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Abstract

We present a large-scale dataset of Planes in 3D, Pi3D,
of roughly 1000 planes observed in 10 000 images from
the 1DSfM dataset, and HEB, a large-scale homography
estimation benchmark leveraging Pi3D. The applications
of the Pi3D dataset are diverse, e.g. training or evaluat-
ing monocular depth, surface normal estimation and image
matching algorithms. The HEB dataset consists of 226 260
homographies and includes roughly 4M correspondences.
The homographies link images that often undergo signifi-
cant viewpoint and illumination changes. As applications
of HEB, we perform a rigorous evaluation of a wide range
of robust estimators and deep learning-based correspon-
dence filtering methods, establishing the current state-of-
the-art in robust homography estimation. We also evalu-
ate the uncertainty of the SIFT orientations and scales w.r.t.
the ground truth coming from the underlying homographies
and provide codes for comparing uncertainty of custom de-
tectors. The dataset is available at https://github.
com/danini/homography-benchmark.

1. Introduction

The planar homography is a projective mapping between
images of co-planar 3D points. The homography induced
by a plane is unique up to a scale and has eight degrees-of-
freedom (DoF). It encodes the intrinsic and extrinsic camera
parameters and the parameters of the underlying 3D plane.

The homography plays an important role in the geom-
etry of multiple views [32] with hundreds of papers pub-
lished in the last few decades about its theory and ap-
plications. Estimating planar homographies from image
pairs is an important task in computer vision with a num-
ber of applications. For instance, monocular SLAM sys-
tems [58,66,73] rely on homographies when detecting pure
rotational camera movements, planar scenes, and scenes

Figure 1. Example image pairs and homographies with their inlier
correspondences shown, from the proposed Homography Estima-
tion Benchmark (HEB) dataset. Outliers are not drawn.

with far objects. As a homography induced by a plane at
infinity represents rotation-only camera motion, it is one of
the most important tools for stitching images [1, 16]. The
generated images cover a larger field-of-view and are useful
in various applications, e.g. image-based localization [3],
SLAM [37, 42], autonomous driving [68], sport broadcast-
ing [17], surveillance [71], and augmented and virtual real-
ity [36, 47]. Homographies play an important role in cali-
bration [18,76], metric rectification [22,44], augmented re-
ality [61,79], optical flow based on piece-wise planar scene
modeling [70], video stabilization [30, 80], and incremen-
tal [59] and global [51, 65] Structure-from-Motion.

The traditional approach of finding homographies in im-
age pairs consists of two main stages. First, similarly as
in most algorithms working with pairs, feature points are
detected and matched [16, 38, 46, 57, 60]. They are then
often filtered by the widely-used second nearest neighbors
(SNN) ratio [45, 46] or by deep learned filtering meth-
ods [54, 64, 72, 78], to remove gross outliers and, therefore,
improve the robust estimation procedure that follows. The
found tentative point correspondences are contaminated by
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(a) Homogr Dataset (b) HPatches Dataset (c) ExtremeView Dataset (d) Proposed HEB Dataset

Figure 2. Typical image pairs (a-c) from widely used datasets for homography estimator benchmarking and (d) from HEB.

various sources of noise due to, e.g., measurement and
quantization, and a large proportion of them are still out-
liers – correspondences inconsistent with the sought model
manifold. Consequently, some form of robust estimation
has to be applied to find a set of inliers and to estimate the
parameters of the sought homography. In practice, either a
randomized RANSAC-like [25] robust estimator or an iter-
atively re-weighted least squares fitting [33] is applied.

The number of datasets on which recent homography
and, in general, robust estimation papers evaluate their al-
gorithms is severely limited. The Homogr dataset [41] con-
sists only of a few image pairs with relatively small base-
lines and, thus, high inlier ratios. Given that recent robust
estimators, e.g. [7], report lower than 0.5 pixel average re-
projection errors on the provided manually labeled corre-
spondences, it is safe to say that this dataset is solved. The
HPatches dataset [4] consists of a few hundreds of image
pairs, all looking at an almost completely planar scene, with
either significant illumination or viewpoint (mostly in tilt
angle) changes. While [4] is a useful tool for evaluating lo-
cal feature detector and image matching methods, it is very
easy for robust estimators [5]. The ExtremeView (EVD)
dataset [49] poses a significantly more challenging problem
for homography estimation than the previous two. The im-
ages undergo extreme view-point changes, therefore mak-
ing both the feature matching and robust estimation tasks
especially challenging. However, EVD consists only of 15
image pairs, severely limiting its benchmarking power.

Besides the data part, a good benchmark has well-
defined parameter tuning (training) and evaluation protocols
and training-test set split. Otherwise, as it happens in other
fields, the seemingly rapid progress might be an artifact of
tuning the algorithms on the test data, or an artifact of the
flawed evaluation procedure [13, 29, 52].

In short, there are no available large-scale benchmarks

with ground truth (GT) homographies that allow evaluating
new algorithms on standard internet photos, i.e., ones not
necessarily looking at completely planar scenes.

As the first contribution, we create a large-scale dataset
of 1046 large Planes in 3D (Pi3D) from a standard landmark
dataset [69]. We use the scenes from the 1DSfM dataset as
input and find 3D planes in the reconstructions. Second, we
use the Pi3D dataset to find image pairs with estimatable
homographies and create a large-scale homography bench-
mark (HEB) containing a total of 226 260 homographies
that can be considered GT when testing new algorithms (see
Fig. 1 for examples). A large proportion of the image pairs
capture significant viewpoint and illumination changes. The
homographies typically have low inlier ratio, thus making
the robust estimation task challenging. Third, we compare a
wide range of robust estimators, including recent ones based
on neural networks, establishing the current state-of-the-art
in robust homography estimation. As the forth contribution,
we demonstrate that the dataset can be used to evaluate the
uncertainty of partially or fully affine covariant features de-
tectors [46,50]. While we show it on DoG features [45], the
homographies can be leveraged similarly for the compari-
son with other detectors.

Existing Datasets. The datasets traditionally used for eval-
uating homography estimators are the following. The Ho-
mogr dataset [41] consists of 16 image pairs with GT ho-
mographies. The GT comes from (also provided) hand-
labeled correspondences, which later were optimized to im-
prove the localization accuracy. There is no train-test split,
nor a benchmark protocol. The ExtremeView dataset [49]
consists of 15 image pairs, taken under extreme view-
point change, together with GT homographies and corre-
spondences. The homographies are derived from hand-
labeled correspondences that stem from multiple local fea-
ture detectors paired with an affine view synthesis proce-



Dataset # image pairs train-test split camera pose scene type baseline illumination change inlier ratio
Homogr [41] 16 7 7 buildings short/medium 7 high
ExtremeView [49] 15 7 7 walls large 7 low
HPatches [4] (59 + 57)× 5 3 7 walls short/medium 7 + 3 high
HEB 226 260 3 3 landmark photos diverse 3 low

Table 1. Comparison of the existing and the proposed HEB homography estimation datasets.
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Figure 3. HEB properties: test (top; 169 654 pairs) and training
(bottom; 56 593 pairs) splits. Percentages are written inside the
bars. When calculating the angle between the translation and plane
normal, the sign of the normal is set so it looks towards the camera.

dure [49] and RootSIFT descriptor [2] matching. There is
no train-test split, nor a benchmark protocol. The HPatches
dataset [4] was introduced in form of local patches for
benchmarking descriptors and metric learning methods,
later extended with images and homographies. It consists of
57 image sextuplets with significant illumination but negli-
gible viewpoint changes and 59 ones with viewpoint, but
no illumination changes. The viewpoint difference mostly
consist of tilt (perspective change) in the horizontal direc-
tion and some shift – no big rotation or scale changes. The
GT was obtained from manually annotated correspondences
for the initial model estimation and polished by minimizing
MSE of image pixel re-projections. There is no official pro-
tocol, nor standard correspondences for homography eval-
uation – every paper uses slightly different evaluations, but
there is an official train-test split.

To conclude, there is no difficult-enough, large-scale
dataset with train-test split and benchmark protocol for eval-
uating robust homography estimation. Table 1 summarizes
the properties of each publicly available dataset and, also,
that of the proposed one. Typical image pairs from the
datasets are shown in the first three columns of Fig. 2.

2. Planes in 3D Dataset
The Planes in 3D Dataset is based on images from the

1DSfM dataset [69]. The objective of this section is to cre-
ate a large-scale dataset of 3D planes in scenes consisting
of thousands of real-world photos. 1DSfM consists of 13

scenes of landmarks with photos of varying sizes collected
from the internet. It provides 2-view matches with epipo-
lar geometries and a reference reconstruction from incre-
mental SfM (with Bundler [62, 63]) for measuring error.
Instead, we reconstructed the scenes with COLMAP [59],
providing more accurate reconstruction [39]. Incremental
SfM (e.g., COLMAP) results are often considered GT, e.g.
in IMC [38], as they are the best which we can get from
internet images. We manually checked all reconstructions
ensuring that only those scenes are used where COLMAP
returned an accurate and coherent reconstruction. We, thus,
excluded Gendarmenmarkt and Trafalgar.

We considered several options (e.g., IMC [38] and
MegaDepth [43]) before deciding to use 1DSfM. We chose
it since, nowadays, it is rarely used in computer vision,
likely, due to the attached Bundler reconstruction (we re-
placed it with COLMAP). Thus, introducing it back to the
community is preferable to keep the variety of commonly
used datasets, and not overfitting to IMC, which is only
twice bigger than 1DSfM. We will make the tools publicly
available and, thus, similar data can be easily obtained from
other datasets or different features.

Let us introduce the concept of “estimatable homogra-
phies”. An “estimatable homography” is a homography that
links two views of a real 3D planar surface; it is consis-
tent with the camera motion; and it is estimatable from its
GT correspondences by the standard normalized DLT algo-
rithm [32]. We keep only those planes in the Pi3D dataset
that imply at least a single estimatable homography – planes
that are visible and estimatable in at least an image pair. The
steps of the pipeline finding such planes and homographies:

1. COLMAP reconstructs the scene from the images.
2. Multiple 3D planes are detected in the COLMAP point

cloud reconstruction.
3. For each 3D plane, all image pairs where the plane is

visible are selected.
4. A homography is estimated from each 3D plane in

each image pair, where it is visible, using the camera
parameters, i.e., the poses and intrinsic matrices.

5. A homography is rejected if it can not be estimated
from only the assigned GT point correspondences,
without the camera parameters, accurately.

Multiple Planes in the Reconstruction. The first step of
the pipeline is to find 3D planes that can be used when find-
ing planar regions in image pairs. For this purpose, we
use the Progressive-X+ algorithm [11]. To ensure that only



dominant planes are found in the reconstruction, we use the
following parameters: nmin = 5000 and εT = 0.1. Pa-
rameter nmin is the number of inliers a plane needs to be
considered as a dominant one. Parameter εT is the threshold
for the pair-wise Tanimoto similarity of the plane consen-
sus vectors. Briefly, the Tanimoto similarity measures how
similar two planes are in terms of their support. These pa-
rameters lead to plane segmentations with keeping only the
dominant structures and suppressing small details.

Recovering Absolute Scale. The COLMAP reconstruction
is scaleless, i.e., the metric size of the scene is unknown.
This is why prior work, e.g. [38], use angle-based metrics
to compare camera translations recovered by image match-
ing algorithms. Instead, we manually added the scale to the
reconstructions. 3D points were re-projected on the images
and a manual annotator picked those which are easily identi-
fiable and far enough from each other, e.g., the facade edges
of the largest building. We then measured the distance with
the ruler tool of Google Maps [28]. The ratio between these
two gives the scaling coefficient to the 3D reconstruction.
This procedure is repeated several times and the coefficients
are averaged to get the final scale. The standard deviation
of the manually picked absolute scales is approximately 16
cm, implying that the recovered scales are accurate.

Visible 3D Planes. First, we iterate through all possible
image pairs (Ii, Ij), i, j ∈ [0, p), from the COLMAP re-
construction of the scene, where p =

(
n
2

)
and n ∈ N is

the number of images. For each pair, we collect the planes
that have more than ten 3D points visible in both views ac-
cording to COLMAP depth maps. Second, we detect SIFT
features [46] as implemented in OpenCV [15] with Root-
SIFT [2] descriptors. In each image, at most 8000 key-
points are detected and matched. We combine mutual near-
est neighbor check to establish tentative point correspon-
dences, as it is recommended in [38]. The SNN ratio is
stored, but no correspondences are filtered out, because dif-
ferent robust estimators, either deep or traditional, may pre-
fer different ratios to achieve their best performance.

Relative poses are calculated as R = R2R
T
1 and t =

t2 − R2R
T
1t1, where R1,R2 ∈ SO(3) are the absolute

rotations and t1, t2 ∈ R3 are the translations from the re-
construction. The parameters of the normalized homogra-
phy implied by the plane are calculated as follows: H =
R − (tnT)/d, where n ∈ R3 is the plane normal and d is
its intercept. Correspondences are considered inliers if the
re-projection error is less than ε pixels given homography
H. Homographies with fewer than 10 inliers are rejected.
To make sure that the GT homography can be recovered
from its inliers and they are not in a degenerate configura-
tion, we estimate homography H′ by the normalized DLT
algorithm from the inliers. It is decomposed to rotation R′

and translation t′ by the standard procedure [48]. We reject

Figure 4. Inlier number distribution in the training (left) and test
(right) set of the HEB dataset.

homography H if either εR′ > 3◦ or εt′ > 3◦, where

εR′ = (180/π) arccos
((

tr
(
R′RT)− 1

)
/2
)

(1)

is the rotation error and

εt′ = (180/π) arccos(tTt′)(|t||t′|) (2)

is the angular translation error in degrees [38]. This ensures
that the homography is consistent with the scene geometry
and it can be recovered from the correspondences.

Finally, we keep only a single estimatable homography
for each test case since the purpose of the benchmark is to
compare robust estimators, e.g. RANSAC, that find only a
single model. Thus, an image pair with k homographies
is split into k test scenes. Each of them is generated by
removing the inliers of the other estimatable homographies.
Note that we keep those correspondences that are shared
between the current homography and any other one.

3. Homography Evaluation Benchmark
The tentative correspondences are obtained from the

mutually nearest RootSIFT matches minus the inliers
of the other planes in the image pairs. The full
input information, available to the methods is a set
of N correspondences {Ci}Ni=1, each consisting of
(xi, yi, φi, si, x

′
i, y
′
i, φ
′
i, s
′
i,SNN ratio), where xi, yi ∈ R

are the point coordinates, φ ∈ [0, 2π) is the SIFT feature
orientation, s ∈ R is the scale, and SNN ratio is Lowe ra-
tio [46] and ′ denotes the second image.

The dataset is split into two disjoint parts. The training
set contains two scenes – Alamo and NYC Library. The
test set contains the remaining nine scenes. While the train-
ing set might not be large enough to allow training models
from scratch, it allows to set the parameters of models and
traditional algorithms, such as inlier-outlier threshold.

In Figures 3 and 4, properties of the HEB dataset are vi-
sualized. The left plots of Fig. 3 report the log10 number of
homographies (vertical axis) having a particular inlier ra-
tio (horizontal). The figures clearly demonstrate that the
benchmark is extremely challenging since approximately
the 80% of the homographies in the dataset have at most
0.1 inlier ratio. The training set shows similar statistics with
marginally fewer cases with high inlier ratio.



The plot in the right of Fig. 3 shows histograms of the
angle between the translations t and plane normals n. The
0◦ case can be interpreted as a camera moving backwards
from the plane. When the angle is 90◦, the camera moves
sideways. At 180◦, the camera moves towards the observed
plane. It can be seen that all possible directions are well-
covered both in the test and training sets.

In Fig. 4, the inlier numbers are shown. In 30% of the
cases, the homographies have fewer than 20 inliers, making
the robust estimation challenging, especially when the out-
lier number is high. It is important to note that the success,
in practice, depends more on the inlier number than the in-
lier ratio. This is caused by the fact the outliers often tend to
form spatially coherent structures misleading the estimator
if the inliers are sparsely distributed in the scene [35]. The
majority of the homographies have fewer than 50 inliers.
The same distribution holds for the training set.

4. Experimental Protocol
Our evaluation protocol is largely influenced by the Im-

age Matching Benchmark [38]. However, we made several
important changes, described below.
Metrics. We compute a range of per-pair metrics from one
of the following three groups.
(i) Pose-based: Eqs. (1), (2) and absolute translation error:

εt′abs
= |t− t′|2. (3)

(ii) Ground truth correspondences-based: re-projection er-
ror of the GT correspondences with estimated homography:

εrepr = |x−H(x′)|2. (4)

the homography operator H transforming the non-
homogeneous image coordinates x′.
(iii) Self-supervised: number of inliers, run-time.

The per-homography metrics are accumulated into
scene-metrics by the (a) mean, (b) median and (c) calcu-
lating mean average accuracy (mAA) with thresholds: from
1◦ to 10◦ for angular metrics, from 0.1 m to 5 meters for
absolute translation error Eq. (3) and from 1 to 20 pixels
for re-projection error Eq. (4). The thresholds resemble the
ones used in the visual localization literature [77].

Since the scale can not be recovered from an essential
matrix or homography [32], we assign the GT absolute scale
to the estimated translation t′. There is an important differ-
ence between measuring the absolute translation error and
the purely angular one in Eq. (2) as done in IMC [38]. When
the baseline t is small, e.g., a few centimeters, the noise in
the camera position has a large effect on the translation an-
gle. Thus, Eq. (2) distorts the evaluation by returning large
errors even when the camera barely moves in the real-world.
We select the averages of the rotation and translation mAA
scores to be our main metric.

Metrics comparison. We plot the angular pose accuracy vs.
metric pose accuracy in Fig. 5 (right). They are mostly in
agreement, except for a few methods, e.g., EAS [24] and
Affine GC-RANSAC [10]. The mAA of the re-proj. error is
also in agreement with the mAA of the pose error (Fig. 5;
3rd) with some exceptions, e.g., LO+-RANSAC.

The number of inliers (Fig. 5, two left graphs) greatly
depends not only on image resolution, but also on the in-
lier threshold and particulars of each algorithm – MAGSAC
outputs many more inliers, while having similar pose ac-
curacy to other methods, while the LMEDS pose is much
worse with the same number of inliers as the rest.
Training and Test Protocols. One of the drawbacks of the
existing homography estimation datasets is the lack of tun-
ing and test protocols. We propose the following proce-
dure for fair evaluation. The main principle is as follows:
one should not not make more than one or two evaluation
runs on the test set. That it why all the hyper-parameters of
the algorithms are fixed when running on the test set. The
tuning and learning are done on the training set, which has
similar, but not equal properties and no overlap in terms of
content with the test set. We tune all the hyper-parameters
with grid search for simplicity.

Training protocol. We fix number of iterations to 1000
for all methods. With each method, grid search is performed
on the training set to determine the optimal combination
of the hyper-parameters, such as inlier-outlier threshold θ,
the SNN ratio threshold and other algorithm-specific pa-
rameters, such as the spatial weight of GC-RANSAC. Note
that, unlike IMC [38], inlier-outlier and SNN thresholds are
tuned jointly and not consequently – we found that it leads
to slightly better hyper-parameters.

We tested the robust estimators on correspondences fil-
tered by the predicted score of recent deep learning models.
After obtaining the scores, we post-processed them in one
of the two ways: (a) thresholding the scores at θ and re-
moving tentative correspondences below it; and (b) sorting
the correspondences by their score and keeping the top K
best. Both θ and K were found by running grid search on
the training set similarly as for other hyper-parameters.

Test protocol. After fixing all hyper-parameters, we
run the algorithms on the test set, varying their maximum
number of iterations from 10 to 10 000 (to 1000 for meth-
ods significantly slower than the rest, i.e., scikit-image
RANSAC, EAS and kornia-CPU) to obtain a time-accuracy
plot. The algorithm terminates after its iteration number
reaches the maximum. Note that, unlike in IMC [38], such
experiments are performed on the test, not training set.
Methods for Homography Estimation. We give a brief
overview of algorithms that we compare on HEB. Note that
we consider it important to compare not just the algorithms
as published in their respective papers but, also, their avail-
able implementations. Even though it might seem unfair to



Figure 5. Comparison of H quality metrics. Results averaged over all datasets: (a), (b) average median number of inliers versus mAA of the
pose error and mAA of the pixel re-projection error. While more inliers often imply better accuracy, it is not always the case, and methods
may have different accuracy with similar numbers of inliers. In plots (c), (d), the mAA of the pose versus mAA of the re-projection errors
and the mAA of rotation-only component (used in IMC [38]) are shown. LMEDS and LSQ are omitted here. The re-projection error is a
good proxy for pose accuracy with two exceptions. (d) While the pose accuracy and scale-less rotation-only mAA [38] are well-correlated,
the method ranking is significantly affected by the metric.
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Figure 6. Speed-accuracy comparison of homography estimators on HEB test set, average over images and scenes. The max. number of
iterations was varied from 101 to 103. Note the logarithmic scale of the time axis. Left – no prefiltering except mutual nearest neighbor
check. Right – mutual nearest neighbor and SNN (Lowe) ratio check. PROSAC sorting is indicated by a dashed line.

compare a method implemented in Python to C++ codes,
the main objective is to provide useful guidelines for users
on which algorithms and implementations to use in practice.

Traditional Algorithms. In all tested methods, the nor-
malized DLT algorithm runs both on minimal and non-
minimal samples. We found that the implementation is as
important as the algorithm itself, thus, we define a method
by its name and the library in which it is implemented.

We compare the OpenCV implementations of
RANSAC [25], LMEDS [56], LSQ, RHO [12],
MAGSAC++ [8], and Graph-Cut RANSAC [7]. The
RANSAC implementation as in the scikit-image li-
brary [67]. Unlike OpenCV RANSAC, which is
implemented in optimized C++ code, scikit-image is
implemented in pure Python with the help of numpy [31].
LO-RANSAC [21] as implemented in the PyTorch [53]-
based kornia library [55]. LO-RANSAC+ [41] imple-
mented in the pydegensac library with and without local
affine frame (LAF) check [49]. The Graph-Cut RANSAC,

MAGSAC [9], MAGSAC++ and VSAC [35] algorithms
implemented by the authors. While MAGSAC and
MAGSAC++ uses the PROSAC sampler [19] as default, we
run GC-RANSAC and VSAC with and without PROSAC.
We also evaluate the deterministic EAS algorithm [24]
provided by the authors. EAS is implemented in pure
Python using the numpy [31] package.

Also, we apply the affine correspondence-based GC-
RANSAC [10] with its implementation provided by the au-
thors. Since our benchmark does not have affine correspon-
dences, we approximate them using SIFT features. Given
rotations α1, α2 ∈ [0, 2π] and scales s1, s2 in the two im-
ages for a correspondence, the affine transformation is cal-
culated as A = J2J−1

1 , where Ji = RiSi, matrix Ri is the
2D rotation by αi degrees, and Si is the 2D scale matrix
uniformly scaling by si along the axes, i ∈ [1, 2].

Deep prefiltering. The standard two-view matching
pipeline with SIFT or other local features uses the SNN
test [46] to filter out unreliable matches before running
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Figure 7. Speed-accuracy comparison of the classical SNN ratio and deep prefiltering on OpenCV LSQ and RANSAC algorithms, Affine
GC-RANSAC [10] (best accuracy w/o prefiltering) and VSAC-PROSAC [35] (best accuracy with SNN prefiltering). Left – RANSAC time
(log10 scale), right – time of RANSAC and the deep prefiltering. The best result of SNN ratio is marked by blue dashed lines.

RANSAC [14, 23, 38]. Recently, it was shown [54, 72]
that using a neural network for correspondence prefiltering
might provide benefits over the SNN ratio test.

We evaluated how using models [14, 54, 64, 72, 75, 78]
for correspondence prefiltering for uncalibrated epipolar ge-
ometry help in homography estimation. For our study, we
took pre-trained models, provided by the authors of each pa-
per and use them for scoring the tentative correspondences.
We emphasize that we neither trained, nor fine-tuned them
for the homography estimation task, so their performance
is sub-optimal. The reason why we did not take the pre-
trained models for homographies is that authors do not pro-
vide them. Unless stated otherwise, all the pre-trained mod-
els we used, were trained on a subset [72] of YCC100M
dataset for fundamental matrix estimation.

5. Experiments
Traditional Methods. The pose errors are shown in Fig. 6.

No-prefiltering. This is the setup, where the difference
between methods is the most pronounced. The most accu-
rate method in all metrics is Affine GC-RANSAC that ex-
ploits the orientation and scale of SIFT features and, thus,
reduce the combinatorial complexity of the problem. The
second most important feature is PROSAC sampling, which
improves the results of VSAC and GC-RANSAC by up
to 10 percentage points. The optimized implementation
matters a lot in terms of speed – python-based skimage
RANSAC, EAS and kornia-CPU are up to 1-3 orders of
magnitude slower than the other RANSACs. Kornia-GPU
is on par in terms of speed with OpenCV RANSAC or py-
degensac LO+-RANSAC, but is worse in terms of accuracy.
Even with the same language (C++), the speed and even the
accuracy of different implementations of GC-RANSAC and
MAGSAC++ vary significantly.

Prefiltering with SNN ratio. With optimal SNN ratio
filtering, the difference between methods becomes smaller
and most of the advanced RANSACs show similar accuracy,
e.g., LO+ and GC-RANSAC. For most methods, the best
SNN threshold is 0.6, which is stricter than the widely used
0.8. We believe that it is due to HEB having small inlier
ratios, hence requiring aggressive filtering. The RHO algo-
rithm is still the leader in top-speed part, outperformed by
VSAC-PROSAC with increasing time budget. Affine GC-
RANSAC is the one which benefits from correspondence
prefiltering the least, both in terms of speed and accuracy.

As expected, LSQ fitting and LMEDS yield inaccurate
results in all cases due to the high inlier ratio in the dataset.
Interestingly, the recently proposed EAS algorithm [24]
leads to highly inaccurate results both in the SNN-filtered
and unfiltered cases. It is also surprising that affine GC-
RANSAC [10] with using approximated affine correspon-
dences only (from the SIFT orientations and scales) is the
top-performing method in the unfiltered case and is among
the best ones when SNN filtering is applied. This highlights
the importance of using higher-order features to reduce the
sample size in RANSAC. Due to the small sample size, the
combinatorics of the problem is reduced, thus improving
randomized RANSAC-like robust estimation.
Deep prefiltering. Results are shown in Fig. 7. The top row
shows the combined pose error, while the bottom one shows
the errors either in the rotation or in the translation. The best
deep prefiltering methods provide an accuracy boost to ad-
vanced RANSACs of the similar magnitude, as switching
from the no-filtering to SNN ratio filtering. However, not
all methods are equal: there is a clear distinction between
earlier methods like DFE, CNE and NG, and later models
like OANet, ACNe and CLNet. The latter ones use spe-
cialized architectures, while DFE, CNE and NG are based



on batch-normalized MLPs. OANet provides the best re-
sults, it is also the only model among the leaders which uses
side information – SNN ratio – as an input. It is also inter-
esting that the vanilla OpenCV RANSAC with OANet or
CLNet prefiltering performs similarly to VSAC + SNN ra-
tio in terms of accuracy. LSQ with deep filtering performs
similarly to RANSAC with SNN-ratio filtering and better
than RANSAC without prefiltering at all.

Finally, we show the time-accuracy plot in Fig. 7 (right)
when the deep prefiltering (on NVIDIA V100 GPU) time
is taken into account. It is at least 5-10 ms per image pair
for the fastest methods (NG, DFE and CLNet), which po-
tentially is a limitation for real-time applications, especially
when running on a smart device without GPU.

An application: uncertainty of SIFT keypoints. The
uncertainty of popular detectors and their implementations
is unknown or incomparable, e.g., only refer to a certain res-
olution. Our goal is to determine bias and variance of an-
gular, scale, and positional transformations of detected cor-
respondences of SIFT keypoints {Ci}Ni=1 and – if possible
– compare it to previous results. This may be a motivation
to use the scaled rotation as an approximation for the local
affine transformation.

The positional uncertainty of SIFT keypoints is known
to be approximately 1/3 pixel (see [27] p.681, [40] Tab.6).
The standard deviations (STD) of the keypoints depend on
the detector scales (see [27] p.681, [74] Eq.(15)). We are
not aware of investigations into the uncertainty of the direc-
tions and scales. The SIFT detector (in OpenCV) uses an
orientation histogram with 36 bins of 10 degrees. Assum-
ing an average STD of less than three times the rounding
error 10◦/

√
12 ≈ 2.89◦, the average STD of αi = φ′i − φi

is approx. 12◦, the factor three taking care of other model
errors. This large uncertainty may be useful in cases where
the rotation between keypoints is large.

While the reference scale ratios easily can be determined
from a local reference affinity Ãi, derived from H̃i, the ref-
erence rotations α̃i requires care. There are two approaches
to obtain reference rotations: (1) comparing direction vec-
tors d(φ′i) in the second image with the transformed direc-
tion d(φi) in the first image, and (2) deriving a local rotation
from the reference affinity matrix Ãi and compare it to αi.

We apply following approach: approximate the projec-
tive transformation by a local affinity Ãi ∈ R2×2, and, de-
compose Ãi into reference scale ratio r̃i, rotation angle α̃i,
and two shears p̃i ∈ R2. We investigated QR, SVD and an
exponential decompositions, namely decomposing the ex-
ponent B̃i of Ãi = exp(B̃i) additively (see supplement).
We evaluate the differences ∆αi = α̃i − αi between ob-
served and reference angles. The bias E(∆αi), i.e. the mean
of ∆αi and the STD σ∆αi =

√
D(∆αi) of the rotation

differences ∆α, for the OpenCV SIFT detector empirically

lead to an estimated STD of the rotation σ̂∆αi = 11.8◦,
which is close to the above mentioned expectation.

Each of the three approaches leads to different refer-
ence rotations α̃i. Rotation α̃i is effected by the shears
p̃i in Ãi. If the shears are small, all three methods yield
similar rotations. The magnitude |p̃i|2 of the shears can
be approximated by the condition number cond(Ãi). To
evaluate the rotations αi of the keypoint pairs, we re-
strict the samples to those with condition number < 1.5,
which for image pairs in normal pose roughly is equiva-
lent to slopes of the scene plane below 25◦. Moreover, we
show the comparison of angular residuals between d′i =
[cos(φ′i) sin(φ′i)]

T] and the one obtained by affinely trans-
formed di = [cos(φi) sin(φi)]

T], i.e. with Ãidi. The av-
erage deviations are similar to those obtained with the de-
composition methods, see the details in the suppl. material.

The scale ratio ri = s′i/si of a keypoint pair and its
ratio ∆ri = ri/r̃i to the reference ratio r̃i should lead to
E(∆ri) = 1. Further, we use a weighted log-ratio, mea-
sured as ρi = log(∆ri)/r̃i which should follow E(ρi) = 0,
and takes into account the intuition, that larger scales are
less accurate. The OpenCV implementation of the SIFT de-
tector empirically leads to σ̂ρi = 0.51 (see the suppl. mate-
rial). Obviously, the scales from the detector may on aver-
age deviate by a factor 1.6 ≈ exp(0.51) in both directions.

The positional residual of each keypoint pair is char-
acterized by the squared mean reprojection error εxi =√

(|x′i − H̃(xi)|22 + |xi − H̃−1(x′i)|22)/8, the factor 8 guar-
anteeing that εxi

can be compared to the expected uncer-
tainty of the coordinates. For the OpenCV SIFT detec-
tor, we empirically obtain a positional uncertainty of εxi

as σ̂x ≈ 0.67 pixels. The STD is a factor two larger, than
expected, which might result from accepting small outliers.

6. Conclusion

A large-scale dataset containing roughly 1000 planes
(Pi3D) in reconstructions of landmarks, and a homography
estimation benchmark (HEB) is presented. The applications
of the Pi3D and HEB datasets are diverse, e.g., training
or evaluating monocular depth, surface normal estimation
and image matching algorithms. As one possible applica-
tion, we performed a rigorous evaluation of a wide range
of robust estimators and deep learning-based correspon-
dence filtering methods, establishing the current state-of-
the-art in robust homography estimation. The top accuracy
is achieved by combining VSAC [35] with OANet [75]. In
the GPU-less case, a viable option is to use VSAC [35],
OpenCV RHO [12] or Affine GC-RANSAC with SNN test,
depending on time budget. We also show that PROSAC –
a well known, but often ignored sampling scheme acceler-
ates RANSAC by an order of magnitude. Exploiting the
SIFT orientation and scale has clear benefits in Affine GC-



RANSAC and it can be used in other approaches as well,
e.g., VSAC. The whole dataset, including the reconstruction
with absolute scale, and the tools for adding new features
will be made available.

As another application, we show that having a large
number of homographies allows for analyzing the noise in
partially or fully affine-covariant features. As an example,
we evaluate DoG features. To the best of our knowledge,
we are the first ones to investigate the actual noise in the
orientation and scaling components of such features.
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A. Methods in the Main Experiments
In this section, we describe the components of each al-

gorithm compared in the main paper.

A.1. Traditional Algorithms

In all tested methods, the normalized direct linear trans-
formation [32] (DLT) algorithm runs both on minimal and
non-minimal samples to estimate homographies. The com-
pared methods and implementations are the following.
RANSAC (OpenCV). The OpenCV implementation con-
tains the following components in addition to the original
RANSAC [25] algorithm.

1. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

2. Levenberg-Marquardt numerical optimization mini-
mizes the re-projection error on the final set of inliers.

3. Single-sided re-projection error, measured in the sec-
ond image, is used as point-to-model residual.

LMEDS (OpenCV). The OpenCV implementation of the
Least Median of Squares algorithm [56] runs the same ad-
ditional components as the OpenCV RANSAC.

LSQ (OpenCV). The least-squares fitting by the normal-
ized four-point algorithm implemented in OpenCV.

RANSAC (skimage). The RANSAC as implemented in the
scikit-image library [67]. It contains the following compo-
nents in addition to the original RANSAC [25] algorithm.
Single-sided re-projection error, measured in the second im-
age, is used as point-to-model residual. Unlike OpenCV
RANSAC, which is implemented in optimized C++ code,
scikit-image is implemented in pure Python with help of
the numpy package [31].

LO-RANSAC (kornia). LO-RANSAC [21] as imple-
mented in the kornia library [55]. It implements the LO-
RANSAC as proposed in [21] (version 2 in Section 3),

where the far-the-best model is obtained by running local
optimization using all inliers. Additional components:

1. Symmetric transfer error is used as point-to-model
residual.

2. Unlike LO-RANSAC, the kornia library uses iterated
re-weighted least squares for the local optimization.

3. Unlike the rest of the RANSAC implementations, kor-
nia generates and evaluates hypotheses in ”batches” of
1024 to make use of CPU and GPU parallelism.

LO-RANSAC+ (pydegensac). The algorithm from [41]
as implemented in pydegensac package.It uses truncated
quadratic cost function and fast local optimization scheme
using a subset of inlier sets.

LO-RANSAC+ with LAF (pydegensac). The additional
component compared to the previous algorithm is the local
affine frame check constraint proposed in [49] for the fun-
damental matrix estimation.

GC-RANSAC (author). The implementation provided by
the authors. It uses a graph-cut-based local optimization
that considers the spatial coherence of the input data points.
The additional components are:

1. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

2. Single-sided re-projection error, measured in the sec-
ond image, is used as point-to-model residual.

3. Truncated quadratic cost function and fast iterative lo-
cal optimization scheme.

4. Gaussian elimination for fast homography estimation
from minimal samples.

5. Column-pivoting QR decomposition for larger-than-
minimal samples.

GC-RANSAC with PROSAC (author). The previous al-
gorithm with PROSAC sampling [19].

GC-RANSAC (OpenCV) and MAGSAC++ (OpenCV).
The OpenCV implementation of the GC-RANSAC and
MAGSAC++ algorithms. Additional features:

1. Sequential Probability Ratio Test [20].
2. Gaussian elimination for fast homography estimation.
3. Sample cheirality check to reject minimal samples

early if the implied plane flips between the two views.
4. Levenberg-Marquardt numerical optimization mini-

mizes the re-projection error on the final set of inliers.

RHO (OpenCV). The OpenCV implementation of the
method proposed in [12]. The components are:

1. PROSAC sampling [19].



2. Sequential Probability Ratio Test [20].
3. Gaussian elimination for fast homography estimation.
4. Sample cheirality check to reject minimal samples

early if the implied plane flips between the two views.

MAGSAC (author) and MAGSAC++ (author). The im-
plementations provided by the authors. They use the fol-
lowing additional components for homography estimation.

1. PROSAC sampling [19].
2. Gaussian elimination for fast homography estimation

from minimal samples.
3. Column-pivoting QR decomposition for larger-than-

minimal samples.
4. Sample cheirality check to reject minimal samples

early if the implied plane flips between the two views.

VSAC (author). The implementation provided by the au-
thors. They use the following additional components for
homography estimation.

1. Gaussian elimination for fast homography estimation
from minimal samples.

2. Householder QR decomposition for larger-than-
minimal samples.

3. Sample cheirality check to reject minimal samples
early if the implied plane flips between the two views.

4. Local optimization: non-minimal estimation on small
subset of inliers (around 15-20 iterations)

5. The MAGSAC++ optimization is applied in the end.

VSAC with PROSAC (author). The previous algorithm
using PROSAC sampling [19].

EAS (author). The implementation provided by the
authors for the recently proposed algorithm in [24].
The method is implemented in pure Python using the
numpy [31] package.

Affine-RANSAC (author). The implementation provided
by the authors for the method in [10] using affine cor-
respondences to estimate the homography. Because our
benchmark does not have affine correspondences, we ap-
proximate them using the SIFT features. Given rotations
α1, α2 ∈ [0, 2π] and scales s1, s2 in the two images for a
correspondence, the affine transformation is calculated as
A = J2J−1

1 , where Ji = RiSi, Ri is the 2D rotation ma-
trix rotating by αi degrees, and Si is the 2D scale matrix
uniformly scaling by si, i ∈ [1, 2], along each axis. They
use the following additional components for homography
estimation.

1. SVD decomposition for estimating the homography
affine correspondences.

2. Sample cheirality check adapted for affine correspon-
dences to reject minimal samples early.

3. Graph-Cut RANSAC is used as robust estimator ex-
ploiting affine correspondences.

A.2. Deep Pre-filtering

The standard two-view matching pipeline with SIFT or
other local features uses SNN ratio test [46] to filter-out un-
reliable correspondences before running RANSAC, other-
wise, the inlier ratio is too small to have good results [14,
23,38]. Recently, it was shown [14,54,64,72,75,78] that us-
ing neural networks for correspondence pre-filtering might
provide significant benefits over the SNN ratio.

We evaluated how using such models for correspondence
pre-filtering for uncalibrated epipolar geometry help ho-
mography estimation algorithms. For our study, we took
pre-trained models, provided by the authors of each paper
and use them for scoring the correspondences. We empha-
size that we have neither trained, nor fine-tuned them for the
homography estimation task, so their performance is sub-
optimal compared to the same models, but trained for the
homography estimation. The reason why we did not take
the pre-trained models for homography is that authors do
not provide them. Since the sought homographies represent
3D planes in the COLMAP reconstruction, they stem from
static structures. The homography is thus consistent with
the epipolar geometry of the static background. Thus, fil-
tering the correspondences with deep networks trained on
epipolar geometry estimation reduces the outlier ratio also
for homographies and makes the robust estimation easier.
Unless stated otherwise, all the pre-trained models we used,
were trained on subset [72] of YCC100M dataset corre-
spondences for fundamental matrix estimation.

CNe [72]. Context normalization networks (CNe) is the
first paper on the topic which proposed to use PointNet
(MLP) with batch normalization [34] as ”context” mech-
anism. The model does not use any side information and
the input is just a set of pair of coordinates in both images.

ACNe [64]. Attentive context normalization networks in-
troduces a special architectural block for the task. The
model does not use any side information.

DFE [54]. Deep Fundamental matrix estimation uses differ-
entiable iterative re-weighted least squares for the epipolar
geometry estimation and the model predicts weights. It uses
the following side information in addition to the point coor-
dinates: difference in scale and orientation of the SIFT fea-
tures, SNN ratio score, absolute descriptor difference score.
Different from the rest of models, DFE was trained on Tanks
and Temples dataset, which is smaller and less diverse in
terms of camera poses than YCC100M dataset.



OANet [75]. The OANet algorithm introduced several ar-
chitectural blocks for the correspondence filtering estima-
tion. It also uses the SNN ratio value and mutual nearest
neighbor check as a side information.

Neural guiding [14]. Neural-guided RANSAC paper uses
a CNe-like architecture, but different training objective (re-
inforcement learning) and way of utilizing correspondence
scores – to perform importance sampling in the RANSAC.
Note that we do not use the full NG-RANSAC as proposed
in the paper, because there is no author implementation of
it – only the fundamental and essential matrix estimation.
Instead, we only use the pre-trained model that scores the
correspondences. It uses SNN ratio as a side information.

CLNet [78]. CLNet introduces algorithmic and architec-
tural advancement to first remove gross outliers but iterative
pruning and only then look for the inlier candidates. No side
information is used.

B. Uncertainty of Keypoints

The evaluation aims to determine bias and variance of
angular, scale, and positional transformations of detected
correspondences of SIFT keypoints {Ci}Ni=1. Such statis-
tics calculated on the same dataset allow comparison of dif-
ferent implementations of SIFT detectors. Moreover, we
can compare the uncertainty of keypoints orientation, scale,
and positions for any detector if such measurements are pro-
vided. We followed [6] to derive an affine transformation (4
DoF) Ãi ∈ R2×2 in the vicinity of the keypoint pair from
the reference homography H̃i. The following sections dis-
cuss the evaluation of the positional differences, the deter-
mination of the reference scale ratios r̃i and of the reference
rotations α̃i and the transformation errors in detail. All the
evaluations are measured on the OpenCV implementation
of the SIFT detector.

B.1. The positional transformation uncertainty

The symmetric positional residual of each keypoint pair
depends on the mean reprojection error

εxi
=

√
(|x′i − H̃(xi)|22 + |xi − H̃−1(x′i)|22)/8. (5)

The histogram of residuals εxi of 6.1M keypoint pairs
is in Figure 8. Furthermore, the authors W. Förstner and
B. P. Worbel [27] show that the standard deviation of the
keypoint depends on the detector scale (see [27] p.681, [74]
Eq.(15)). Therefore, it is reasonable to assume that the po-
sitional transformation error εxi also depends on keypoint
scales si, s′i. We clustered the symmetric positional resid-
uals w.r.t. related si, s′i scales and measured the standard
deviation for individual bins, see Figure 9.

Figure 8. The residuals εxi of 6.1M keypoint pairs. The right
histogram shows the logarithmic scale of the occurrence to visual-
ize the distribution of the residuals. Measured standard deviation
σ̂x ≈ 0.67 pixels. The STD is a factor two larger, than expected,
which might result from accepting small outliers.

Figure 9. The standard deviation of εxi for individual scale si,s′i
combinations. We can see the dependence of reprojection accu-
racy on the scale of the related keypoints.

B.2. The scale transformation uncertainty

The scale transformation uncertainty is evaluated using
the ratios ri = s′i/si (not to be confused with the redun-
dancy numbers in the main paper) with the scales (si, s

′
i)

from the SIFT keypoints. The scale transformation accu-
racy is based on the ratio ∆r := ri/r̃i, where the ground
truth scale ratio is derived from Ã via

r̃i =

√
|Ãi|. (6)

For the cases with the affinity matrix having a condition
number > 1.5, the shears are assumed to have a too large
impact on the scales. We only analyze cases with small
scale ratios, i.e., assume values r̃i ∈ [0.5, 2]. This inter-
val contains 99.62% keypoint pairs. Further, the weighted
log-ratio ρi = log(∆ri)/r̃i is calculated using the filtered
∆ri related to the ground truth r̃i. The scale statistics of the
remaining 5.6M keypoint pairs are shown in Figure 10.

B.3. The angular transformation uncertainty

The histogram of angular transformation αi = φ′i − φi
for all keypoint pairs is visualized in Figure 11. The un-
certainty of this transformation can be calculated by: (1)



Figure 10. The histogram of the scale transformation ratio ∆ri
and the weighted log-ratio ρi on 5.6M keypoint pairs.

Figure 11. The histogram of the detector angular transformation
αi for 6.1M of keypoint pairs. The right histogram shows loga-
rithmic scale of the occurrence to visualize the number of samples
across the complete interval [−180, 180) degrees.

comparing direction vectors d(φ′i) with the transformed di-
rection d(φi) into the coordinates of d(φ′i) or (2) deriving a
local rotation from the reference homography and compar-
ing it to the keypoint angular transformation.

B.3.1 Comparing direction vectors

The directional vector di = [cos(φi) sin(φi)]
T] realizing

the first keypoint orientation can be transformed into the
second image by the multiplication with the local approxi-
mation of affinity transformation (4DoF)

d̄i = Ãidi. (7)

The multiplication with the local affinity Ãi ∈ R2×2 does
not include the projective part. The angle in the interval
[−π, π] can be obtained by

∆αdirecti = ∠(d′i, d̄i) = atan2(|[d′i, d̄i]|,d′Ti d̄i). (8)

This is a reasonable measure for evaluating the quality of
the directions since – assuming no outliers – the expected
value of this angular difference is zero,1 E(∆αdirecti) = 0.
Fig. 12 shows the histogram of the ∆αdirecti from (8).

B.3.2 Partitioning of an affinity

We assume Ãi ∈ R2×2 matrix locally approximate the ho-
mography H̃i ∈ R3×3. The goal of comparing SIFT di-
rections could be to determine the rotation component R̃

1Stochastical variables are underscored

Figure 12. The histogram of angular transformation error ∆α on
top of α. The transformation was (1.) measured as the angle be-
tween directional vectors, ∆αdirect eq. (8) , (2.) subtracting the
reference angular transformation decomposed by SVD, ∆αSVD
eq. (14), and (3.) subtracting the ground truth angular transfor-
mation obtained from the exponential analysis, ∆αlogm eq. (20).
We assumed 4.3M correspondences with cond(Ãi) < 1.2. The
standard deviation is σ̂α ≈ 7.9◦ is approximately two times the
rounding error.

of the affinity Ãi and compare it to the angle between the
directions of corresponding keypoints.

We address three alternatives for determining the rota-
tional component of Ã:

1. a QR-decomposition,

2. a SVD-decomposition, and

3. an exponential decomposition.

Rotation from QR-decomposition of an affinity A. As-
suming the affinity is a concatenation of a shear matrix S
and a subsequent rotation with R

A = RS (9)

the classical QR-decomposition is defined as

Rqr,A := R with [R,S] = qr(A) . (10)

In case the affinity is defined by the reverse sequence, i.e.

A = SR (11)

the QR decomposition of the transposed needs to be taken

Rqr,AT := RT with [R,S] = qr(AT) . (12)

If there are no shears, i.e. the shear matrix is a scaled unit
matrix, the two rotations Rqr,A and Rqr,AT are the same, oth-
erwise they differ.

Rotation from SVD-decomposition of A. An alternative
way to derive the rotation component uses the matrix expo-
nential. Let us assume, the affinity is decomposable as two
rotations sandwiching a individual scaling

A = UDVT with D =

[
d1 0

0 d2

]
, (13)



where the shears are represented by the rotation V and the
ratio d1/d2. Then the SVD yields the rotation

Rsvd,A := UVT with [U,Λ,V] = svd(A) . (14)

Transposing A does not change the rotation. The resulting
rotation only is identical to those of the QR-decomposition
if the affinity is a scaled rotation.

Rotation from an exponential decomposition The affin-
ity A can be written as an exponential of a matrix B

A = eB (15)

If the matrix B is zero, i.e. B = 0, the affinity is a unit
transformation. We now can decompose the exponent addi-
tively in the following form

B =
∑
i

piBi (16)

with the four basic 2× 2 matrices

B1 =

[
1 0

0 1

]
, B2 =

[
0 −1

1 0

]
(17)

B3 =

[
0 1

1 0

]
, B4 =

[
1 0

0 −1

]
. (18)

Hence
A = ep1B1+p2B2+p3B3+p4B4 . (19)

If we take each of the summands individually, the four pa-
rameters refer to (1) scaling with log p1, (2) rotation by p2

[rad], (4) 1st shear, namely opposite scaling of axes, and (4)
2nd shear, namely opposite rotation of axes. The rotation is
given by the well known relation

R = exp(p2B2) . (20)

Furthermore, for the first shear we explicitely have

exp

([
0 p4

p4 0

])
(21)

=

[
e−p4/2 + ep4/2 ep4/2 − e−p4/2

e−p4/2 − e−p4/2 e−p4/2 + ep4/2

]
(22)

q4=ep4/2

=

[
q4 + 1/q4 q4 − 1/q4

q4 − 1/q4 q4 + 1/q4

]
. (23)

This representation is highly symmetric. The additive terms
are invariant w.r.t. the sequence of the terms. Moreover, the
scaled rotation is independent on the existence of shears.

However, since the exponent of two matrices only is the
product of the two matrices if they commute, i.e.

exp(A + B) = exp(A) exp(B) only if AB = BA ,
(24)

the interpretation of the elements in the exponent is not in-
dependent of the existence of the other elements. Only a
common scaling can be exchanged with the other compo-
nents, as is known from scaled rotation.

Now, we can define the rotational component using (20)
deriving p2 from

p2 = (B(2, 1)−B(1, 2))/2 with B = log(A) (25)

where log(A) is the matrix logarithm of A.
Therefore we are able to identify the existence of shears,

namely we have no shears if

d2
s = |[p3, p4]| = p2

3 + p2
4 = 0 (26)

Since a scale rotation has condition number cond(sR) = 1,
also the condition number can be used to identify the lack
of shears, namely if cond(A) = 1. For not too large shears
the the condition number and the degree of shears d2

s are
approximately the same:

d2
s ≈ cond(A) . (27)

C. Effect of Weighting and Estimation Type
C.1. Outline of the analysis

We use two sets of sample data to answer two questions:

1. What loss in accuracy is to be expected when using an
algebraic estimation vs. a ML-estimation?

2. What effect on the accuracy does a scale dependent
weighting have onto the results of an ML-estimation?
(see [27], Sect. 15.4.1.3)

The first set A was chosen, such that (1) the number of cor-
respondences is small in order to allow for non-uniform dis-
tribution of points and (2) the shears to be large, the planes
are not fronto-parallel in order to have the homographies
largely deviate from a scaled rotation. The second set B is
the same as been used for the investigation into the uncer-
tainty of the SIFT detector.

C.2. Algebraic and ML minimization

We apply two estimation methods, each yielding covari-
ance matrices for the homography parameters based on the
constraints using the observations, containing the homoge-
neous coordinates of the keypoint pairs li := [xi,x

′
i]
T with

the covariance matrix Σlili and the unknown parameters
θ := vecH and yi = E(li)

0 = gi(θ,yi)) := E(x′Ti )× (H E(xi)) (28)

which linearized has the form

gi(θ,yi) = gi(θ
0,y0

i ) + Ai∆θ + BT
i ∆yi = 0 . (29)



with the Jacobians

Ai =
∂gi
∂θ

and BT
i =

∂gi
∂li

, (30)

yielding the complete observation vector, constraints, and
complete Jacobians

l = [li] , g = [gi] , A = [Ai] , and B = Diag(BT
i ) ,

i.e. using the block diagonal matrix Diag(·) with the BT
i as

entries. We obtain the following covariance matrices for the
homography parameters.

1. The classical algebraic method minimizing the alge-
braic error

Ω(ALG)(θ) = gT (θ, l)g(θ, l) , (31)

yields the linear relation from (29)

∆̂θ = −(ATA)+ATBT∆l , (32)

see [27], eq. (4.518), from which we obtain the covari-
ance matrix

Σ(ALG)

θ̂θ̂
= (ATA)+ATBTΣllBA(ATA)+ . (33)

Observe, we only would obtain the covariance matrix
(ATA)−1 if the covariance matrix BTΣllB of the
constraints A∆θ would be the unit matrix, see (29),
which generally does not hold.

2. The ML-estimation, taking the uncertainty of the
points into account, minimizes

Ω(ML)(θ) = vTΣ−1
ll v (34)

with v = y− l = (y0 +∆y)− l, under the constraints
(29), which include the unknown parameters θ, and
yields the linear relation

∆̂θ = −Σ(ML)

θ̂θ̂
AT (BTΣllB)−1BT∆l , (35)

see [27], eq. (4.447) with the covariance matrix

Σ(ML)

θ̂θ̂
= (AT (BTΣllB)−1A)+ . (36)

If we assume BTΣllB = I, which is what algebraic
minimization does, eq. (35) reduces to obtain (32).

In both cases we do not make the procedural details explicit,
which are caused by the redundant representation of the ho-
mography and the homogeneous coordinates: Actually, the
covariance matrix Σθ̂θ̂ has rank 8, since the homography
only has 8 d.o.f., similarly, the covariance matrix of a homo-
geneous vector x representing a 2D point, is rank 2. In both
cases, we employ a minimal representation in the tangent
space defined by the constraints ||H||2 = 1 and |x|2 = 1.
Details for an ML-estimation of a homography are given
in [27], Sect. 10.6.3.

C.3. Scale dependent weighting

We use two different weighting schemes for the ML-
estimation

1. Equal weights for all points

w1(i) = w0(i′) = 1 . (37)

2. Choosing the weights as a function of the scales of the
I keypoints, namely

ws(i) =
m2

s2(i)
and ws(i

′) =
m2

s2(i′)
, (38)

with the geometric mean of all scales

m =

(∏
i

si
∏
i′

si′

)1/(2I)

. (39)

The denominator is meant to have the average variance
1, to be comparable to (37), though the results do not
depend on this common scaling.

For the ML-estimates, in addition to the covariance
matrices Σθ̂θ̂ we also obtain the estimated variance
factor

σ̂2
0 =

Ω(θ̂)

R
(40)

which depends on the weighted sum Ω of the squared
residuals, i.e. the reprojection errors and the redun-
dancy R = 2I − 8 of the estimation. It tells by which
factor we need to multiply the assumed covariance ma-
trix in order to obtain an unbiased covariance matrix,
assuming the given covariance matrix provides the cor-
rect ratio of the uncertainties between the observations:

Σa posteriori

θ̂θ̂
= σ2

0Σa priori

θ̂θ̂
. (41)

C.4. Accuracy Evaluation criteria

We use the following criteria to determine the loss in
accuracy, i.e. an increase of the standard deviations σθ̂u ,
when comparing the covariance matrix Σ to a reference co-
variance matrix Σ̃, namely the mean loss

lmean =
√

trace(Σθ̂θ̂Σ̃
−1

θ̂θ̂
)/8 (42)

and the maximum loss

lmax =
√

maxλ(Σθ̂θ̂Σ̃
−1

θ̂θ̂
) , (43)

see [26]. In case the two matrices are diagonal matrices
with the variances, we obtain the average and the maximum
ratio of the standard deviations.



D. Geometry and Statistics for Sect. 5

D.1. On the estimate εxi
for σi

We show, that

εxi
=

√
(|xi −Hi(x′i)|22 + |x′i −H

−1
i (xi)|22)/8 (44)

is a meaningful estimate for the standard deviation σi of
all coordinates uij and u′ij of the given points xi =
(ui1, ui2) and x′i = (u′i1, u

′
i2). Hence, we assumeD(ei) =

E(eieiT) = D(e′i) = E(e′ie
′T
i ) = σ2

i I2, which holds for
the errors ei = ui − E(ui) and e′i = u′i − E(u′i). Lineariz-
ing xi −Hi(x′i) leads to ei −Ai(e

′
i), and similarly for the

second term. Thus, the RMSE, i.e. the expession under the
squareroot in (44) is linearized to

Ωi = |ei −Ai(e
′
i)|22 + |e′i −A−1

i (ei)|22 (45)

We now determine the expectation E(Ωi) and obtain

E(Ωi) = E ((ei −Ai(e
′
i))T(ei −Ai(e

′
i)) (46)

+(e′i −A−1
i (ei))T(e′i −A−1

i (ei))
)

(47)

= E
(
eiTei + ei

′TAiTAie
′
i (48)

+ei
′Te′i + eiTA−Ti A−1

i ei

)
(49)

With tr(UV) = tr(VU), thus aTSa = tr(aTSa) =
tr(SaaT) we then obtain

E(Ωi) = E
(
eiTei + ei

′TAiTAie
′
i (50)

+ei
′Te′i + eiTA−Ti A−1

i ei

)
(51)

= E
(

tr(eieiT) + tr(AiTAie
′
iei
′T) (52)

+tr(e′iei
′T) + tr(A−Ti A−1

i eieiT
)

(53)

= tr(E(eieiT)) + tr(AiTAiE(e′iei
′T)) (54)

+tr(E(e′iei
′T)) + tr(A−Ti A−1

i E(eieiT))(55)
= tr(I2)σ2

i + tr(AiTAi)σ
2
i (56)

+tr(I2)σ2
i + tr(A−Ti A−1

i )σ2
i (57)

= (4 + tr(AiTAi) + tr(A−Ti A−1
i ))σ2

i . (58)

With the eigenvalues λ1,2(AiTAi) we now obtain

E(Ωi) = (4 + λ1 + λ2 + 1/λ1 + 1/λ2)σ2
i ≥ 8σ2

i (59)

since x + 1/x = (1 − x)2/x + 2 ≥ 2 for x > 0. Hence,
if λ1 = λ2 = 1, thus for a pure rotation, the value ε2xi

is
an unbiased estimator for σ2

i . Dividing the RMSE Ω by
√

8
therefore leads to a conservative estimate of the standard
deviation σi.

D.2. Affinity and Slope of Plane

We give a relation between the condition number and
the slope of a plane observed by an image pair in normal
position.

The image of a sloped plane leads to scale differences s
and shears a due to the tilts Zx and Zy of the plane along
and across the base line. They have the form

As =

[
1 + s 0

0 1

]
and Aa =

[
1 a

0 1

]
(60)

The combined effect is the affinity

Asa = AaAs =

[
1 + s a

0 1

]
(61)

Condition Number for Affinity except Scaled Rotation.
The condition number of this affinity, is given by

c = 1 +
(
√

4(1 + s) + t2 + t)

2(1 + s)
t with t2 = a2 + s2

(62)
For small s and t it can be approximated by

c ≈ 1 + t = 1 +
√
a2 + s2 (63)

neglecting higher order terms.

Affine Parameters and Slope of Scene Plane. Assume
the stereo image pair in normal position with rotation R =
I, basis b = [1, 0, 0]T, and focal length f = 1 with coordi-
nate system in the first camera observing a sloped plane at
[0, 0, Z0]T

Z = Z0 +XZX +Y ZY with ZX =
∂Z

∂X
, ZY =

∂Z

∂Y
(64)

or with homogeneous plane coordinates

A = [ZX , ZY ,−1, Z0]T = [nT, Z0]T . (65)

The homography from x′ to x′′ is given by x′′ = Hx′ by

H = I +
bnT
Z0

=

 ZX

Z0
+ 1 ZY

Z0
− 1
Z0

0 1 0

0 0 1

 (66)

This is an affinity with a Jacobian independent of the posi-
tion in the image, namely

A =
∂x′′

∂x′
=

(
1 + ZX

Z0

ZY

Z0

0 1

)
. (67)

Hence, we have the scale difference and the shear

s =
ZX

Z0
and a =

ZY

Z0
. (68)



Figure 13. The distribution of the points for the 10 cases, see Tab.
2

E. Results
E.1. Data set A

For the 10 cases of data set A the results are collected
in Table 2. Fig. 13 shows the point distribution of the 10
cases.

Discussion. The table allows the following conclusions:

• The prior scale dependent standard deviations lies in
a range between 0.24 pixel and 6.11 pixel. Since the
redundancy in all cases is small, these values are quite
uncertain. However, their ratios, which only depend on
the scales of the points, are as uncertain as the scales
are. The ratios vary between 4 in case 3, and 23 in case
5.

• Starting from an uncertainty of 1 pixel, the estimated
(square rooted) variance factors σ̂0 indicate that on an
average the keypoint coordinates are much better than
1 pixel, approximately by a factor 4 to 5.

• The loss in accuracy when using the classical algebraic
method for homography estimation compared to the
achievable accuracy using a ML-estimation is shown
in columns 8 and 9. The mean loss mostly is below
10%, which appears acceptable. However, the maxi-
mum loss is about 42 % (case 4).

• The loss in accuracy when using equally weighted co-
ordinates instead of taking the (assumed) scale depen-
dency into account is shown in columns 10 and 11.
While the mean loss lies between 8% in case 3 and a
factor 2.3 in case 4, the maximum loss reaches a factor
4.2 in case 5. The variation of the standard deviations

Figure 14. Data set B with 969 cases. Histograms of number of
correspondences, ratio of scale dependent standard deviations of
coordinates, and estimated (square rooted) variance factor σ̂0

Figure 15. Data set B with 969 cases. Histograms of mean and
maximum losses due to using an approximate/algebraic estima-
tion method, and due to using equal weighting instead of scale
dependent weighting

(column 5) is approximately coherent with the loss in
accuracy.

E.2. Data set B

Data set B consists of 969 homographies with alltogether
22 489 correspondences. We first provide the result of the
first 30 cases in Tab. 3 together with the mean and max-
imum values for each criterion. The results confirm the
findings of data set A, of course leading to more extreme
ranges/maximum values.

Analysing the complete data set B with 969 cases yields
the results shown in the histograms of Fig 14 and 15. The
maximum ratios of the scale dependent standard deviations
on an average are 15.5, which appears to be quite large,
however, confirming the results shown in Tab. 3. The mean
variance factor is σ2

0 = (0.37 [px])2, being consistent with
earlier investigations.

Finally, we determined the average residuals for each



case I min(σx) max(σx)
max(σx)

min(σx)
σ0(w = 1) σ0(w(s)) lALG|ML

mean lALG|ML
max l1|s

mean l1|s
max

[px] [px] [px] [px]
1 2 3 4 5 6 7 8 9 10

1 18 0.28 2.65 10 0.340 0.377 1.005 1.047 1.105 1.350
2 12 0.32 2.52 8 0.170 0.179 1.052 1.318 1.223 1.569
3 13 0.48 2.08 4 0.133 0.129 1.050 1.273 1.076 1.251
4 14 0.29 4.66 16 0.266 0.172 1.105 1.418 2.343 4.098
5 13 0.26 6.11 23 0.228 0.276 1.043 1.218 2.206 4.157
6 10 0.27 2.14 8 0.063 0.060 1.037 1.163 1.126 1.348
7 24 0.26 2.59 10 0.252 0.287 1.002 1.009 1.131 1.280
8 12 0.24 5.20 22 0.165 0.242 1.023 1.087 2.119 2.989
9 16 0.29 5.62 20 0.261 0.285 1.102 1.331 1.976 3.382
10 14 0.24 5.36 22 0.203 0.296 1.054 1.264 1.860 2.972

mean 0.29 3.89 14 0.208 0.230 1.047 1.213 1.616 2.440
max 24 0.48 6.11 23 0.340 0.377 1.105 1.418 2.343 4.157

Table 2. Data set A. Comparing the accuracy of different homography estimates. Columns: (1) Number I of point pairs, (2–4) minimal and
maximal standard deviations min(σx) and max(σx) of weighted points and their ratio, (5–6) estimated variance factors for unweighted
and weighted points, (7–8) mean and maximal losses when comparing the algebraic with the ML-estimate using equal weights, lALG|ML

mean and
lALG|ML

max , and (9–10) mean and maximal losses when comparing the unweighted and the weighted ML-estimate, l1|s
mean and l1|s

max, see Fig. 13

case using the following symmetric root mean square error
.

RMSE =

√√√√ 1

8I

I∑
i=1

|x′i −H(xi)|2 + |xi −H−1(x′i)|2 ,

(69)
being the quadratic mean of the εi in (44).

We compared the four homographies

1. the reference (reference),

2. estimated by the algebraic minimization (alg),

3. estimated by the unweighted ML-estimation (ML 1),
and

4. estimated by the scale weighted ML-estimation
(ML s).

The results are shown in the left column of Fig. 16. Ob-
viously all estimates lead to smaller residuals. Obviously,
the unweighted ML-estimation leads to smaller residuals,
than the weighted ML-estimate. This seems to be surpris-
ing, since one would expect the weighted ML-solution leads
to better results. However, the result is consistent with the-
ory, since the RMSE does not use any weighting, hence the
unweighted ML-estimate needs to minimize the unweighted
RMSE.

If we, therefore, analyze the weighted residuals, using a

weighted root mean square error

RMSEw =

√√√√∑I
i=1 wi(|x′i −H(xi)|2 + |xi −H−1(x′i)|2)

8
∑I
i=1 wi

,

(70)
with

wi =
1

s2
i + s2

i′
, (71)

we obtain the histograms in the right column of Fig. 16.
Now, as to be expected, the weighted residuals of the
weighted ML-estimate are minimal, consistent with the the-
oretical expectation. Also observe, all weighted residuals
are smaller than the unweighted residuals, indicating the
need to weight the coordinates used for estimating the ho-
mographies.

References
[1] Ebtsam Adel, Mohammed Elmogy, and Hazem Elbakry.

Image stitching based on feature extraction techniques: a
survey. International Journal of Computer Applications,
99(6):1–8, 2014. 1

[2] Relja Arandjelovic and Andrew Zisserman. Three things
everyone should know to improve object retrieval. In Con-
ference on Computer Vision and Pattern Recognition, pages
2911–2918, 2012. 3, 4

[3] Clemens Arth, Manfred Klopschitz, Gerhard Reitmayr,
and Dieter Schmalstieg. Real-time self-localization from
panoramic images on mobile devices. In 2011 10th IEEE
International Symposium on Mixed and Augmented Reality,
pages 37–46, 2011. 1



case I min(σx) max(σx)
max(σx)

min(σx)
σ0(w = 1) σ0(w(s)) lALG|ML

mean lALG|ML
max l1|s

mean l1|s
max

[px] [px] [px] [px]
1 2 3 4 5 6 7 8 9 10

1 39 0.34 2.18 6 0.216 0.209 1.050 1.192 1.119 1.303
2 44 0.31 6.96 23 0.341 0.358 1.042 1.131 2.511 4.451
3 34 0.37 5.07 14 0.337 0.302 1.146 1.619 1.688 2.267
4 33 0.17 1.82 10 0.238 0.287 1.080 1.510 1.054 1.111
5 17 0.16 4.83 31 0.395 0.460 1.038 1.090 2.112 3.086
6 31 0.40 9.13 23 0.701 0.781 1.169 1.918 2.084 4.254
7 21 0.39 2.63 7 0.415 0.474 1.112 1.598 1.254 1.770
8 22 0.45 2.60 6 0.255 0.270 1.061 1.223 1.202 1.458
9 16 0.38 7.71 20 0.367 0.494 1.049 1.138 2.274 3.921
10 37 0.34 3.46 10 0.178 0.197 1.052 1.276 1.392 1.770
11 14 0.33 3.54 11 0.097 0.117 1.045 1.308 1.062 1.214
12 30 0.51 1.91 4 0.158 0.161 1.061 1.224 1.087 1.209
13 36 0.24 8.76 37 0.334 0.325 1.007 1.030 3.255 5.093
14 26 0.36 4.14 12 0.302 0.296 1.016 1.052 1.828 2.487
15 42 0.19 14.79 77 0.542 0.676 1.022 1.082 4.118 7.477
16 17 0.37 2.65 7 0.234 0.276 1.031 1.117 1.289 1.711
17 22 0.20 1.88 9 0.276 0.318 1.075 1.476 1.099 1.246
18 16 0.23 2.75 12 0.567 0.576 1.005 1.017 1.429 2.252
19 56 0.28 4.50 16 0.478 0.719 1.079 1.300 1.927 2.484
20 48 0.28 3.08 11 0.368 0.463 1.063 1.232 1.884 2.105
21 12 0.51 2.93 6 0.117 0.150 1.015 1.072 1.242 2.197
22 60 0.19 2.09 11 0.851 0.908 1.105 1.655 1.085 1.194
23 18 0.26 1.68 6 0.392 0.464 1.004 1.030 1.150 1.453
24 30 0.33 8.16 25 0.405 0.373 1.103 1.368 2.483 4.903
25 10 0.32 4.99 16 0.398 0.391 1.011 1.054 1.182 1.924
26 14 0.43 7.54 18 0.303 0.368 1.009 1.054 1.526 3.012
27 17 0.17 2.58 15 0.160 0.200 1.058 1.285 1.263 1.593
28 13 0.24 5.89 25 0.292 0.331 1.027 1.175 1.621 2.723
29 11 0.26 5.37 20 0.548 0.580 1.003 1.020 1.380 1.989
30 20 0.28 9.41 34 0.700 0.980 1.030 1.126 2.474 4.064

case I min(σx) max(σx)
max(σx)

min(σx)
σ0(w = 1) σ0(w(s)) lALG|ML

mean lALG|ML
max l1|s

mean l1|s
max

[px] [px] [px] [px]
mean 27 0.31 4.83 17 0.366 0.417 1.052 1.246 1.702 2.591
max 60 0.51 14.79 77 0.851 0.980 1.169 1.918 4.118 7.477

Table 3. Data set B, cases 1 – 30. Comparing the accuracy of different homography estimates. Columns: (1) Number I of point pairs,
(2–4) minimal and maximal standard deviations min(σx) and max(σx) of weighted points and their ratio, (5–6) estimated variance
factors for unweighted and weighted points, (7–8) mean and maximal losses when comparing the algebraic with the ML-estimate using
equal weights, lALG|ML

mean and lALG|ML
max , and (9–10) mean and maximal losses when comparing the unweighted and the weighted ML-estimate,

l1|s
mean and l1|s
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