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Abstract

The remarkable breakthroughs in point cloud representation learning have boosted
their usage in real-world applications such as self-driving cars and virtual real-
ity. However, these applications usually have an urgent requirement for not only
accurate but also efficient 3D object detection. Recently, knowledge distillation
has been proposed as an effective model compression technique, which transfers
the knowledge from an over-parameterized teacher to a lightweight student and
achieves consistent effectiveness in 2D vision. However, due to point clouds’ spar-
sity and irregularity, directly applying previous image-based knowledge distillation
methods to point cloud detectors usually leads to unsatisfactory performance. To
fill the gap, this paper proposes PointDistiller, a structured knowledge distillation
framework for point clouds-based 3D detection. Concretely, PointDistiller includes
local distillation which extracts and distills the local geometric structure of point
clouds with dynamic graph convolution and reweighted learning strategy, which
highlights student learning on the crucial points or voxels to improve knowledge
distillation efficiency. Extensive experiments on both voxels-based and raw points-
based detectors have demonstrated the effectiveness of our method over seven
previous knowledge distillation methods. For instance, our 4× compressed Point-
Pillars student achieves 2.8 and 3.4 mAP improvements on BEV and 3D object
detection, outperforming its teacher by 0.9 and 1.8 mAP, respectively. Codes have
been released at https://github.com/RunpeiDong/PointDistiller .

1 Introduction

The growth in large-scale lidar datasets [13] and the achievements in end-to-end 3D representation
learning [47, 48] have boosted the developments of point cloud based segmentation, generation, and
detection [25, 49]. As one of the essential tasks of 3D computer vision, 3D object detection plays a
fundamental role in real-world applications such as autonomous driving cars [3, 5, 13] and virtual
reality [44]. However, recent research has shown a growing discrepancy between cumbersome 3D
detectors that achieve state-of-the-art performance and lightweight 3D detectors which are affordable
in real-time applications on edge devices. To address this problem, sufficient model compression
techniques have been proposed, such as network pruning [18, 36, 38, 71], quantization [7, 11, 41],
lightweight model design [21, 39, 52], and knowledge distillation [20].

Knowledge distillation, which aims to improve the performance of a lightweight student model by
training it to mimic a pre-trained and over-parameterized teacher model, has evolved into one of
the most popular and effective model compression methods in both computer vision and natural
language processing [20, 51, 53, 65]. Sufficient theoretical and empirical results have demonstrated
its effectiveness in image-based visual tasks such as image classification [20, 51], semantic segmenta-
tion [34] and object detection [1, 4, 28, 68]. However, compared with images, point clouds have their
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Figure 1: Results (mAP of moderate difficulty) of our methods on
4×, 8×, and 16× compressed students on KITTI. The area of dash
lines indicates the benefits of knowledge distillation.
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voxels with different number
of points inside them.

properties: (i) Point clouds inherently lack topological information, which makes recovering the local
topology information crucial for the visual tasks [26, 40, 64]. (ii) Different from images that have a
regular structure, point clouds are irregularly and sparsely distributed in the metric space [12, 14].

These differences between images and point clouds have hindered the image-based knowledge
distillation methods from achieving satisfactory performance on point clouds and also raised the
requirement to design specific knowledge distillation methods for point clouds. Recently, a few
methods have been proposed to apply knowledge distillation to 3D detection [16, 17, 54]. However,
most of these methods focus on the choice of student-teacher in a multi-modal setting, e.g., teaching
point clouds-based student detectors with an images-based teacher or vice versa, and still ignore the
peculiar properties of point clouds. To address this problem, we propose a structured knowledge
distillation framework named PointDistiller, which involves local distillation to distill teacher knowl-
edge in the local geometric structure of point clouds, and reweighted learning strategy to handle the
sparsity of point clouds by highlighting student learning on the relatively more crucial voxels.

Local Distillation Sufficient recent studies show that capturing and making usage of the semantic
information in the local geometric structure of point clouds have a crucial impact on point cloud
representation learning [48, 63]. Hence, instead of directly distilling the backbone feature of teacher
detectors to student detectors, we propose local distillation, which firstly clusters the local neighboring
voxels or points with KNN (K-Nearest Neighbours), then encodes the semantic information in local
geometric structure with dynamic graph convolutional layers [63], and finally distill them from
teachers to students. Hence, the student detectors can inherit the teacher’s ability to understand point
clouds’ local geometric information and achieve better detection performance.

Reweighted Learning Strategy One of the mainstream methods for processing point clouds is to
convert them into volumetric voxels and then encode them as regular data. However, due to the
sparsity and the noise in point clouds, most of these voxels contain only a single point. For instance,
as shown in Figure 2, on the KITTI dataset, around 68% voxels in point clouds contain only one
point, which has a high probability of being a noise point. Hence, the representative features in
these single-point voxels have relatively lower importance in knowledge distillation compared with
the voxels which contain multiple points. Motivated by this observation, we propose a reweighted
learning strategy, which highlights student learning on the voxels with multiple points by giving them
larger learning weights. Besides, the similar idea can also be easily extended to raw points-based
detectors to highlight knowledge distillation on the points which have a more considerable influence
on the prediction of the teacher detector.

Extensive experiments on both voxels-based and raw-points based detectors have been conducted
to demonstrate the effectiveness of our method over the previous seven knowledge distillation
methods. As shown in Figure 1, on PointPillars and SECOND detectors, our method leads to 4×
compression and 0.9∼1.8 mAP improvements at the same time. On PointRCNN, our method leads
to 8× compression with only 0.2 BEV mAP drop. Our main contributions be summarized as follows.

• We propose local distillation, which firstly encodes the local geometric structure of point
clouds with dynamic graph convolution and then distills them from teachers to students.

• We propose reweighted learning strategy to handle the sparsity and noise in point clouds. It
highlights student learning on the voxels, which have more points inside them, by giving
them higher learning weights in knowledge distillation.

• Extensive experiments on both voxels-based and raw points-based detectors have been
conducted to demonstrate the performance of our method over seven previous methods.
Besides, we have released our codes to promote future research.
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2 Related Work

2.1 Knowledge Distillation

The idea of training a small model with a large pre-trained model is firstly proposed by Buciluǎ et al.
for ensemble model compression [2]. Then, with the excellent breakthroughs of deep learning,
Hinton et al. propose the concept of knowledge distillation which strives to compress an over-
parameterized teacher model by transferring its knowledge to a lightweight student model [20].
Early knowledge distillation methods usually train the students to mimic the predicted categorical
probability distribution of teachers [20, 72]. Then, extensive methods have been proposed to learn
teacher knowledge in the backbone features [51] or its variants, such as attention [67, 68], relation [31,
43, 46, 61], task-oriented information [69] and so on. Following its success in classification, abundant
works have applied knowledge distillation to object detection [4, 28, 62, 68], segmentation [34],
image generation [22, 27, 29, 31, 50, 70], pre-trained language models [53, 65], semi-supervised
learning [24, 59] and lead to consistent effectiveness.

Knowledge Distillation on Object Detection Recently, designing specific knowledge distillation
methods to improve the efficiency and accuracy of object detection has become a rising and popular
topic. Chen et al. first propose to apply the naive prediction and feature-based knowledge distillation
methods to object detection [4]. Then, Wang et al. show that the imbalance between foreground
objects and background objects hinders knowledge distillation from achieving better performance
in object detection [62]. To address this problem, abundant knowledge distillation methods have
tried to find the to-be-distilled regions based on the ground-truth [62], detection results [10], spatial
attention [68], query-based attention [23] and gradients [15]. Moreover, recent methods have also
been proposed to distill the pixel-level and object-level relation from teachers to students [10, 35, 68].
Besides knowledge distillation for 2D detection, some cross-modal knowledge distillation have been
introduced to transfer knowledge from RGB-based teacher detectors to lidar-based student detectors
or vice versa [8, 16, 17, 54]. However, most of these methods focus on the choice of students and
teachers in a multi-modal framework, while the design of specific knowledge distillation optimization
methods on point clouds based pure 3D detection has not been well-explored.

2.2 3D Object Detection on Point Clouds
The rapid development of deep learning has firstly boosted the research in 2D object detection and
then recently raised the research trend in point clouds-based 3D object detection. PointNet [47] is
firstly proposed to extract the feature of points with multi-layer perception in an end-to-end manner.
Then, PointNet++ is further proposed to capture the local structures in a hierarchical fashion with
density adaptive sampling and grouping [48]. Zhou et al. propose VoxelNet, a single-stage detector
that divides a point cloud into equally spaced 3D voxels and processes them with voxel feature
encoding layers [75]. Then, SECOND is proposed to improve VoxelNet with sparse convolutional
layers and focal loss [66]. PointPillars is proposed to divide point clouds into several pillars and
then convert them into a pseudo image, which can be further processed with 2D convolutional
layers [25, 42]. Shi et al. propose PointRCNN, a two-stage detection method that firstly generates
bottom-up 3D proposals based on the raw point clouds and then refines them to obtain the final
detection results [55]. Afterward, Fast Point R-CNN and PV-RCNN are proposed to utilize both
voxel representation and raw point clouds to exploit their respective advantages [6, 56]. Recently,
Qi et al. propose to perform offboard 3D detection with point cloud sequences, which is able to
make use of the temporal points and achieve comparable performance with human labels [49]. The
graph convolutional neural network is another rising star in point cloud detection [57, 63]. Lin et al.
propose 3D-GCN to avoid the shift and scale changes in point clouds [33]. Zhou et al. propose
adaptive graph convolution, which generates adaptive kernels according to the learned features [74].

Efficient 3D Object Detectors Unfortunately, the significant 3D detection performance usually
comes at the expense of high computational and storage costs, making them unaffordable in real-time
applications such as self-driving cars. To address this issue, recent research attention has been paid
to designing efficient 3D detectors. Tang et al. propose to apply neural architecture search to 3D
detection by using sparse point-voxel convolution [58]. Li et al. propose Lidar-RCNN, which resorts
to a point-based approach and remedies the problem of uncorrected proposal sizes [32]. Liu et al.
propose voxel-point cnn to represent the 3D input data in points while performing the convolutions in
voxels to reduce the memory accessing consumption [37]. Recently, Li et al. propose to improve the
efficiency of graph convolution for point clouds by simplified KNN search and graph shuffling [30].

3



Figure 3: The computation of the importance score for voxels-based detectors and raw-points-based
detectors. The importance scores are later utilized to determine which voxel or point is utilized for
distillation and how they contribute to the distillation loss.

Figure 4: The details of our method. fT and fS : the feature encoding layers in the teacher and
student detectors. AT and AS : features of the sampled to-be-distilled voxels or points with top-N
largest importance score. CT and CS : the number of channels for features of the teacher and the
student detectors. GT and GS : the graph features of the teacher and student detectors. Based on the
pre-defined importance score, our method samples the relatively more crucial N voxels or points
from the whole point cloud, extracts their local geometric structure of them with dynamic graph
convolution, and then distills them in a reweighted manner. Please refer to Section 3 for more details.

3 Methodology

3.1 Preliminaries

Given a set of point clouds X = {x1, x2, ..., xn} and the corresponding label set Y =
{y1, y2, ..., ym}, the object detector can be formulated as F = f ◦ g, where f is the feature en-
coding layer to extract representation features from inputs and g is the detection head for prediction.
Then, the representation feature on the sample x can be written as f(x) ∈ Rn×C , where n indicates
the number of voxels for voxels-based detectors or the number of points for raw points-based detec-
tors. C indicates the number of channels. Besides, for voxels-based detectors, we define vij(x) = 1
if the j-th point of x belongs to the i-voxel else 0. Then, the number of points in the i-th voxel can be
denoted as

∑
j vij(x). Usually, knowledge distillation involves a to-be-trained student detector and a

pre-trained teacher detector, and we distinguish them with scripts S and T , respectively.

3.2 Our Method

Sampling Top-N To-be-distilled Voxels (Points) As discussed in previous sections, since the
point clouds are overwhelmingly sparse while the voxels are usually equally spaced, most of the
voxels only contain very few and even single point. Thus, these single-point voxels have much
less value to be learned by students in knowledge distillation. Even in raw points-based detectors,
there usually exist some points which are relatively more crucial and some points which are not
meaningful (e.g., the noise points). Thus, instead of distilling all the voxels or points in point
clouds, we propose to distill the voxels or points which are more valuable for knowledge distillation.
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Concretely, for voxels-based detectors, we define the importance score of i-th voxel as
∑
j vij(x),

which indicates the number of points inside it. For point-based detectors, motivated by previous
works which localized the crucial pixels in images with attention, we define the importance score
for i-th point as its permutation-invariant maximal value along the channel dimension, which can be
formulated as max (f(x)[i]). Based on the importance score, we can sample the top-N significant
voxels or points for knowledge distillation based on the importance score computed from fT (x). For
simplicity in writing, we denote the selected student and teacher features in top-N important voxels
or points as AT (x) ∈ RN×CT and AS(x) ∈ RN×CS , respectively, where CS and CT indicate the
number of channels in student and teacher features.

Extracting Local Geometric Information As pointed out by abundant previous works, the local
geometric information has a crucial influence on the performance of point cloud detectors [48, 63].
Thus, instead of directly distilling the representative feature, we propose local distillation which
extracts the local geometric information of point clouds with dynamic graph convolution layers
and distills it to the student detector. Concretely, denoting zi = A(x)[i] as the feature of the
i-th to-be-distilled voxel or point, we can build a graph based on this voxel or point and its K
neighboring voxels or points clustered by KNN (K-Nearest Neighbours). By denoting the features
of zi and its K − 1 neighbours as zi,1 and Ni = {zi,2, zi,3, ..., zi,K} respectively, motivated by
previous methods [47, 63], we firstly update the feature of each voxel (or point) in this graph by
concatenating them with the global centroid voxel (or point) feature zi,1, which can be formulated
as ẑi,j = cat

(
[zi,1, zi,j ]

)
for all zi,j ∈ Ni. Then, we apply a dynamic graph convolution as the

aggregation operation upon them, which can be formulated as Gi = γ(ẑi,1, ..., ẑi,K), where γ is the
aggregation operator. Following previous graph-based point cloud networks, we set γ as a nonlinear
layer with ReLU activation and batch normalization. Then the training objective of local distillation
can be formulated as

argmin
θS ,θγ

E x

[
1

N

N∑
i=1

∥∥GSi (x)− GTi (x)∥∥
]
, (1)

where θS indicates the parameters of student encoding layer fS . θγ = [θγS , θγT ] indicates the
parameters of dynamic graph convolution layers for the student and teacher detectors. Note that these
layers are trained with the student detector simultaneously and can be discarded during inference.

Reweighting Knowledge Distillation Loss Usually, compared with the teacher detector, the stu-
dent detector has much fewer parameters, implying inferior learning capacity. Thus, it is challenging
for the student detector to inherit teacher knowledge in all points or voxels. As discussed above, dif-
ferent voxels and points in point cloud object detection have different values in knowledge distillation.
Thus, we propose to reweight the learning weight of each voxel or point based on the importance
score introduced in previous paragraphs. Denote the learning weight for the N to-be-distilled as
φ ∈ RN . Similar with the importance score defined during sampling, we define the learning weight
of each graph as the maximal value on the corresponding features after a softmax function, which
can be formulated as φ = softmax

(
max(GT (x))/τ

)
, where τ is the temperature hyper-parameter

in softmax function. For voxels-based methods, we define φ as the number of points in the voxel
after a softmax function, which can be formulated as φi = softmax

(∑
j vi,j/τ

)
. Then, with the

reweighting strategy, the training objective of knowledge distillation can be formulated as

argmin
θS ,θγ

E x

[
1

N

N∑
i=1

φi ·
∥∥GSi (x)− GTi (x)∥∥

]
. (2)

As shown in the above loss function, with a higher φi, the knowledge distillation loss between student
and teacher features at the i-th graph will have a more extensive influence on the overall loss, and thus
student learning on the i-th graph can be highlighted. As a result, the proposed reweighting strategy
allows the student detector to pay more attention to learning teacher knowledge in the relatively
more crucial voxel graphs (point graphs). Moreover, Equation 2 also implies that our method is a
feature-based knowledge distillation method that is not correlated with the architecture of detectors
and the label set Y . Hence, it can be directly added to the origin training loss of all kinds of 3D object
detectors for model compression.
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Table 1: Experimental results of our method for BEV (Bird-Eye-View) object detection. F and P
indicate the number of float operations (/G) and parameters (/M) of the detector, respectively. mAP
indicates the mean average precision of moderate difficulty. KD indicates whether our method is
utilized. The reported result in the first line of each detector is the performance of the teacher detector.

Model F P KD
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

34.3 4.8 × 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3

9.0 1.3 × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
9.0 1.3 X 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2

2.5 0.3 × 91.3 84.8 82.2 50.1 44.4 41.6 74.2 56.1 52.5 61.8
2.5 0.3 X 92.5 85.2 81.9 50.8 45.8 42.5 77.2 59.5 55.6 63.5

SECOND

69.8 5.3 × 93.1 88.9 85.9 64.9 58.1 51.9 84.3 69.9 65.7 72.3

17.8 1.4 × 93.1 86.6 85.7 64.7 57.8 52.8 84.1 68.5 64.5 71.0
17.8 1.4 X 93.2 88.6 86.0 65.1 58.1 53.1 87.4 72.9 68.5 73.2

4.6 0.4 × 95.0 86.2 83.3 61.6 54.9 49.2 80.9 63.6 59.6 68.3
4.6 0.4 X 95.4 88.3 83.7 64.5 57.6 52.2 85.2 68.8 64.4 71.6

PointRCNN

104.9 4.1 × 95.0 86.7 84.3 69.8 64.5 58.1 92.8 74.6 70.4 75.3

13.7 0.5 × 93.5 85.9 83.5 71.6 65.4 59.1 91.1 71.0 67.2 74.1
13.7 0.5 X 93.3 85.7 83.5 74.0 67.2 60.5 94.6 72.3 67.9 75.1

7.1 0.3 × 95.8 85.4 81.7 72.9 65.5 58.6 91.8 69.3 65.9 73.4
7.1 0.3 X 95.2 84.3 81.7 72.6 64.8 57.7 92.6 72.9 68.5 74.0

4 Experiment

4.1 Experiment Setting

We have evaluated our method in both voxels-based object detector including PointPillars [25]
and SECOND [66], and the raw points based object detector including PointRCNN [55]. Most
experiments are conducted on KITTI [13] and nuScenes [3], which consist of samples that have
both lidar point clouds and images. Our models are trained with only the lidar point clouds. For
KITTI, we report the average precision calculated by 40 sampling recall positions for BEV (Bird’s
Eye View) object detection and 3D object detection on the validation split. Following the typical
protocol, the IoU threshold is set as 0.7 for class Car and 0.5 for class Pedestrians and Cyclists. We
have mainly compared our methods with seven previous knowledge distillation methods, including
methods proposed by Remero et al. [51], Zagoruko et al. [67], Tung et al. [31], Heo et al. [19],
Zheng et al. [73], Tian et al. [60], and Zhang et al. [68]. All the experiments are conducted with
mmdetection3d [9] and PyTorch [45]. We keep the training and evaluation settings in mmdetection3d
as default. The teacher model is the origin model before compression. The student model shares
the same architecture and depth as its teacher but with fewer channels. Following previous works,
the average precision of three difficulties and the three categories are reported as the performance
metrics [13]. Please refer to our codes in the supplementary material for more details.

4.2 Experimental Results

Table 1 and Table 2 show the performance of detectors trained with and without our method for
BEV detection and 3D detection, respectively. It is observed that: (i) Significant average precision
improvements on all kinds of detectors and all compression ratios for both BEV and 3D detection.
On average, 2.4 and 1.0 moderate mAP improvements can be observed for the voxel and raw points-
based detectors, respectively. On BEV and 3D detection, 1.9 and 1.9 moderate mAP improvements
can be obtained, respectively. (ii) On the BEV detection of PointPillars and SECOND detectors,
the 4× compressed and accelerated students trained with our method outperform their teachers by
0.9 and 0.9 mAP, respectively. On the 3D detection of PointPillars and SECOND detectors, the
4× compressed and accelerated students trained with our method outperform their teachers by 1.8
and 0.1 mAP, respectively. (iii) Consistent average precision boosts can be observed in detection
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Table 2: Experimental results of our method for 3D object detection. F and P indicate the number
of float operations (/G) and parameters (/M) of the detector, respectively. mAP indicates the mean
average precision of moderate difficulty. KD indicates whether our method is utilized. The reported
result in the first line of each detector is the performance of the teacher detector.

Model F P KD
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

34.3 4.8 × 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3

9.0 1.3 × 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
9.0 1.3 X 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1

2.5 0.3 × 83.1 69.8 65.4 44.0 38.7 35.3 70.9 52.1 48.7 53.5
2.5 0.3 X 83.7 69.8 65.3 45.3 40.3 36.5 72.7 54.7 51.1 54.9

SECOND

69.8 5.3 × 88.6 79.3 75.7 60.1 53.2 47.0 79.8 65.7 61.6 66.1

17.8 1.4 × 89.2 77.4 74.0 58.8 51.3 45.5 80.5 65.4 61.3 64.7
17.8 1.4 X 88.9 76.9 73.6 60.0 53.0 47.4 83.2 68.6 64.2 66.2

4.6 0.4 × 86.3 72.6 66.0 53.6 47.8 41.8 76.7 58.7 55.1 59.7
4.6 0.4 X 87.0 73.3 68.1 57.0 51.0 45.4 81.0 63.5 59.3 62.6

PointRCNN

104.9 4.1 × 92.1 80.1 77.4 66.8 60.3 54.3 92.1 72.3 67.8 70.9

13.7 0.5 × 89.8 76.8 72.7 67.9 60.9 54.0 88.1 68.0 64.4 68.6
13.7 0.5 X 91.4 75.6 72.9 70.1 63.5 56.1 92.0 69.8 65.4 69.6

7.1 0.3 × 89.8 75.3 70.7 68.7 60.7 53.4 91.1 67.2 63.9 67.7
7.1 0.3 X 89.6 75.6 72.6 69.4 61.0 53.5 91.0 70.2 65.5 69.0

))

Ours BEV

K N

Ours 3D Baseline 3D Baseline BEV

Figure 5: Hyper-parameters sensitivity study on
KITTI with 4× compressed PointPillars detctors.
mAP is measured on the moderate difficulty.

Figure 6: Visualization on the importance scores
for PointPillars. Red points indicate the voxels
with high importance scores.

results of all difficulties. For instance, on BEV detection of PointPillars students, 2.4, 2.3, and
2.3 mAP improvements can be observed for easy, moderate, and hard difficulties, respectively.
These observations demonstrate that our method can successfully transfer teacher knowledge to the
student detectors. (iv) Consistent average precision boosts can be observed in detection results of all
categories. For instance, on moderate BEV detection of PointPillars students, 0.6, 3.2 and 3.1 mAP
improvements can be obtained on cars, pedestrians and cyclists, respectively. (v) On PointRCNN,
on average 1.3 and 1.2 moderate mAP improvements can be observed on BEV and 3D detection,
respectively, indicating that our method is also effective for raw points-based detectors. In summary,
these experiment results demonstrate that our method can successfully transfer the knowledge from
teacher detectors to student detectors and lead to significant and consistent performance boosts.

Comparison with Other KD Methods Comparison between our method and previous knowledge
distillation methods is shown in Table 3. It is observed that: (i) Our method outperforms the previous
methods by a clear margin. On BEV and 3D detection, our method outperforms the second-best
knowledge distillation method by 1.5 and 1.9 moderate mAP, respectively. (ii) Our method achieves
the best performance for all categories of all difficulties. (iii) Besides, our method is the only
knowledge distillation method that enables the student detector to outperform its teacher detector.

Experiments on nuScenes Experiments of 2× and 4× compressed PointPillars on nuScenes are
shown in Table 4. It is observed that our method leads to 0.65 and 0.5 improvements on mAP and
NDS on average, respectively, indicating that our method is also effective on the large-scale dataset.
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Table 3: Comparison between our method and previous knowledge distillation methods on PointPil-
lars. The teacher and the student detectors have 34.3 and 9.0 GFLOPs, respectively. mAP indicates
the mean average precision of moderate difficulty.

Task Method
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BEV

Teacher w/o KD 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3

Student w/o KD 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
+ Romero et al. [51] 91.5 85.6 83.1 57.5 51.0 46.3 82.8 65.1 61.1 67.2
+ Zagoruyko et al. [67] 92.6 88.0 83.6 56.7 50.9 47.3 81.4 64.4 60.5 67.7
+ Zheng et al. [73] 92.7 87.9 83.2 57.7 51.0 46.8 78.1 61.8 57.9 66.9
+ Tung et al. [61] 92.8 88.0 83.3 54.5 48.7 45.2 84.2 64.3 60.7 67.0
+ Tian et al. [60] 92.7 87.8 83.2 56.6 50.4 46.8 80.3 61.9 57.9 66.7
+ Heo et al. [19] 92.6 87.9 83.5 57.6 51.0 46.8 78.1 61.8 57.8 66.9
+ Zhang et al. [68] 92.3 85.7 83.0 59.7 52.0 47.6 71.0 64.3 60.5 67.5
+ Ours 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2

3D

Teacher w/o KD 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3

Student w/o KD 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
+ Romero et al. [51] 84.9 73.4 70.6 50.9 44.2 39.3 75.9 58.5 54.6 58.7
+ Zagoruyko et al. [67] 87.6 75.7 71.4 51.0 44.8 40.7 74.4 57.8 54.2 59.5
+ Zheng et al. [73] 87.3 75.5 71.5 52.6 45.6 40.8 74.9 58.6 54.9 59.9
+ Tung et al. [61] 87.5 76.0 71.3 50.1 43.3 39.2 79.2 59.5 55.3 59.6
+ Tian et al. [60] 85.6 74.2 71.0 49.5 43.5 39.0 76.4 58.4 54.7 58.7
+ Heo et al. [19] 87.7 76.1 71.7 52.6 45.6 40.8 74.9 58.6 54.9 60.1
+ Zhang et al. [68] 87.5 75.8 71.6 53.4 45.8 40.9 76.1 59.0 55.2 60.2
+ Ours 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1

Table 4: Experimental results on nuScenes dataset with PointPillars. CR indicates the compression
ratio. KD indicates whether knowledge distillation is utilized. A higher mAP and NDS, and a lower
mATE, mASE, mAOE, mAVE and mAAE indicate better performance.

Model CR KD mAP(↑) NDS(↑) mATE(↓) mASE(↓) mAOE(↓) mAVE(↓) mAAE(↓)

PointPillars
2 × 36.0 50.5 44.8 28.3 51.2 32.9 18.0

X 36.7 51.0 44.9 28.1 51.0 31.7 17.4

4 × 32.2 47.3 46.7 28.4 60.1 35.9 17.2
X 32.8 48.6 45.2 28.4 52.3 35.1 17.3

5 Discussion

5.1 Ablation Study and Sensitivity Study

Ablation Study The proposed PointDistiller is mainly composed of two components, including the
reweighted learning strategy (RL) and local distillation (LD). Ablation studies with 4× compressed
PointPillars students on KITTI are shown in Table 5. It is observed that: (i) 2.0 and 1.9 mAP
improvements can be obtained by only using the reweighted learning strategy to distill the backbone
features on BEV detection and 3D detection, respectively. (ii) 2.3 and 2.5 mAP boosts can be
gained by using local distillation without reweighted learning on BEV detection and 3D detection,
respectively. (iii) By combining the two methods together, 0.5 and 0.9 further mAP improvements
can be achieved on BEV detection and 3D detection, respectively. These observations indicate that
each module in PointDistiller has its individual effectiveness and their merits are orthogonal. Besides,
they also implies that the proposed local distillation and reweighted learning may be combined with
other knowledge distillation methods to achieve better performance.

Sensitivity Study Our method mainly introduces two hyper-parameters, K, and N , which indicate
the number of nodes in a graph for local distillation, and the number of to-be-distilled voxels (points)
respectively. A hyper-parameter sensitivity study on the two hyper-parameters is shown in Figure 5.
It is observed that our method with different hyper-parameter values consistently outperforms the
baseline by a large margin, indicating our method is not sensitive to hyper-parameters.
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Table 5: Ablation study on 4× compressed PointPillars students. LD and RL indicates local distillation
and the reweighted learning strategy, respectively. mAP is measured on the moderate difficulty.

Model Task LD RL
Car Pedestrians Cyclists

mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

BEV

× × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
X × 92.7 88.2 83.7 58.2 51.0 47.0 84.3 66.9 63.1 68.7
× X 93.1 88.5 85.7 55.6 49.6 45.7 84.2 67.3 62.9 68.4
X X 93.1 89.0 86.3 59.8 52.8 48.2 83.8 65.8 62.0 69.2

3D

× × 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
X × 87.6 76.0 71.5 52.6 45.9 40.7 79.8 61.6 58.0 61.2
× X 87.8 76.5 72.0 49.4 43.7 39.4 78.7 61.5 57.5 60.6
X X 88.1 76.9 73.8 54.6 47.5 42.3 80.3 62.0 58.8 62.1
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Figure 7: Qualitative comparison between the detection results of students trained with and without
knowledge distillation. Green boxes and blue boxes indicate the bounding boxes from the prediction
results and the ground-truths. Red points are the points insides the prediction bounding boxes.

5.2 Visualization Analysis

Visualization on Importance Score In the reweighted learning strategy, the importance scores
of each voxel or point are utilized to determine whether it should be distilled. Visualization of the
importance scores in PointPillars is shown in Figure 6. It is observed that they successfully localize
the foreground objects (e.g., cars and pedestrians) and the hard-negative objects (e.g., walls).

Visualization on Detection Results In this subsection, we have visualized the detection results of
the student model trained with and without our method for comparison. Note that both student models
are 4× compressed PointPillars trained on KITTI. The green and blue boxes indicate the boxes of the
model prediction and the ground truth. As shown in Figure 7, the student model without knowledge
distillation tends to have much more false-positive (FP) predictions. In contrast, this excessive FP
problem is alleviated in the student trained with our method. This observation is consistent with our
experimental results that the distilled PointPillars has 3.4 mAP improvements.

6 Conclusion

This paper proposes a structured knowledge distillation framework named PointDistiller for point
clouds-based object detection. It is composed of local distillation to first encode the semantic
information in local geometric structure in point clouds and distill it to students, and reweighted
learning to handle the sparsity and noise in point clouds by assigning different learning weights
to different points and voxels. Extensive experiments on both voxels-based detectors and raw
points-based detectors have demonstrated the superiority over seven previous knowledge distillation
methods. Our ablation study has shown the individual effectiveness of each module in PointDistiller.
Besides, the visualization results demonstrate that PointDistiller can significantly improve detection
performance by reducing false-positive predictions, and the importance score is able to reveal the
more significant voxels. To the best of our knowledge, this work initiates the first step to exploring
KD for efficient point clouds-based 3D object detection, and we hope this could spur future research.
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