned

features are regressive rather than generative since all pre-
diction areas are visible in the inputs. With these two chal-
lenges, though the model could yield perfect reconstruction
at training, it would result in noticeable performance degra-
dation when rendering from novel views at test time.
Hybrid Alignment for High-Quality Editing. To ad-
dress the first challenge, we propose to infer aligned fea-
tures with a 2D-3D hybrid alignment. Specifically, given
edited latent code ŵedit, the initial novel-view edited im-
age Ĩ′edit = G0(ŵedit, ξ

′) is misaligned with ∆. Inspired
by HFGI [47], we leverage a 2D alignment module EADA
to address the misalignment. As shown in Fig. 3 (a), we
first obtain ∆edit = EADA(∆, G0(ŵedit, ξ)), transform it to
residual feature map Fedit

L via Eq. (7) and retrieve the view-
consistent 3D local feature fL via Eq. (8). However, to ren-
der the high-quality edited image Î′edit from novel view ξ′,
Fedit

L might still suffer from occlusion due to large pose vari-
ations. To the end, we propose a hybrid alignment to further
refine Fedit

L with 2D aligned feature from EADA. Specifi-
cally, we align a 2D residue ∆′

edit = EADA(∆, Ĩ′edit) and
retrieve its corresponding fADA with E1, which fills the oc-
clusion in a 2D manner but lacks 3D consistency. To marry
the best of both, as shown in in Fig 3 (b), we modulate fL
with fADA,

f̃L(x) = FiLM(fL(x), fADA(x)), (9)

and further fuse f̃L with fG(x) for final prediction,

f̂(x) = FiLM(fG(x), f̃L(x)), (10)

where f̂(x) is then integrated to F̂ for rendering the final
novel-view edited image Î′edit = G1(F̂).
Novel View Training for Coherent View Synthesis. To
address the second challenge and enforce the model to learn
generative features, during training, we sample two views
ξ1 and ξ2 for each style code w, and render the correspond-
ing images Iξ1 and Iξ2 . Then, we train the models to re-
construct plausible novel views, i.e., G(E(Iξ1), ξ2) ≈ Iξ2

and G(E(Iξ2), ξ1) ≈ Iξ1 . This training strategy facilitates
a high-quality view synthesis over edited scenes.

5. Experiments
Datasets. We mainly focus on the human face domain
and use both 2D and 3D datasets for extensive evaluation.
To examine 2D reconstruction quality, we adopt CelebA-
HQ [20, 24] dataset for source view reconstruction. To fur-
ther evaluate novel view reconstruction performance, we
synthesize 500 trajectory videos from a pretrained gener-
ator as a proxy test set. For attribute editing, we adopt In-
terfaceGAN [43] and Talk2Edit [19] to search for the edit-
ing directions. To evaluate 3D shape reconstruction quality,
we use NoW benchmark [41] that provides a rich variety of
face images with ground-truth 3D scans. The 3D GANs are



Table 1. Quantitative comparison for inversion quality on faces.

Source View Reconstruction Novel View Reconstruction

Method MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑
pSpStyleSDF .150 ± .032 .696 ± .048 .270 ± .059 .498 ± .099 .235 ± .010 .604 ± .011 .358 ± .048 .513 ± .041
e4eStyleSDF .174 ± .049 .669 ± .049 .226 ± .063 .252 ± .107 .237 ± .014 .597 ± .011 .341 ± .063 .271 ± .060
E3DGE .097 ± .008 .780 ± .016 .128 ± .017 .883 ± .017 .173 ± .008 .710 ± .010 .154 ± .016 .903 ± .021

pre-trained on FFHQ [21]. Note that our method does not
rely on any external 3D data during the training process.
Implementation Details. For all the encoder models, we
adopt Adam optimizer with a learning rate of 5e−5 to train
the models on 4 NVIDIA Tesla V100 GPUs, with a reso-
lution of 2562, batch size of 24, and 16 samples along a
ray for the recommended 200K iterations. Following [39],
we filter our invisible 3D points when training from a cer-
tain view. Code, dataset, and all pre-trained models will be
made publicly available. More details are included in the
supplementary material.

5.1. Evaluation

5.1.1 Quantitative Evaluation

Since existing baselines are trained on StyleGAN [22] and
could be directly applied, for comparison, we implement
two canonical encoder-based GAN inversion approaches on
StyleSDF [31], i.e., pSp [37] and e4e [44], which stress re-
construction and editing quality respectively.
2D Reconstruction. For 2D evaluation, we report inver-
sion performance for both source view reconstruction and
novel view reconstruction in Tab 1. For source view recon-
struction, the metrics are calculated on the 2, 825 images
from CelebA-HQ test set [24]. For novel view reconstruc-
tion, the metrics are averaged from 500 videos generated
from pre-trained 3D GANs, each with 250 frames covering
ellipsoid camera poses trajectory. For each video, we ran-
domly pick one image as source view input and the remain-
ing images as ground truths with labeled poses as query
views. In this way, we could extensively evaluate the view
synthesis ability under occlusions and varied input view-
points. Our approach substantially outperforms encoder-
based baselines in terms of reconstruction quality in both
source view and target view. We include the comparison
in the supplementary material and show that our method is
considerably faster than optimization-based methods during
inference.
3D Reconstruction. We report the 3D face reconstruc-
tion performance on NoW benchmark test set in Tab. 2.
Our method surpasses purely model-free method [48] and
shows competitive performance compared with methods
designed for 3D face reconstruction using basic models,
e.g., 3DMM [5] and FLAME [25]. Note that as discussed

Table 2. Performance of 3D face reconstruction on NoW [41].

Methods Prior Type Median↓ Mean↓ Std

3DMM-CNN [45] 3DMM 1.84 2.33 2.05
PRNet [12] 3DMM 1.50 1.98 1.88
RingNet [41] FLAME 1.21 1.54 1.31
3DDFA-V2 3DMM 1.23 1.57 1.39
DECA [11] FLAME 1.09 1.38 1.18

Wu et al. [48] Model Free 2.64 3.29 2.86

Ours 3D GAN 1.70 2.08 1.67

Input pSp e4e Ours

Figure 4. Qualitative comparisons on face inversions.

in Wu et al. [48], NoW benchmark is designed for model-
based reconstruction methods and inherently put model-free
approaches at a disadvantage. Therefore, our method could
serve as a reference for fair quantitative evaluation compar-
isons of future model-free methods.
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Figure 5. Qualitative comparisons on face inversion and editing under novel views.

5.1.2 Qualitative Evaluation

Reconstruction. We show reconstruction performance in
Fig. 4. Geometry-wise, the baseline models without explicit
3D supervisions tend to generate implausible intermediate
shapes, e.g., e4e predictions of rows (3, 6) and pSp predic-
tions of rows (2, 5). Besides, their reconstruction is not
close to the “ground truth”, and the reconstructed surface
lacks details. Our method successfully regularizes the in-
termediate 3D shapes and generates plausible results with
surface details and a more complete structure. For instance,
in rows 4 and 6, our method reconstructs 3D eyeglasses in
which the baselines fail. Corresponding metrics in Tab. 4
also validate the usefulness of the direct geometry super-
visions and loss designs. Texture-wise, existing methods
generate distorted results and suffer artifacts and identity
change. In contrast, with pixel-aligned features incorpo-
rated, our method is more robust with high-fidelity results.
In particular, our method captures more details and pre-
serves the identity of different input viewpoints. For ex-
ample, in row 1− 3, our method accurately reconstructs the
hair, and in row 5, the beard.
Editing. We include the editing results in Fig. 5 and choose
the “Smile” attribute for editing. Beyond plausible shape
reconstruction with high-fidelity texture inversion, in-view
synthesis over edited results, our method consistently gener-
ates high-quality edited renderings in terms of view consis-
tency, details conservation, and identity preservation. Com-
pared with our method, the baselines either fail to render
intact identity (column 5) or generate visually plausible
shapes (column 6).
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Figure 6. Ablation of Local Features. Our method with pixel-
aligned features shows photorealistic reconstructions..

5.2. Ablation Study

Effect of 3D GAN as Supervisions. We quantitatively val-
idate the effects of 3D supervision in NoW Challenge val-
idation set and report the corresponding metrics in Tab. 4.
For the results of fully synthetic dataset training (row 1),
compared with the baseline method with a similar network
(pSp), fully synthetic data training shows worse reconstruc-
tion metrics. We attribute this phenomenon to the domain
gap between synthesized images and real images. How-
ever, our method shows surprisingly better performance
over identity preservation in novel views (0.77 compared
with 0.513 of pSpStyleSDF and 0.271 of e4eStyleSDF, which we



Table 3. Ablations of Local Features and Hybrid Fusion. Our local-global model design with hybrid alignment achieves the balance of
high-quality reconstruction and view synthesis.

Source View Reconstruction Novel View Reconstruction

Ablation Settings MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑
Synthetic Training .245 ± .024 .634 ± .019 .333 ± .029 .369 ± .056 .241 ± .011 .594 ± .008 .366 ± .059 .770 ± .026
+Local Features .074 ± .007 .811 ± .015 .075 ± .010 .953 ± .006 .282 ± .103 .571 ± 0.056 .511 ± 0.031 .608 ± .123

+3D Alignment .102 ± .009 .772 ± .015 .119 ± .016 .818 ± .029 .133 ± .011 .709 ± .022 .130 ± .021 .901 ± .011
+2D Alignment .098 ± .005 .774 ± .038 .140 ± .040 .900 ± .032 .178 ± .007 .656 ± .009 .178 ± .012 .904 ± .018
Hybrid Alignment .097 ± .008 .780 ± .016 .128 ± .017 .883 ± .017 .131 ± .008 .710 ± .010 .154 ± .016 .903 ± .021

Table 4. Effect of 3D Supervisions.

Settings Median↓ Mean↓ Std

pSpStyleSDF 1.97 2.43 2.05
e4eStyleSDF 2.83 3.40 2.67

+LO
geo 1.75 2.11 1.72

+LF
geo 1.71 2.09 1.70

+Lcode 1.66 2.06 1.69

attribute to the well-aligned pose of synthetic corpus leads
to less distortion in view synthesis.
Effect of Local Features. As discussed before, the lo-
cal features preserve the missing image details to facilitate
high-fidelity reconstruction. To validate the effectiveness
of local features in texture reconstructions, we show the in-
version results in Fig. 6. With the proposed local-global
fusion pipeline, our model captures more details and guar-
antees photorealistic reconstruction. Quantitative results in
Tab. 3 also validate the effectiveness of local features in
high-quality inversion. The results on the video trajecto-
ries also show that without delicate design, e.g. novel-view
training, local features would fully collapse over novel view
synthesis.
Effect of Hybrid Alignment. We show the view synthe-
sis achieved by different alignment methods in Fig. 7. To
quantitatively analyze the effect of hybrid alignment, in
Tab. 3 we evaluate the model performance of 3D alignment
and 2D alignment individually. For both ablations, novel-
view training is enabled. As shown here, the 3D alignment
model shows better view consistency in video prediction
measured by reconstruction metrics, and the 2D alignment
model shows better identity preservation. The hybrid align-
ment model marries the best of both and also enables se-
mantic editing and yields better reconstruction performance
on the video predictions.

6. Conclusion and Discussions
We propose a novel 3D GAN inversion framework

E3DGE for 3D face reconstruction and editing. We marry
the benefits of both self-supervised global prior and pixel-

Input Raw 3D Align 3D Align 2D Align Hybrid Align

Figure 7. Ablation of Hybrid Alignment. From left to right,
we show the novel view synthesis of raw 3D-aligned features
w/wo novel-view training, synthesis achieved using 2D-aligned
features, and the final hybrid features. 3D-aligned features are
view-consistent but suffer from occlusions (circled), while 2D fea-
tures are visually plausible but lack some details (e.g., hair color).
Our hybrid fused results share the best of both.

aligned local prior for high-quality shape and texture re-
construction. A hybrid alignment that bridges the best of
2D and 3D features is further proposed for view-consistent
editing. Benefiting from the overall system design, the pro-
posed method has advantages in terms of both high fidelity
and editability. As a pioneer attempt in this direction, we
believe this work opens a new line of research direction and
will inspire future works on 3D GAN inversion, few-shot
3D reconstruction and 3D-aware learning from 2D images.
Limitations and Future Work. The proposed method suf-
fers data bias introduced by the synthetic data. As the syn-
thetic data lacks complex details and pose variations com-
pared with real-world data, our method trained with it tends
to generate simple background and fail on extreme poses.
Special attentions should be paid to data bias to avoid so-
cial impact to under represented minorities. A future di-
rection is to leverage real data for semi-supervised training.
Another future direction is to leverage the hyper-network
for efficient local feature incorporation to alleviate the extra
computational cost of the 2D alignment module. Finally,
we would explore the potentials of our framework on other
3D GANs and shapes beyond human face and other editing
methods uniquely designed for 3D GANs.
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Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion

Supplementary Material

A. Background
Since recent 3D-aware image generative models are

all based on neural implicit representations, especially
NeRF [12], here we briefly introduce the NeRF-based 3D
representation and more StyleSDF details for clarification.
NeRF-based 3D Representation. NeRF [12] proposed an
implicit 3D representation for novel view synthesis. Specif-
ically, NeRF defines a scene as {c, σ} = FΦ(x,v), where
x is the query point, v is the viewing direction from camera
origin to x, c is the emitted radiance (RGB value), σ is the
volume density. To query the RGB value C(r) of a point
on a ray r(t) = o+ tv shoot from the 3D coordinate origin
o, we have the volume rendering formulation,

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt, (1)

where T (t) = exp(−
∫ t
tn
σ(r(s))ds) is the accumulated

transmittance along the ray r from tn to t. tn and tf de-
note the near and far bounds.
More StyleSDF Details. In hybrid 3D generation [3,7,13],
the intermediate feature map is calculated by replacing
the color c with feature f from φf , namely F(r) =∫ tf
tn
T (t)σ(r(t))f(r(t),v)dt. In StyleSDF, the Sigmoid ac-

tivation function σ is replaced by σ(x) = Kα (d(x)) =
Sigmoid (−d(x)/α) /α, where α is a learned parameter
that controls the tightness of the density around the surface
boundary.
Notation Table. For clarity, we include the notations used
in the proposed method in Tab. 1.

B. Implementation Details
B.1. More Methods Details

Surface Point Sampling in Self-supervised Inversion
Learning. In Sec. 4.1 of the main paper, to extract the 3D
shape information S of each synthetic shape, we first sam-
ple a point set P = {PO,PF} where PO and PF contain
points sampled from the surface and around the surface, re-
spectively. To get points over the surface PO for training,
for efficiency, we directly reuse the intermediate results to
render I0 to calculate the surface. Specially, to sample point

set O we replace the color c as the coordinates x of points
along a ray in Eq. (1) and approximate the 3D coordinates
of surface, namely ts(w, ξ) =

∫ tf
tn
T (t,w)σ(r(t),w)t dt.

In this way, we get B ×H ×W surface points for training
in each iteration, where B stands for batch size and H ×W
stands for the resolution to render 3D consistent images,
e.g., 64 × 64. To sample point set F , we add Gaussian
offset to each of the calculated surface points O. Specifi-
cally, we adopt Gaussian distributionN (0, (r/4)2) where r
is the radius of the scene. In this way, points falling within
4 standard deviations would cover 95.44% of the whole
3D space. Following PIFu [19], we also uniformly sam-
ple 0.5 × B × H ×W points within the whole 3D space
defined. The overall quantity of the point set surface is
|F| = 1.5 × B × H × W . We find this sampling strat-
egy avoids overfitting and yields better performance.
Training Details of High-Fidelity Inversion With Local
Features. In Sec. 4.2 of the main paper, we train a local en-
coder E1 to extract pixel-aligned features to enrich texture
details for high-fidelity inversion. The network architecture
of E1 is identical to that of PIFu [19], which is a stacked
hourglass network with residual connections. The input
residual map resolution is 256×256, and the output 64×64
resolution feature map. fL ∈ R256 is bilinearly interpolated
from feature map FL at the projected position π(x). As
shown in Fig. 1, we implement the FiLM layer [14] with
two MLP residual blocks [28], which outputs α and β for
modulation, respectively. We use the identical learning rate
and optimizer to train E1.
Novel-View Training Details. For novel-view training for
coherent view synthesis in Sec. 4.3 of the main paper, in
each training iteration with batch size n, rather than sam-
pling n different latent codes {zi}ni=1, we halve the number
of identical latent codes {zi}n/2i=1 while double the rendered
images for each latent code {Iξ1

i , I
ξ2

i }
n/2
i=1 where n is even.

Thus, we train the models to reconstruct plausible novel
views, i.e., G(E(Iξ1

i ), ξ2) ≈ Iξ2

i and G(E(Iξ2

i ), ξ1) ≈ Iξ1

i .
Since the paired-sampled images could serve as both in-
puts and ground truths, the effective batch size and train-
ing cost maintains the same. To train 2D alignment model
EADA, we further regularize the predicted residual map
∆̂ξ1 ≈ Iξ1 − Iξ1

0 with L1 loss, where Iξ1

0 is correspond-
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ing renderer output low-resolution image and λ1 = 0.1.
Note that we finetune pre-trained EADA from HFGI [24]
with novel-view training and no edited images are involved
in the training time.
Curriculum Pose Sampling. At the beginning of the train-
ing of the hybrid alignment in Sec. 4.3 of the main paper,
large view changes will make the prediction of residual fea-
tures and the inpainting of occlusion regions extremely dif-
ficult. As a result, our model is prone to blurry results. We
attribute the reason to the ill-posed nature of rendering novel
views given partial observations since the inpainted image
is not unique. To facilitate novel-view training, we design
a curriculum learning strategy [6] based on pose sampling
difficulty. Implementation wise, given the camera pose dis-
tribution ξ ∼ pξ with mean µ and standard variance σ, we
fix the µ and scale the σ with a weight α which is initially
set to 0 and gradually increases to 1 as the training goes.
Intuitively, when α = 0 the source view ξ is identical to
the query view ξ′, the training degrades to a regression task
where the model shall reconstruct all the texture details to
minimize the loss. As the variance α ·σ increases, the train-
ing becomes a conditional generation task to inpaint plausi-
ble and photo-realistic areas.

B.2. More Experiments Details

Training Details. In this work, we directly use the offi-
cially released pre-trained GAN models from StyleSDF. In
self-supervised shape inversion learning (Sec. 4.1), due to
GPU memory restriction, we sample 4 shapes per GPU each
iteration for training. After E0 converged, we fix the net-
work weights and only train the E1 for high-fidelity inver-
sion. We train each stage for 50, 000 iterations, which costs
2 days on 4 Tesla V100 GPUs.
Network Architecture Details. ForE0, a modified version
of the pSp encoder [17] is deployed here for a fair compari-
son with existing work. Since G0 and G1 of StyleSDF have
9 and 10 latent codes, respectively, we introduce 9 + 10
extra prediction heads to the pSp for the latent code predic-
tion. We observe that early layers of G0 control the geome-
try of generated samples, and later G0 layers as well as de-
coder generator G1 control the texture and high-frequency
details. Thus, we adopt the early pSp feature map of res-
olution 32 × 32 to predict latent code of G0 for geometry
control, and pSp feature map of resolution 64 × 64 to pre-
dict latent code ofG0 for texture control. We use the highest
resolution feature map of pSp with resolution 128× 128 to
predict the latent code for G1. We show our FiLM layer
implementation in Fig. 1, where the input features are mod-
ulated by the input conditions with predicted γ, and β. The
MLP is implemented with the MLP residual block [28].
Editing. For attribute editing, following previous works,
we adopt vector-arithmetic [16] based editing. Specifically,
a searched latent code vector paired with a certain attribute

⊙
𝜷𝜸

+
features

FiLM layerconditions

M
LP

M
LP

Figure 1. FiLM Layer Architecture.

is weighted and added to the predicted code ŵ. To search
for the meaningful editing directions on the 3D GAN used,
we first sample 10, 000 images with paired latent codes
from StyleSDF, and then apply the face attribute predictor
from Talk-to-Edit [8] to predict the corresponding attributes
score. Based on the prediction, we apply SVM classifier
from InterfaceGAN [22] to search for the decision bound-
ary. As in previous works [17,23], we search for the editing
latent code in theW space.
3D Face Reconstruction Evaluation Details. We evaluate
the reconstructed 3D meshes and compare them with the
performance of several model-based reconstruction meth-
ods on NoW benchmark [20]. NoW benchmark [20], pro-
vides a test set of 1, 702 images of 80 subjects and a ground-
truth 3D scan per subject. These images are captured with
a higher variety in facial expression, occlusion, and lighting
and shall validate the generality of single-view reconstruc-
tion methods under real-world conditions.

To extract meshes for evaluation, we detect faces and
crop the images using RetinaFace [21] implemented by [25]
and obtain 3D mesh reconstructions from the depth maps
predicted by our method trained on FFHQ pre-trained gen-
erator. We then use the evaluation protocol provided by
the benchmark, which aligns the predicted meshes with the
ground-truth meshes with a rigid transformation based on
seven pre-defined keypoints and computes the scan-to-mesh
distances. We obtain keypoints on our predicted meshes by
applying a facial keypoint detector [26] on the reconstructed
canonical images. Following Unsup3D [27], the average
keypoints are used when the keypoint detector fails.
Video Trajectory Evaluation Details. We sample 500
trajectory videos with pre-trained FFHQ StyleSDF gener-
ator with an ellipsoid trajectory of size 250 from official
StyleSDF code, making a dataset of size 12, 5000. The eval-
uation code and dataset will be released.

B.3. Losses

Reconstruction Loss. We briefly introduce the supervi-
sions we adopt in image reconstructions in both training
stages. First, we utilize the pixel-wise L2 loss,

L2 (I) = ||I− Î||2. (2)

In addition, to learn perceptual similarities, we use the
LPIPS [29] loss, which has been shown to better preserve



image quality compared to the more standard perceptual
loss:

LLPIPS (I) = ||F (I)− F (Î)||2, (3)

where F (·) denotes the perceptual feature extractor.
Finally, a common challenge when handling the specific

task of encoding facial images is the preservation of the
input identity. To tackle this, we incorporate a dedicated
recognition loss measuring the cosine similarity between
the output image and its source,

LSimilarity (I) = 1− 〈R(I), R(Eg(I))〉 , (4)

where R is the pretrained ArcFace [4] network.
In summary, the total loss function is defined as

Lrec(I) = λ1L2(I) + λ2LLPIPS(I) + λ3LSimilarity(I),

where we set λ1 = 1, λ2 = 0.8, λ3 = 0.1 as the defined
loss weights. In E0 training, we supervise images Î0, Î1
of both resolutions. In E1 training, we only supervise the
reconstruction of high-resolution images since the network
weights to render Î0 is fixed. Here, we also impose the
non-saturating adversarial loss with R1 regularization [11]
to improve the naturalness of reconstructed images, which
is defined as:

Ladv = −E[log(D(Î))], (5)

LD = E[log(D(Î))] + E[log(1−D(I))], (6)

LR1 = λ‖∇D(Î; θD)‖2, (7)

where D is initialized with the pre-trained discriminator
paired with the generator and θD is the corresponding pa-
rameters to optimize. In summary, the overall loss is the
weighted summation of of the loss functions described
above:

L = Lgeo + Lrec + λadvLadv + λDLD + λR1LR1, (8)

where we set λD = λadv = 0.01 and λR1 = 10 in the
experiments.

C. More Results
Comparisons with Optimization-based Methods. We in-
clude the comparisons with two canonical optimization-
based methods here, namely SG2 [1, 9] which is initially
proposed in StyleGAN [9] paper to project input image to
theW space of the paired generator, and PTI [18] which fur-
ther finetune the generator weights to achieve high-fidelity
inversion. We implement SG2 and PTI following the of-
ficial implementations and tune the corresponding param-
eters for StyleSDF generator. For SG2, we optimize 450
steps with learning rate 5e − 3, and for the pivotal tuning
stage, we optimize 100 steps with learning rate 5e− 5. We
will release all inversion-related code upon acceptance.

We show the qualitative comparison in Fig. 2. As can
be seen, SG2 could not reconstruct high-fidelity texture de-
tails but maintains a plausible intermediate shape inversion,
due to the strong regularization of W space. Though PTI
could achieve photorealistic reconstruction, it still could not
alleviate the shape-texture ambiguity, leaving the inverted
shape distorted.

We also include the quantitative comparisons in Tab. 2.
Specifically, for 2D inversion metrics, we inverse each im-
age in the test set (2, 780 CelebA-HQ images) with SG2
and PTI and calculate the reconstruction metrics as well
as the inference time. For 3D inversion metrics, we adopt
the NoW challenge validation set and reconstruct the cor-
responding depth mesh for 352 identities. As can be seen,
SG2 cannot achieve high-fidelity reconstruction, and PTI
could yield high-quality reconstruction at the cost of infer-
ence time and shape quality. Our proposed method achieves
a balance of both and holds the merit of speedy inference,
with only 0.19 seconds needed to render an image from a
novel view.
More Comparisons with Encoder-based Methods. Here,
we include more comparisons with encoder-based methods
in Fig. 3. Our method achieves consistently better perfor-
mance compared to the baselines in terms of reconstruction
fidelity and editing visual quality.
More Editing Results. We show more editing results on
changing 4 semantic attributes of our proposed method,
namely smile (Fig. 4), hair/beard (Fig. 5), age (Fig. 6)
and bangs (Fig. 7). Our method shows promising per-
formance with shape-texture consistent editing. Note that
since StyleSDF is still built on an MLP-based generator [2]
and InterfaceGAN [22] is also not designed for 3D GANs,
the editing performance is hindered to some extent and can-
not achieve comparable performance compared with 2D
StyleGAN. However, we believe this limitation could be al-
leviated in the future by adopting better-designed 3D GAN
architecture, e.g., tri-plane [3] and vision transformer [5].
Our results unleash the potential of this field and show that
3D consistency and high-fidelity reconstruction with high-
quality editing are also achievable in recently developed 3D
GAN. We hope our method could inspire later work in this
field.
More Toonify Results. We show 3D toonify-stylized re-
sults over real-world faces using our proposed method in
Fig. 8. Following [15], we finetune the pre-trained genera-
tor G for 400 iterations with 317 cartoon face images and
use our pre-trained encoder E for inference. Visually in-
spected, the toonified results holds the cartoon style and also
preserve identity of the input image, which demonstrates the
potential of applying our method over downstream tasks.



Table 1. Notations used in the proposed method.

Notation Meaning

∗̂ Final predictions
∗̃ Intermediate results
∗′ Abbreviation of target view camera pose
G Generator
G0 Renderer Generator
G1 SR Generator
D Discriminator
E Encoder
E0 Encoder to predict global latent code
E1 Hourglass encoder to predict pixel-aligned local features.
EADA ADA (Adaptive Distortion Alignment) module
W W space for style-based GAN
w Latent code sampled from W space
I Input image
I0 Rendered image from renderer generator
Iedit Edited image
ŵ Predicted latent code from E0

λ Loss weights
x 3D point
P Point set
PO Point set sampled from object surface
PF Point set sampled near the surface or uniformly in the defined 3D space.
d Signed distance function
n Normal for a point
φg MLP to predict geometry
φf MLP to predict view-dependent feature
φc MLP to predict color
v View direction
X A synthetic data sample for training
ξ Source view camera pose
ξ′ Target view camera pose
∆ Residual of predicted image and input image
∆edit Residual paired with an edited image
∆′

edit Residual paired with an edited image rendered from target camera pose.
π(x) Projection of 3D point x to source view
⊕ Concatenation
PE Positional Encoding
β, γ Modulation signals for FiLM
ts(w, ξ) Depth map for code w rendered from pose ξ
F Feature map
FL Local feature map output from E1

F̂ Modulated feature map for final prediction
FADA Local feature map output from E1 with EADA aligned residual
fG Global feature output from the generator.
fL Local feature interpolated from FL
fADA Aligned feature interpolated from FL

f̂L Predicted local feature for final prediction



Table 2. Quantitative comparisons with optimization-based methods on faces.

CelebA-HQ [10] NoW Challenge [20] Validation Set Inference Time

Method MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ Median↓ Mean↓ Std Second (s) ↓
SG2 [9] .202 ± .063 .650 ± .054 .167 ± .046 .219 ± .106 1.89 2.23 1.82 235s
PTI [18] .062 ± .012 .796 ± .017 .027 ± .005 .892 ± .009 2.86 3.54 3.01 265s

E3DGE .097 ± .008 .780 ± .016 .128 ± .017 .883 ± .017 1.66 2.06 1.69 0.19s (Texture) / 0.81s (Shape)

+ 
Sm

ile
+ 

A
ge

SG2 (Rec) PTI (Rec) Ours (Rec)Input PTI (Edit)SG2 (Edit) Ours (Edit)

Figure 2. Visual comparisons on optimization-based methods. ’Rec’ and ’Edit’ represent reconstruction and editing, respectively.
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Figure 3. Visual comparisons on encoder-based methods. ’Rec’ and ’Edit’ represent reconstruction and editing, respectively.



Ours (Rec)Input + Smile

Figure 4. Visual comparisons on face editing (Smile).



Ours (Rec)Input + Beard / Hair

Figure 5. Visual comparisons on face editing (Beard / Hair).



Ours (Rec)Input + Age

Figure 6. Visual comparisons on face editing (Age).



Ours (Rec)Input + Bangs

Figure 7. Visual comparisons on face editing (Bangs).



Input Toonify (+ Yaw Angle)

Figure 8. Toonify results on faces.
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