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Jingxiang Sun' Xuan Wang? Lizhen Wang! Xiaoyu Li® Yong Zhang?
Hongwen Zhang! Yebin Liu!
!Tsinghua University 2Ant Group 3Tencent Al Lab

Gaze Animation

3D-Aware Domain Adaptation

Figure 1. Our 3D GAN synthesizes generative, high-quality, and 3D-consistent facial avatars from unstructured 2D images. Unlike current
animatable 3D GANSs that only modify yaw-pitch head poses and facial expressions, our approach enables fine-grained control over full-
head rotations, facial expressions, eye blinks, and gaze directions with strict 3D consistency and a high level of photorealism. Our approach
also provides strong 3D priors for downstream tasks such as 3D-aware stylization.

Abstract

3D-aware generative adversarial networks (GANs) syn-
thesize high-fidelity and multi-view-consistent facial images
using only collections of single-view 2D imagery. Towards
fine-grained control over facial attributes, recent efforts in-
corporate 3D Morphable Face Model (3DMM) to describe
deformation in generative radiance fields either explicitly
or implicitly. Explicit methods provide fine-grained expres-
sion control but cannot handle topological changes caused
by hair and accessories, while implicit ones can model var-
ied topologies but have limited generalization caused by the
unconstrained deformation fields. We propose a novel 3D
GAN framework for unsupervised learning of generative,
high-quality and 3D-consistent facial avatars from unstruc-
tured 2D images. To achieve both deformation accuracy
and topological flexibility, we propose a 3D representation
called Generative Texture-Rasterized Tri-planes. The pro-
posed representation learns Generative Neural Textures on
top of parametric mesh templates and then projects them

into three orthogonal-viewed feature planes through raster-
ization, forming a tri-plane feature representation for vol-
ume rendering. In this way, we combine both fine-grained
expression control of mesh-guided explicit deformation and
the flexibility of implicit volumetric representation. We fur-
ther propose specific modules for modeling mouth interior
which is not taken into account by 3DMM. Our method
demonstrates state-of-the-art 3D-aware synthesis quality
and animation ability through extensive experiments. Fur-
thermore, serving as 3D prior, our animatable 3D repre-
sentation boosts multiple applications including one-shot
facial avatars and 3D-aware stylization.

1. Introduction

Animatable portrait synthesis is essential for movie post-
production, visual effects, augmented reality (AR), and vir-
tual reality (VR) telepresence applications. Efficient ani-
matable portrait generators should be capable of synthesiz-



ing diverse high-fidelity portraits with full control of the
rigid head pose, facial expressions and gaze directions at
a fine-grained level. The main challenges of this task lie
in how to model accurate deformation and preserve iden-
tity through animation in the generative setting, i.e. training
with only unstructured corpus of 2D images.

Several 2D generative models perform image anima-
tion by incorporating the 3D Morphable Face Models
(3DMM) [4] into the portrait synthesis [13, 16, 35,52, 62,

,70,73]. These 2D-based methods achieve photorealism
but suffer from shape distortion during large motion due to
a lack of geometry constraints. Towards better view con-
sistency, many recent efforts incorporate 3DMM with 3D
GAN:Ss, learning to synthesize animatable and 3D consis-
tent portraits from only 2D image collections in an unsu-
pervised manner [3, 30, 39,44,60, 61,68, 74]. Bergman et
al. [3] propose an explicit surface-driven deformation field
for warping radiance fields. While modeling accurate facial
deformation, it cannot handle topological changes caused
by non-facial components, e.g. hair, glasses, and other
accessories. AnifaceGAN [68] builds an implicit 3DMM-
conditioned deformation field and constrains animation ac-
curacy by imitation learning. It achieves smooth animation
on interpolated expressions, however, struggles to generate
reasonable extrapolation due to the under-constrained de-
formation field. Therefore, The key challenge of this task is
modeling deformation in the 3D generative setting for ani-
mation accuracy and topological flexibility.

In this paper, we propose a novel 3D GAN framework
for unsupervised learning of generative, high-quality, and
3D-consistent facial avatars from unstructured 2D images.
Our model splits the whole head into dynamic and static
parts, and models them respectively. For dynamic parts, the
key insight is to combine both fine-grained expression con-
trol of mesh-guided explicit deformation and flexibility of
implicit volumetric representation. To this end, we propose
a novel representation, Generative Texture-Rasterized Tri-
planes, which learns the facial deformation through Gen-
erative Neural Textures on top of a parametric template
mesh and samples them into three orthogonal-viewed and
axis-aligned feature planes through standard rasterization,
forming a tri-plane feature representation. Such texture-
rasterized tri-planes re-form high-dimensional dynamic sur-
face features in a volumetric representation for efficient vol-
ume rendering and thus inherit both the accurate control of
the mesh-driven deformation and the expressiveness of vol-
umetric representations. Furthermore, we represent static
components (body, hair, background, etc.) by another tri-
plane branch, and integrate both through alpha blending.

Another key insight of our method is to model the mouth
interior which is not taken into account by 3DMM. Mouth
interior is crucial for animation quality but often ignored
by prior arts. We propose an efficient teeth synthesis mod-

ule, formed as a style-modulated UNet, to complete the in-

ner mouth features missed by the template mesh. To fur-

ther regularize the deformation accuracy, we introduce a

deformation-aware discriminator which takes as input syn-

thetic renderings, encouraging the alignment of the final

outputs with the 2D projection of the expected deformation.
To summarize, the contributions of our approach are:

* We present an animatable 3D-aware GAN framework
for photorealistic portrait synthesis with fine-grained
animation, including expressions, eye blinks, gaze di-
rection and full head poses.

* We propose Generative Texture-Rasterized Triplanes,
an efficient deformable 3D representation that inherits
both fine-grained expression control of mesh-guided
explicit deformation and flexibility of implicit volu-
metric representation. To our knowledge, we are the
first method to incorporate Neural Textures into ani-
matable 3D-aware synthesis.

e Our learned generative animatable 3D representation
can serve as a strong 3D prior and boost the down-
stream application of 3D-aware one-shot facial avatars.
Our model also pushes the frontier of 3D stylization
with high-quality out-of-domain facial avatars.

2. Related Work

Generative 3D-aware Image Synthesis. Generative adver-
sarial networks [24] have achieved photorealistic synthesis
in 2D domain. Building on the success of 2D GANs, many
efforts have lifted the image synthesis into 3D with explicit
view control. Early voxel-based approaches [19,28,41,42,
,82] adopt the 3D CNN generators whose heavy compu-
tational burden limits the high-resolution image synthesis.
Recent works incorporate more efficient neural scene rep-
resentations, such as fully implicit networks [6, 8—10, 14,
,54,57,81], sparse voxel grids [55], multiple planes [79]
or a combination of low-resolution feature volume and 2D
super-resolution [7,27,43,46,71,72,76,78]. We leverage
the tri-plane representation proposed in [7] and endow it
with animation ability by the orthogonal-rasterized Gener-
ative Neural Textures.
Some other current works [3,30,36,44,58,59,61,68,77,
] focus on the editability of 3D-aware generative models.
FENeRF [59] and IDE-3D [58] perform semantic-guided
3D face editing by incorporating semantic-aware radiance
fields and GAN inversion. However, they cannot produce
continuous and stable editing on videos. Other methods [3,
,44,61,68] employ 3D priors to achieve animatable image
synthesis and the main differences lie on the deformation
strategies including linear blend skinning [30, 44], surface-
driven deformation [3], 3DMM-guided latent decomposi-
tion [61] and neural deformation fields [68]. These ap-
proaches either don’t allow for topology changes or need
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Figure 2. Our 3D GAN framework consists of two tri-plane branches 7%, and Tstqtic modeling dynamic and static components. 7,
is formed by the orthogonal rasterized Generative Neural Textures which are synthesized by a StyleGAN generator, Gtezture, ON top
of deformable template mesh. Tstqtic is synthesized by another StyleGAN generator, Gstqtic. The mouth synthesis module, Gieeth, is
presented for completing mouth interior. Blended triplanes are incorporated with hybrid neural renderer consisting of volume rendering
and a super-resolution module Gsyperres.. For discrimination, synthetic renderings Isynthetic is taken into the dual discriminator Dgya;.

elaborate loss design to ensure the accuracy of deformation.
On the contrary, our approach naturally achieves accurate
animation with explicit mesh guidance and further allow
for topology changes by adapting surface deformation into
a continuous volumetric representation.

Facial animation with 3D morphable face models. Blanz
et al. [4] model facial texture and shape as vector spaces,
known as the 3D Morphable Model (3DMM). Extensions
of 3DMM, such as full-head PCA models [12, 51], blend-
shape models [38], are extensively studied and widely used
in facial animation tasks [23, 65]. Benefiting from 3DMM,
these methods can model the deformation of facial parts ac-
curately and continuously, nevertheless, struggle to repre-
sent non-facial areas missed by 3DMM, e.g. hair, teeth,
eyes, and body. Moreover, these methods are prone to lack-
ing facial details. To fill the missing areas and complete
more realistic facial details, later works [13, 16, 18,22, 35,
52,62,64,70] apply learned approaches on top of 3DMM
renderings. DiscoFaceGAN [13] maps 3DMM parame-
ters into the latent space and decouple them by imitative-
contrastive learning. Though efficient and photorealistic an-
imation is achieved, these 2D methods don’t model 3D ge-
ometry and thus cannot remain strict 3D consistency with
large head pose changes. For strict 3D consistency, recent
efforts [1,20,25,75,80] incorporate 3DMM into volumetric
representations [31,32,40,49,56] to achieve view-consistent
facial animation. Furthermore, volumetric representations
enable the modeling of thin structures such as hair, and
also mouth interior thanks to its spatial continuity. While
3DMM have been adopted to animate radiance fields for
single-scene scenarios, it is challenging to adapt to the gen-
erative setting with the absence of groundtruth supervision.

Neural scene representations. The neural scene represen-

tations can be roughly categorized into implicit and explicit
surface representations and volumetric representations [63].
The surface can be represented explicitly by point clouds
[37,50], meshes [2, 5, 45, 64], or defined implicitly as a
zero level-set of a function [11,48,69], like signed distance
function, which can be approximated by coordinate-based
multi-layer perceptrons (MLPs). On the contrary, volumet-
ric representations [32, 40, 49, 56] store volumetric prop-
erties (occupancies, radiance, colors, etc.) instead of the
surface of an object. These properties can be stored in ex-
plicit voxel grids [32,49,56] or the weights of a neural net-
work implicitly [40]. In this work, we propose a hybrid
surface—volumetric representation. Specifically, we learn
the deformable surface radiance by neural textures [26, 64]
on top of the template mesh and rasterize it into three
orthogonal-viewed feature planes. Then, the planes are re-
shaped to a tri-plane representation with decoding into neu-
ral radiance fields for volume rendering.

3. Approach

We present an animatable 3D-aware facial generator that
equips with fine-grained expression and pose control, pho-
torealistic rendering quality, and high-quality underlying
geometry. The proposed method models dynamic and static
components by two independent tri-plane branches. Specif-
ically, we propose Generative Texture-rasterized Tri-planes
for modeling dynamic facial parts (Sec. 3.1). Furthermore,
we propose an efficient mouth synthesis module to com-
plete the mouth interior that is not included in 3DMM
(Sec. 3.2). We further adopt another tri-plane branch for the
static components (Sec. 3.3). Both tri-planes are blended to-
gether for hybrid neural rendering (Sec. 3.4). We introduce
an deformation-aware discriminator (Sec. 3.5) and illustrate



the training objectives in Sec. 3.6.

3.1. Generative texture-rasterized tri-planes

EG3D [7] presents an efficient tri-plane-based hybrid
3D representation to synthesize high-resolution images with
multi-view consistency. Nonetheless, EG3D lacks control
over facial deformations and thus cannot be directly applied
to animation tasks. To this end, we leverage Neural tex-
tures [64] to represent deformable facial parts. In general,
Neural Textures are a set of learned high-dimensional fea-
ture maps that can be interpreted by a neural renderer. We
extend it to our generative setting and synthesize the neural
textures through a StyleGAN2 CNN generator Gegtyre- AS
shown in Fig. 2, we first sample a latent code z and map it
into an intermediate latent space by the mapping network.
Our texture generator architecture closely follows Style-
GAN?2 backbone [34], except producing a 256 x 256 x 32
neural texture map, 7', instead of a three-channel RGB
image. Storing a high-dimensional learned feature vector
per texel, T' can be rasterized to a view-dependent screen-
space feature map given a mesh with uv-texture parame-
terization and a target view as input. In our case, we use
the FLAME template [38] to provide a coarse mesh that
can be driven by deformation parameters. Given the pre-
designed texture mapping function, we employ the stan-
dard graphics pipeline to rasterize the neural textures from
the texture space into the screen space based on the tem-
plate mesh. We choose Neural Textures as the deforma-
tion method for two reasons. First, compared with other ex-
plicit deformation (e.g. linear blend skinning and surface-
driven deformation) highly dependent on the accurate un-
derlying geometry, Neural Textures embed high-level fea-
tures which compensate the imperfect geometry and thus
are more suitable for our settings where template meshes
are not accurate. Furthermore, unlike implicit deformation
methods [13,61,68], our explicit mesh-guided deformation
alleviates the requirement of elaborate imitation learning
while gain better expression generalization (Fig. 4).

Neural Textures encode surface deformation accurately
with mesh guidance but lack generalization to 3D points far
from surface. Besides, it also doesn’t allow for topologi-
cal changes. To this end, we propose Generative Texture-
Rasterized Tri-planes, T}, which reshapes the rasterized
textures into a tri-plane representation. Therefore, we can
adapt such surface deformation into a continuous volume.
Specifically, we rasterize neural textures based on the tem-
plate mesh into three orthogonal views and place them in
three axis-aligned feature planes. In practice, considering
the zygomorphy, the rasterization is applied at both the left
and right views and the rasterized features are concatenated
for one single plane by summation. In this way, Our hybrid
surface-volumetric representation inherits the best of both
worlds: accurate mesh-guided facial deformation of Neu-

ral Textures and the continuity and topological flexibility of
volumetric representations. See Fig. 5 for the topological-
aware animation of portraits with glasses.

3.2. Mouth synthesis module
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Figure 3. The teeth synthesis module consists of a teeth complet-
ing module and a neural blending module. The teeth competing
module produces mouth interior conditioned on multi-scale teeth
exterior features and latent codes w.

Since the FLAME template doesn’t contain inner mouth,
we propose a teeth synthesis module, Gieetn, to complete
the missing teeth features in 7%,,,. As shown in Fig. 3, for
each feature plane of T,,, we crop the teeth area by the
expanded landmarks and resize it into 64 x 64. Then, the
stacked mouth features are processed by G'eetr, Which em-
ploys a style-modulated UNet [66]. The downsampling pro-
cess of Gieern, €ncodes fieerp into multi-scale feature maps
which serve as content conditions for the following Style-
GAN layers. The output teeth features f;eeth are trans-
formed inversely and concatenated with the feature planes
of Ty,,. To eliminate the texture flickering of mouth bound-
ary, we further feed 7, into a shallow-UNet-based neural
blending module and obtain T;w. We conduct a series of
ablation studies and prove that the proposed teeth synthe-
sis module brings a remarkable improvement on both the
animation accuracy and synthesis quality (Sec. 4.2).

3.3. Modeling static components

The generative texture-rasterized tri-planes manage to
model dynamic faces varying expressions and shapes,
though, it is challenging to synthesize static parts like di-
verse haircut, background and upper body which are not in-
cluded in the FLAME template. To this end, we model these
parts by another tri-plane branch, T4, Which is gener-
ated by a StyleGAN2 CNN generator G gq¢ic sharing the
same latent code with Geptyre. The plane features of T;w
and T’s;q¢;c are blended on each plane by the alpha masks
rendered by rasterization. Such design not only benefits the
modeling of various-styled static components but also en-
forces their consistency during facial animations.



3.4. Neural rendering

Given the blended tri-planes, for any point in the 3D
space, we project it into each plane and sample the features
bi-linearly. Then, the sampled features are aggregated by
summation and decoded into volume density o and feature
f by alightweight decoder. Similar to [7,58], the decoder is
a single hidden layered multi-layer perceptron (MLP) with
softplus activation. The volume rendering is employed to
accumulate o and f along the rays cast through each pixel
to compute a 2D feature image I¢. Similar to [7,27,46], we
leverage a 2D super-resolution module Gyperres. to inter-
pret the feature image into RGB image Irgp with higher
resolution. The super-resolution module consists of three
StyleGAN?2 synthesis blocks and the noise input is removed
for alleviating texture flickers. In our case, Iy and Irgp are
set to 64 x 64 and 512 x 512, respectively.

3.5. Deformation-aware discriminator

To learn the unsupervised 3D representations, we adopt
a 2D convolutional discriminator D to critique the render-
ings. Inspired by [7], we regularize the first three channels
of Iy as low-resolution RGB image, which is concatenated
with Ircp as the input for the discriminator. However, the
discrimination with only image input can only ensure that
the deformed images are always in a correct distribution in-
stead of matching the expected deformations. Therefore, we
make the discriminator aware of the expression and shape
under which the generated image are deformed. For the
same purpose, GNARF [3] conditions the discriminator on
the FLAME parameters by concatenating them as the in-
put to the mapping network. However, we find empirically
that such a conditioning method leads to training instabil-
ity, consistent with [3]. Instead, we re-render the template
mesh under the rendered pose to get the synthetic rendering
Isynthetic and feed it into Dg,q; along with image pairs.
Here, we adopt correspondence images inspired by [35].
Such concatenation encourages the final output to align with
the synthetic rendering and learn the expected deformation.

3.6. Training objectives

During training, we use the non-saturating GAN loss
with R1 regularization. Moreover, we adopt the density
regularization proposed in EG3D [7]. Therefore, the total
learning objective is:
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where I" is the combination of real images, blurred real
images, and the corresponding synthetic renderings, which
are sampled from the training set with distribution pj.
We adopt many training hyperparameters from EG3D and
StyleGAN2 (learning rates of generator and discriminator,
batch size, R1 regularization, etc.). We train our model
based on the pretrained model of EG3D [7] and continue
to train on 4 3090 GPUs for roughly 4 days. Please refer to
the supplemental material for the implementation details.

4. Experiments

In this section, we first show qualitative and quantitative

comparisons to state-of-the-art 2D / 3D animatable genera-
tive facial models (Sec. 4.1), and then discuss the conducted
ablation studies of our design choices (Sec. 4.2). Further-
more, we show various applications combining our efficient
3D representation with GAN technologies such as GAN in-
version and style transfer (Sec. 4.3).
Datasets. We train and test our methods on FFHQ [33].
We augment FFHQ with horizontal flips and use an off-the-
shelf pose estimator [15] to label images with the approxi-
mated camera extrinsic parameters and constant intrinsics.
To support full pose animation, in-plane (roll) rotation is
also considered. Furthermore, we use DECA [17] to esti-
mate the FLAME parameters of facial identity 3 € R0,
jaw pose 04, € R? and expression ¢y € R°C. Since
DECA doesn’t account for eyeball movement, we addition-
ally adopt an efficient facial detector ' to detect 2D land-
marks of irises and optimize eye poses fcye € RS by min-
imizing the re-projection errors. Based on these FLAME
parameters, we produce a template mesh with 5023 vertices
and 9976 faces to drive facial deformations.

4.1. Comparisons

Baselines. We compare our method against two state-of-
the-art methods for animatable 3D-aware image synthesis:
3DFaceShop [01], and AniFaceGAN [68]. Besides, we also
select DiscoFaceGAN [13] as a baseline, which generates
animatable 2D portraits conditioned on 3DMM parameters.
Qualitative comparison. Fig. 4 provides a qualitative com-
parison against baselines. Overall, as can be seen, our
method outperforms all baselines by some margin on both
synthesis quality and animation accuracy. Specifically, Dis-
coFaceGAN [13] suffers from inconsistent identity during
animation. Moreover, it cannot generate reasonable mouth
interior, e.g. stretched teeth. 3DFaceshop and AnifaceGAN
synthesize 3D-consistent images, nevertheless, still strug-
gle to model consistent mouth interior with the driving im-
ages. This is because their implicit deformation approaches
are under-constrained, leading to overfit the expression bias
(smiling with mouth half-opened) of datasets. Compared to

Uhttps://mediapipe.dev/
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Figure 4. Comparison with the state-of-the-art animatable 3D & 2D image synthesis methods. We extract several frames from a video clip
and use the interpreted face model parameters to animate random virtual avatars.

Figure 5. High-quality dynamic shapes with topological changes.
As can be seen, we model detailed dynamic shapes of eyelids and
lips, while keeping glasses unchanged.

the other methods, our approach not only synthesizes im-
ages with higher quality, but also preserves more detailed

FID, AED] APD| APD*| IDt

DiscoFaceGAN (2562) [13] 17.1 0.42 0.046 0.024 0.73

AniFaceGAN (2562) [68] 201 025 0041  0.022 0.82
3DFaceShop (5122) [61] 237 031 0.045  0.024 0.75
Ours (512%) 39 016 0.023  0.019 0.84

Table 1. Quantitative comparison using FID, average expression
distance (AED), average pose distance (APD), and identity consis-
tency (ID) for FFHQ. APD* means calculating pose distance with
roll fixed.

expressions of the driver images, including mouth interior,
eye blinks and eye movements. Furthermore, we are the
only method that supports in-plane head rotations. Fig. 5
provides visual examples of the synthesized high-quality
geometry. Our approach can model detailed shape defor-
mations (see zoomed eyelids and lips in Fig. 5) with topo-
logical awareness, i.e. glasses are kept unchanged.

Quantitative evaluation. Tab. 1 demonstrates quantita-
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Figure 6. Ablation study on model designs. Tstqtic €ncourages
better identity consistency; Gieetn, benefits realistic mouth inte-
rior; the discriminator with Isyntnetic input allows more consis-
tent reconstruction of detailed expressions.

tive results comparing our method against baselines eval-
uated on several metrics. We measure image quality with
Frechet Inception Distance (FID) [29] between the entire
FFHQ dataset and 50k generated images using randomly
sampled latent codes, camera poses, and FLAME param-
eters. Since AniFaceGAN and DiscoFaceGAN synthesize
images on the resolution of 2562, we test FID of them on
FFHQ2562. Following [3, 39], we evaluate the faithful-
ness of the animation with the Average Expression Dis-
tance (AED), the Average Pose Distance (APD), and iden-
tity consistency (ID). For each method, we randomly sam-
ple 500 identities and animate each with randomly sampled
20 FLAME parameters of expressions and poses. Then,
we estimate the FLAME parameters for these 10000 gener-
ated images and the average distances between the driving
FLAME parameters and the reconstructed ones. For iden-
tity consistency, we randomly sample 2000 poses, 2000 sets
of FLAME parameters, and 1000 identities. Then we ran-

FID| AED| APD| ID?}

Wlo Tstatic 66 025 002 063
Wio Greern(uv) 7.2 037 0042 071
Wlo Greern(s) 84 032 0036 079
Wio Ioyntheric 3.8 018 0025 074
Ours 39 016 0.023 0.84

Table 2. Ablation study on model designs. Modeling static com-
ponents by T’sqtic improves identity consistency. The teeth syn-
thesis G'teetn, module benefits both animation and synthesis qual-
ity significantly while adding synthetic renderings Isynthetic into
discrimination takes both a step further.

domly select two poses and two sets of FLAME parameters
for each identity, generating a total of 1000 image pairs.
We calculate consistency metric using a pre-trained Arcface
model [15] for each image pair and report the average result.
Since the other baselines don’t support in-plane (roll) head
rotation, we further report APD* which only accounts for
poses on yaw and pitch. Our method achieves the best per-
formance on all metrics. Note that our model demonstrates
significant improvements in FID, bringing animatable 3D
GAN to the same level as unconditional 3D GANSs (4.7 for
EG3D [7]). For AED and APD, we also show superiority
against baselines. Note that we still achieve the best pose
consistency (0.019) when only considering yaw and pitch.

4.2. Ablation study

Static tri-planes. As suggested by the grey lines in Fig. 8,
this baseline removes the static tri-planes T’s;qs;c and en-
tangles both dynamic and static components in Ty,. As
illustrated in the first row of Fig. 6, the identities change
when varying expressions. Since there are no explicit con-
straints for identity consistency, the model would be prone
to unexpected entanglement between expression and iden-
tity. Tab. 2 shows a similar trend where removing Ts;qtic
leads to worse identity consistency.

Mouth Synthesis. When removing the mouth synthesis
module Geet, We consider two altered choices: represent-
ing mouth features by Titazic OF Thye, named w/o Gieern ()
(red lines in Fig. 8) and w/o Gieetn(uv) (blue lines in
Fig. 8), respectively. The first baseline, illustrated in the
second row of Fig. 6, suffers from “hole’ artifacts of mouth.
This is because inferior teeth move along with the jaw ro-
tations and thus cannot be modeled by static features. The
second baseline modeling teeth with 7;,, also leads to an
unreasonable mouth interior since the FLAME template
doesn’t account for teeth area and the neural textures for
teeth would be sampled from other unrelated areas leading
to artifacts. Quantitatively, both baselines without Gieesp,
show significant degradation in AED and APD.
Deformation-aware discriminator. Tab. 2 demonstrates
that the deformation-aware discriminator with Igyn¢petic in-
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Figure 7. Applications of our model. We use PTI [53] to fit 3D-aware avatars for real portraits and animate them with sampled video clips.
Furthermore, we leverage StyleGAN-NADA [21] into 3D settings and adapt these avatars into textually-prescribed domains.
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Figure 8. Illustrations of the proposed three variants of our model
for ablation study.

put improves both animation accuracy and identity consis-
tency, at the negligible expense of slightly reduced image
quality. In Fig. 6, we see that this design shows a better
exploration of rare expressions, e.g. eye blinks.

4.3. Applications

One-shot portrait animation. Fig. 7 shows the application
of our model for one-shot head avatars. The learned gen-
erative animatbale 3D representation with expressive latent
space can serve as a strong 3D prior for high-fidelity single-
view 3D reconstruction and animation. Note that we can
generate natural and consistent animations without video
data training.
Animatable 3D-aware stylization. Inspired by IDE-
D [58], we incorporate 2D CLIP-guided style tranfer
methods [21] with our animatable 3D representation for
3D-aware portrait stylization. The right three columns of

Fig. 7 show examples of text-driven, stylized portrait ani-
mation. Specifically, to adapt a pre-trained model through
only a textual prompt, we optimize the generator with two
kinds of CLIP-based guidance [21]. However, leveraging
text-guided 2D methods directly into the 3D setting is chal-
lenging as it tends to break 3D awareness and deformation
awareness inherited in the generator parameters. To this
end, we make some necessary modifications to the train-
ing framework. Please refer to the supplemental material
for details. As shown in Fig. 7, we achieve high-quality
3D-aware stylized portrait synthesis with preserving well
properties (i.e. 3D consistency and accurate animation).

5. Limitations and future work

Though our approach enables reasonable extrapolation
on some rare expressions (e.g. eye blinks, pouting, etc.), it
struggles to model some other challenging expressions with
full consistency, such as one-side mouth up, frown, sticking
tongue out, etc. We could use high-quality video clips with
more abundant expressions for training as well as a more
powerful face model for better extrapolation. We leave it
for future work. Furthermore, our model has the potential
to provide a strong 3D prior for accelerating person-specific
avatar reconstruction. Besides, extending our methods into
full-body settings is also a promising direction.

6. Conclusion

We have presented Next3D, a novel animatable 3D rep-
resentation for unsupervised learning of high-quality and
3D-consistent virtual facial avatars from unstructured 2D
images. Our approach has pushed the frontier of photore-
alistic animatbale 3D-aware image synthesis. Serving as
a strong 3D prior, we believe our learned 3D representa-
tion will boost a series of downstream applications includ-
ing 3D-aware one-shot facial avatars and animatable out-of-
domain avatar generation.
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A. Additional experiments
A.1. Deformation-aware discriminator

We propose a deformation-aware discriminator which
additionally takes the synthetic renderings as input. Fur-
thermore, we also take experiments on the parameter con-
ditioning method proposed in GNAREF [3]. Specifically, we
first train our model without either synthetic renderings or
FLAME parameters conditioning for about two days. Then,
we test two methods based on the same checkpoint and
report the changing trend of FID scores for two methods
in Fig. 9. The discriminator with synthetic rendering in-
put converges to a better FID score, while the one condi-
tioned on FLAME parameters incurs divergency. Note that
we have added random noise to the FLAME parameters for
better convergency following GNARF.

Synthetic Rendering
FLAME Parameters

FID Score
o < o ©

«

IS

0 5 10 15 20 25 30 35
training ticks (kimg)

Figure 9. Training convergency with the discriminator designs.

A.2. Training strategy of 3D-aware stylization

Strategy 1 Strategy 2 Strategy 1 Strategy 2

\

Figure 10. Ablation study on the training strategies of 3D-aware
stylization.

We conduct an ablation study on two strategies for freez-
ing layers of the generator during 3D-aware stylization.
The first one is the default setting following StyleGAN-
NADA [21] that freezes all toRGB layers in the synthesis
network. Though it works in 2D space, we found it leads
to degraded image quality and dissymmetry. To this end,
we adopt another strategy which optimizes the last toRGB
layer for each synthesis network. In our case, there are three
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StyleGAN-based synthesis network including a neural tex-
ture generator GG ,,,,, a static tri-plane generator G sz4¢ic, and
a teeth completing module G+, S0 we add the last toRGB
layers of these three synthesis networks into optimization.
As can be seen in Fig. 10, the second strategy improves the
synthesis quality.

B. Implementation details

We implemented our 3D GAN framework on top of
the official PyTorch implementation of EG3D [7] 2. We
adopt several hyperparameters and training strategies of
EG3D including blurred real images at the beginning, pose-
conditioned generator, density regularization, learning rates
of the generator and discriminator. Due the limitation of
computing material, we drop the two-stage training strategy
and fix the neural rendering resolution to 64 and the final
resolution to 512 instead.

B.1. Data preprocessing

We use FLAME template model to drive the facial de-
formation and use DECA [17] to extract FLAME param-
eters. Since there is no suitable model to accurately ex-
tract eye poses, we optimize eye poses with an off-the-shelf
landmark detector *. Specifically, the detector extracts five
landmarks around the eyes, as shown in Fig. 11. Accord-
ingly, we select five vertices on the template mesh and the
optimizable variables of eye poses are yaw and pitch. To
optimize eye poses of a given portrait image, we minimize
the re-projection errors of the vertices and detected land-
marks by the PyTorch-implemented gradient descent. Since
the FLAME template mesh has a different scale to the pre-
trained EG3D model, we initially rescale the template by
2.5 for a coarse visual alignment and fine-tune the transla-
tion and scale during training.

B.2. Generator

Our generator introduces a style-unet-based teeth com-
pleting module Gc.sp, Whose architecture is illustrated in
Fig. 12. The left part encodes the concatenated tri-plane
teeth textures with dimensions of 768 (256 x 3) into multi-
scale feature maps ranging from 642 to 82. Then the feature
map with a resolution of 82 is processed into the residual
blocks and fed into the right generator as the input feature
map. Finally, the generator outputs a 64 x 64 x 768 feature
map.

C. Experiment details

Inversion-based one-shot facial avatars. We use an off-
the-shelf face detector [ 5] to extract camera poses and crop
the portraits in the wild to be consistent with the trainingset.

Zhttps://github.com/NVlabs/eg3d
3https://mediapipe.dev/



Figure 11. Detect the landmarks related to eyes.
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We further extract the FLAME parameters and obtain the
template mesh for each image by DECA [17]. Following
Pivotal Tuning Inversion (PTI) [53], we first optimize the
latent code for 450 iterations and then fine-tune the genera-
tor weights for an additional 500 iterations.

3D-aware stylization. Following StyleGAN-NADA [21],
We optimize partial generator weights with others fixed. In
practice, we fixed all toRGB layers of the synthesis blocks
except for the last ones for the texture generator and static
generator. We also fix the NeRF decoders for preventing the
3D consistency from degeneration.

D. Additional visual results

In this section, we provide additional visual results as
a supplement to the main paper. Fig. 13 provides selected
examples of four certain expressions and poses, highlight-
ing the image quality, expression controllability (e.g. gaze
animation), and the diversity of outputs produced by our
method. Fig. 14 provides a qualitative comparison against
baselines on facial animation.

Fig. 15 provides more results of animated virtual avatars
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with high-quality shapes. Note that the motions of eyelids
can be reflected on the extracted meshes. Furthermore, the
eyes are modeled as convex, suggesting that “hollow face
illusion” is alleviatived. This is because while the gaze di-
rections are highly pose-related, the rotated eyeballs in the
template mesh provide an explicit gaze direction signal and
thus helps to model such pose-related attribute and decouple
them during inference.

Finally, we show additional results of the applications of
our methods including one-shot avatars for real portraits and
3D-aware stylization in Fig. 16. We encourage readers to
view the accompanying supplemental video for the dynamic
results.



Figure 13. Generated examples with selected expressions and poses.
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Figure 14. Qualitative comparison against baselines.
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Figure 15. Animated virtual avatars with high-quality shapes.
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Figure 16. Visual results of one-shot avatars for real portraits and 3D-aware stylization.
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