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Abstract

Micro-expressions are spontaneous, rapid and subtle fa-
cial movements that can neither be forged nor suppressed.
They are very important nonverbal communication clues,
but are transient and of low intensity thus difficult to rec-
ognize. Recently deep learning based methods have been
developed for micro-expression (ME) recognition using fea-
ture extraction and fusion techniques, however, targeted
feature learning and efficient feature fusion still lack fur-
ther study according to the ME characteristics. To address
these issues, we propose a novel framework Feature Repre-
sentation Learning with adaptive Displacement Generation
and Transformer fusion (FRL-DGT), in which a convolu-
tional Displacement Generation Module (DGM) with self-
supervised learning is used to extract dynamic features from
onset/apex frames targeted to the subsequent ME recogni-
tion task, and a well-designed Transformer Fusion mecha-
nism composed of three Transformer-based fusion modules
(local, global fusions based on AU regions and full-face fu-
sion) is applied to extract the multi-level informative fea-
tures after DGM for the final ME prediction. The extensive
experiments with solid leave-one-subject-out (LOSO) eval-
uation results have demonstrated the superiority of our pro-
posed FRL-DGT to state-of-the-art methods.

1. Introduction

As a subtle and short-lasting change, micro-expression
(ME) is produced by unconscious contractions of facial
muscles and lasts only 1/25th to 1/5th of a second, as illus-
trated in Figure 1, revealing a person’s true emotions under-
neath the disguise [8,35]. The demands for ME recognition
technology are becoming more and more extensive [2, 18],

*Corresponding author.

Figure 1. A video sequence depicting the order of which onset,
apex and offset frames occur. Sample frames are from a “surprise”
sequence in CASME II. Our goal is to design a novel feature rep-
resentation learning method based on an onset-apex frame pair for
facial ME recognition. (Images from CASME II ©Xiaolan Fu)

including multimedia entertainment, film-making, human-
computer interaction, affective computing, business nego-
tiation, teaching and learning, etc. Since MEs have invol-
untary muscle movements with short duration and low in-
tensity in nature, the research of ME is attractive but diffi-
cult [1, 22]. Therefore, it is crucial and desired to extract
robust feature representations to conduct ME analyses.

A lot of feature representation methods are already avail-
able including those relying heavily on hand-crafted fea-
tures with expert experiences [4, 11, 25] and deep learning
techniques [33, 36, 40]. However, the performance of deep
learning networks is still restricted for ME classification,
mainly due to the complexity of ME and insufficient train-
ing data [28, 47]. Deep learning methods can automatically
extract optimal features and offer an end-to-end classifica-
tion, but in the existing solutions, dynamic feature extrac-
tion is only taken as a data preprocessing strategy. It is not
integrated with the subsequent neural network, thus failing
to adapt the generated dynamic features to a specific train-
ing task, leading to redundancy or missing features. Such
shortcoming motivates us to design a dynamic feature ex-
tractor to adapt the subsequent ME recognition task.
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In this paper, we propose a novel end-to-end feature rep-
resentation learning framework named FRL-DGT, which
is constructed with a well-designed adaptive Displacement
Generation Module (DGM) and a subsequent Transformer
Fusion mechanism composed of the Transformer-based lo-
cal, global, and full-face fusion modules, as illustrated in
Figure 2, for ME feature learning to model global informa-
tion while focusing on local features. Our FRL-DGT only
requires a pair of images, i.e., the onset and the apex frames,
which are extracted from the frame sequence.

Unlike the previous methods which extract optical flow
or dynamic imaging features, our DGM and corresponding
loss functions are designed to generate the displacement be-
tween expression frames, using a convolution module in-
stead of the traditional techniques. The DGM is involved
in training with the subsequent ME classification module,
and therefore its parameters can be tuned based on the feed-
back from classification loss to generate more targeted dy-
namic features adaptively. We shall emphasize that the la-
beled training data for ME classification is very limited and
therefore the supervised data for our DGM is insufficient.
To handle this case, we resort to a self-supervised learning
strategy and sample sufficient additional random pairs of
image sequence as the extra training data for the DGM, so
that it is able to fully extract the necessary dynamic features
adaptively for the subsequent ME recognition task.

Regarding fusing the dynamic features extracted from
DGM, we first adopt the AU (Action Unit) region partition-
ing method from FACS (Facial Action Coding System) [49]
to get 9 AUs, and then crop the frames and their displace-
ments into blocks based on the 9 AUs and the full-face re-
gion as input to the Transformer Fusion. We argue that the
lower layers in the Transformer Fusion should encode and
fuse different AU region features in a more targeted way,
while the higher layers can classify MEs based on the infor-
mation of all AUs. We propose a novel fusion layer with at-
tentions as a linear fusion before attention mechanism [45],
aiming at a more efficient and accurate integration of the
embedding vectors. The fusion layers are interleaved with
Transformer’s basic blocks to form a new multi-level fusion
module for classification to ensure it to better learn global
information and long-term dependencies of ME.

To summarize, our main contributions are as follows:

• We propose a novel end-to-end network FRL-DGT
which fully explores AU regions from onset-apex pair
and the displacement between them to extract compre-
hensive features via Transformer Fusion mechanism
with the Transformer-based local, global, and full-face
feature fusions for ME recognition.

• Our DGM is well-trained with self-supervised learn-
ing, and makes full use of the subsequent classifica-
tion supervision information in the training phase, so

that the trained DGM model is able to generate more
targeted ME dynamic features adaptively.

• We present a novel fusion layer to exploit the linear
fusion before attention mechanism in Transformer for
fusing the embedding features at both local and global
levels with simplified computation.

• We demonstrate the effectiveness of each module with
ablation study and the outperformance of the proposed
FRL-DGT to the SOTA methods with extensive exper-
iments on three popular ME benchmark datasets.

2. Related Works
Micro-expression Recognition related technologies [1,

22,23,36,43] mainly fall into two types. One category [25]
(e.g., EMRNet [26], STSTNet [24] and DSSN [15]) uses
only onset and apex frames. Dynamic features (e.g., optical
flow [11]) between the two frames are extracted and fed into
a 2D CNN, reducing the computation cost while retaining
most of the features [14, 33, 48]. In the other category, a
sequence of dynamic feature maps between every two ad-
jacent frames are extracted and learned by a time series
network or a 3D CNN (e.g., ELRCN [16], STRCN-A [41]
and 3DFlowNet [19]), taking the spatio-temporal features
from the whole sequence as input. The entire image se-
quence can also be compressed into a single dynamic fea-
ture map (e.g., dynamic imaging [4,40]) and then processed
(e.g., LEARNet [40] and AffectiveNet [39]), maintaining
both high-level and micro-level information. However, the
LOSO validation accuracy of networks based on image se-
quences is generally lower than those using image pairs as
input, probably because the information redundancy makes
it difficult to focus on the most important features. Fol-
lowing the mainstream methods, our FRL-DGT model also
takes an onset-apex frame pair as input, but we still extend
it on the whole sequence to validate its superiority.

Dynamic Features are good at capturing subtle changes
existing in the frame sequences. As a common type, optical
flow and its variants (e.g., Bi-WOOF [25] and MDMO [27])
can estimate the direction and magnitude of the displace-
ment between two frames and extract the inter-frame mo-
tion information. Another useful type is dynamic image [4],
which is a single RGB image obtained by compressing both
the spatial information and temporal dynamic features from
the image sequence. To some extent, both these two kinds
of dynamic features have been successfully applied to ME
recognition [25, 40]. Instead of using the common dynamic
features, we design an adaptive DGM into the end-to-end
pipeline so that we are able to extract the more targeted dy-
namic features for ME classification.

Visual Transformers [3, 6, 7, 38] have evolved rapidly
with powerful variants developed for image and video clas-
sification. The input frames are split into evenly divided



Figure 2. The overview of FRL-DGT which is an end-to-end structure. Given an input video clip, we firstly crop the front face regions and
then select an onset-apex pair of frames as the input of Displacement Generation Module (DGM) to calculate the displacement adaptively.
The Transformer Fusion composed of three modules, i.e., local fusion module, global fusion module, and full-face fusion module, takes
the onset-apex pair and the displacement between them as input to extract the final feature representation via both patch and integral
feature fusion with Transformer for classification on ME categories. In addition, the random pairs of frames are used as auxiliary data to
self-supervise the training of DGM. (Images from CASME II ©Xiaolan Fu)

fixed-size patches, which are linearly projected into tokens
and fed into a Transformer encoder. Obviously, such di-
vision may divide the key parts into different patches, and
is independent of image content. Inspired by Transformer
iN Transformer (TNT) [13] and Swin Transformer [29], we
take AU regions as input to our Transformer Fusion to ex-
tract local features and learn global information.

3. Proposed Method
We propose a novel end-to-end ME recognition network,

named FRL-DGT, as shown in Figure 2. It takes an onset-
apex image pair from a frame sequence as input, and gener-
ates displacement features between them through the DGM
trained with self-supervision (Section 3.1). The displace-
ment is concatenated with the corresponding onset-apex
pair, cropped according to the AU regions and full-face re-
gion, and then fed into the Transformer Fusion (Section 3.2)
to obtain strong feature representation for ME classification.

3.1. Displacement Generation Module with Self-
supervised Learning

The Displacement Generation Module (DGM) here is
designed to extract the adaptive dynamic features for the
specific ME task. It takes the onset-apex image pair as input
and outputs a pixel displacement feature map D between

the two frames. The structure of DGM follows an encoder-
decoder style, first downsampling the high-resolution input
images to obtain low-dimensional dynamic features, and
then upsampling them to obtain displacements between im-
age pairs, as shown in Figure 2. The basic block in DGM is
a stack of convolutional layers, batch normalization layers,
and nonlinear activation layers. Note that we normalize the
displacements before output, increasing the intensity of mi-
nor expressions and decreasing the intensity of major ones,
which plays a role of adaptive expression adjustment.

Similar to optical flow features, the displacement values
represent the relative pixel position shifts in x and y direc-
tions from onset frame to apex frame. To limit the range of
movable pixel positions and make the model easier to learn,
we multiply the output displacement in the range [-1, 1] by a
scaling factor α. Three loss components are set for the out-
put displacement: reconstruction loss Lrec, normalization
loss Lnm, and smoothing loss Lsm.

Let Fonset be the onset frame, Fapex be the original
apex frame, Dx,y be the displacement value at (x, y), and
Gs(Fonset, D) represents the approximate apex frame ob-
tained by bilinear sampling the onset frame according to
the generated displacement D. That is, bilinear sampling
moves the pixel at location (x, y) in the onset frame to
(x+Dx

x,y , y+Dy
x,y) of the approximate apex frame. Then



(a) (b) (c) (d) (e)
Figure 3. Visualization of the generated displacement on three ME
categories: surprise, positive, and negative (from top to bottom).
On each row from left to right are (a) Onset, (b) Apex, (c) Dynamic
image, (d) Optical flow, and (e) Our displacement, respectively.
(Images from CASME II ©Xiaolan Fu)

the displacement related loss LDGM is calculated by:

Lrec = |Gs(Fonset, D)− Fapex|, (1)

Lnm =
1

w × h

w−1∑
x=0

h−1∑
y=0

|Dx,y|, (2)

Lsm =

∑h−1
y=0

∑w−1
x=1 |Dx,y −Dx−1,y|
h× (w − 1)

+∑w−1
x=0

∑h−1
y=1 |Dx,y −Dx,y−1|
w × (h− 1)

, (3)

LDGM = λrecLrec + λnmLnm + λsmLsm, (4)

where (h, w) is the size of images, λrec, λnm and λsm are
different weights assigned to each loss component.

Note that only LDGM is not enough to generate the dy-
namic features specific for ME recognition, we have to com-
bine it to classification lossLcls together into the end-to-end
training. To avoid the underfitting issue due to the limited
ME data samples, we resort to a self-supervised learning
strategy by sampling sufficient number of image pairs with
the LDGM loss applied only. It is worthy mentioning that
self-supervision here is very critical due to the number of
training images in the field of ME recognition.

To make it easy to understand our DGM module, we vi-
sualize the generated displacements in Figure 3. Our gener-
ated displacement is more targeted to AU regions and more
sensitive to capture the subtle changes of related MEs.

3.2. Transformer Fusion on Onset-Apex Pair and
Extracted Displacement

3.2.1 AU Regions

AU regions are divided with reference to the rules in [30],
i.e., 68 landmark points are obtained using the dlib pack-
age, and the face is divided into 43 basic region-of-interest

(RoIs). As shown in Figure 4, 9 AUs are selected and each
AU corresponds to multiple RoIs based on the relationship
between MEs and facial muscle movements [9, 10].

In order to make the size of each bounding box appro-
priate, AU regions #1, #3, and #5 (marked in red, yellow,
and blue, respectively in Figure 4) are all divided into left
and right parts of each. AU regions #1 and #2 are mainly
concerned with changes above the eyes, such as eyebrow
lifting and frowning. AU regions #3 and #4 are responsible
for changes in the middle of the face, around the nose and
lower eyelids. While the changes at the mouth, chin and
cheeks are focused on by AU regions #5 and #6.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)
Figure 4. Visualization of 9 AUs as input of Transformer Fusion
module. (a) AU region #1 left, (b) AU region #1 right, (c) AU
region #2, (d) AU region #3 left, (e) AU region #3 right, (f) AU
region #4, (g) AU region #5 left, (h) AU region #5 right, and (i)
AU region #6. (Images from CASME II ©Xiaolan Fu)

3.2.2 Feature Fusion Modules with Transformer

The three Transformer-based feature fusion modules (local,
global and full-face fusions) perform learning and fusion
of embedding vectors in a hierarchical manner based on K
cropped AU regions and the full-face region. The target AU
boxes can be set to different resolutions, and the i-th AU
box corresponds to size (Hi, Wi). The number of channels
M is the same for all AU regions (gray or colorful), which
is equal to that of the input feature map.

Similar to the method in Vision Transformer (ViT) [7]
with patch size P×P , we divide each AU xr ∈ RHi×Wi×M

into a sequence of image patches xp ∈ RN×P×P×M , where
N = HiWi/P

2 is the resulting number of patches. The
linear projection maps each patch to a C-dimensional em-
bedding vector (i.e., vector length is C) without using the
class token. Then both local and global feature fusions are
applied to the selected AUs to obtain strong feature repre-
sentation for ME classification, as shown in Figure 2.

Fusion with Attention. Each embedding vector is dot-
multiplied with the weight matrices to obtain the query, key
and value, which are all C-dimensional vectors. For merg-
ing, the vectors of N × C output from the attention layer
can be mapped to C dimensions by a linear transformation,
as shown in Figure 5 (a). In contrast, for the fusion layer



(a) Fusion after attention

(b) Fusion before attention

Figure 5. Comparison of attention and fusion mechanisms. Differ-
ent from the original attentions with (a) linear fusion, our proposed
fusion layer (b) obtains the linear mapped queries first, which has
the advantages of reducing noise and simplifying computation.

in Figure 5 (b), we perform linear mapping to the queries
of each key before dot product to remove the influence of
noise, then pass it through a Batch Normalization layer and
a Softmax function to obtain a probability vector that repre-
sents the relative importance of it in overall sequence, and
the probabilities are used to weight the sum of all values.

The fusion layer adopts a multi-head mechanism that al-
lows the model to learn different importance distributions
of embedding vectors in multiple subspaces. For each head,
we set c = C/h, where h is the number of attention heads.
Packing the k-th head part (h parts in total) of the embed-
ding vector of queries, keys and values together into matri-
ces Q ∈ Rm×c, K ∈ Rn×c and V ∈ Rn×c respectively
(Note that m = n in our case), the fused embedding vector
of the k-th head is obtained by:

W raw = Lin([Q1, Q2, ..., Qm]) ·KT , (5)

headk = Softmax(BN(W raw)) · V, (6)

where Lin performs the linear transformation of Q, and
BN stands for the batch normalization layers. The final
fusion result is obtained by concatenating the fused embed-
ding vector F from h heads:

F = Concat(head1, . . . , headh), (7)

Note that when all weights of linear mappings are equal,
it corresponds to an averaging operation. The fusion before
attention mechanism is used in the fusion layers of local,
global and full-face modules in Transformer Fusion.

Local Fusion Module. The first level contains K local
modules, and different AUs are processed by different local
modules respectively. The i-th local module performs fea-
ture extraction on the N patches of the i-th AU and fuses
them into a local embedding vector that contains the spatial
(onset-apex pair) and dynamic (displacement) features.

Global Fusion Module. The second level contains a
spatial module that learns and fuses the K local embedding
vectors outputted from the previous level to obtain the ex-
pression information contained in each frame, represented
by a global embedding vector.

Full-face Fusion Module. In addition to the hierarchi-
cal features of AUs, we perform attention learning and spa-
tial feature fusion on entire face images to obtain full-face
features as auxiliary classification information. Note that
each module in local, global and full-face feature fusions
consists of an Attn block for feature learning and a fusion
layer for information synthesis. Attention Learning (Attn)
block is a stack of multiple Transformer layers, including
Layer Normalization, Multi-head Attention and Multi-layer
Perceptron. The resulting embedding vector is fed into the
subsequent fully connected layers for ME classification.

Discussion: Compared to CNN networks, basic Trans-
former structures lack translation equivariance and locality,
thus generalizing poorly when the amount of training data
is insufficient. To overcome the weakness, we calibrate the
face to a fixed position and size before performing recogni-
tion, so that we do not need to pay much attention to rotation
and translation invariance. Then we build the Transformer
architecture in the form of multi-level fusion, which allows
better focus on local features. Moreover, linear fusion be-
fore attention can suppress noise and thus is beneficial to er-
ror elimination, meanwhile, our method reduces the amount
of calculation by early using a vector instead of a matrix.

3.3. Implementation Details

Each of the selected K = 9 AUs is with a size of (90,
90), the patch size is (18, 18), and the number of patches is
N = 25. The dimension C of embedding vectors is 256,
while both the attention and fusion layers use h = 8 heads.
In the formulas of DGM, we take λrec = 10, λnm = 1,
λsm = 0.2, and displacement scaling factor α = 0.2. The
batch size is 32, and the optimizer is Adam with an initial
learning rate of 0.002 for DGM, and the Adam with cosine
annealing strategy for Transformer Fusion. The gradient in
DGM back-propagated from the classification loss is scaled
by 10−6 to prevent it from being dominant.

Note that to increase the amount of image pairs for train-
ing and improve the sensitivity of our network to the subtle
expression changes, we use MagNet [32] to augment the
datasets as in [17], and also perform a randomization oper-
ation: select a frame before or after the original apex frame
randomly when loading the data for training.

4. Experiments
4.1. Datasets and Metrics

Since the Composite Database Evaluation (CDE) is com-
monly used for evaluation and comparison in the field



Method Year Type
Full SMIC Part SAMM Part CASME II Part

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [44] 2014 Hand-Crafted 0.588 0.579 0.200 0.528 0.395 0.410 0.703 0.743
Bi-WOOF [25] 2018 Hand-Crafted 0.630 0.623 0.573 0.583 0.521 0.514 0.781 0.803
CapsuleNet [33] 2019 Deep-Learning 0.652 0.651 0.582 0.588 0.621 0.599 0.707 0.702
STSTNet [24] 2019 Deep-Learning 0.735 0.761 0.680 0.701 0.659 0.681 0.838 0.869
RCN-A [42] 2020 Deep-Learning 0.743 0.719 0.633 0.644 0.760 0.672 0.851 0.812
GEME [31] 2021 Deep-Learning 0.740 0.750 0.629 0.657 0.687 0.654 0.840 0.851
MERSiamC3D [51] 2021 Deep-Learning 0.807 0.799 0.736 0.760 0.748 0.728 0.882 0.876
FeatRef [52] 2022 Deep-Learning 0.784 0.783 0.701 0.708 0.737 0.716 0.892 0.887

FRL-DGT 2022 Deep-Learning 0.812 0.811 0.743 0.749 0.772 0.758 0.919 0.903

EMRNet [26]* 2019 Deep-Learning 0.789 0.782 0.746 0.753 0.775 0.715 0.829 0.821
FGRL-AUF [17]* 2021 Deep-Learning 0.791 0.793 0.719 0.722 0.775 0.789 0.880 0.871
ME-PLAN [50]* 2022 Deep-Learning 0.772 0.786 0.713 0.726 0.716 0.742 0.863 0.878

Table 1. Performance comparison of the SOTA methods and our proposed FRL-DGT in terms of UF1 and UAR. The best and second best
results are marked in red and blue colors, respectively. Methods with * use different datasets, and they have underlined higher scores.

of ME recognition because of the small amount of col-
lected samples, we use 3 ME datasets CASME II [44],
SAMM [5] and SMIC [21,37] for composite training1. And
we adopt the same way as in MEGC2019 Challenge [34]
to unify different category settings across datasets, map-
ping them to 3 general classes: Negative{ “Repression”,
“Anger”, “Contempt”, “Disgust”, “Fear”, “Sadness” }, Pos-
itive{“Happiness”}, and Surprise{“Surprise”}. Unrelated
or undefined emotion categories such as “Others” are omit-
ted to reduce confusion for model training.

The 3 ME datasets have 442 image sequences from 68
subjects, 25,469 images in total with 58 averaged frames per
sequence. To clarify, the onset (starting time of ME), apex
(time with the highest intensity of ME), and offset (end-
ing time of ME) frames are already labeled and provided
in the benchmark datasets SAMM and CASME II. We fol-
low [26] to obtain the apex frames of image sequences in
SMIC, which are not officially labeled. For real scenarios,
there are a lot of proven methods to locate the onset, apex,
and offset frames from a video [1, 20]. After obtaining the
key frames, we perform face calibration with dlib package
to handle image-plane rotation and translation.

Regarding the evaluation metrics, we follow [26, 33],
taking Unweighted F1-score (UF1) and Average Recall
(UAR) with leave-one-subject-out (LOSO) cross validation
to evaluate the ME recognition performance.

4.2. Comparison to State-of-the-art Methods

The comparative SOTA methods include representative
works of two main ME recognition categories and main-
stream approaches based on deep learning in recent years.
As shown in Table 1, both UF1 and UAR of our framework

1The three datasets were received and exclusively accessed by the au-
thor Zhijun Zhai and Jianhui Zhao for purely academic research only. The
author Zhijun Zhai produced the experimental results in this paper. Meta
did not have access to the datasets as part of this research.

(a) EMRNet (From left to right: Full, SMIC, SAMM, and CASME II)

(b) FGRL-AUF (From left to right: Full, SMIC, SAMM, and CASME II)

(c) FRL-DGT (From left to right: Full, SMIC, SAMM, and CASME II)

Figure 6. The feature distributions of EMRNet, FGRL-AUF and
our proposed FRL-DGT on the evaluation datasets.

FRL-DGT are higher than 0.810. FRL-DGT improves by
0.62% and 1.50% on UF1 and UAR over MERSiamC3D,
the second best deep learning based ME classifier.

There are other existing efficient methods [12, 46], e.g.,
EMRNet [26] introduces CK+ dataset to implement do-
main adaptation, FGRL-AUF [17] uses only CASME II and
SAMM datasets for the annotated AUs, and ME-PLAN [50]
constructs a pre-training by combining macro-expression
samples in CK+, Oulu-CASIA and DFEW datasets. They
may have higher scores on certain dataset, but their full
scores are still less than our FRL-DGT. As shown in Fig-
ure 6, the distribution of extracted features from our FRL-
DGT is more separated than those of EMRNet and FGRL-
AUF, resulting in better classification results. Taken to-
gether, our network has excellent results in the same type
of methods and is highly competitive among them.



Method DGM AU
Regions

Full-face
Fusion

Global
Fusion

Local
Fusion Fu-B-Attn

Full SMIC Part SAMM Part CASME II Part
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

M0 →OpticalFlow X X X X X 0.741 0.718 0.671 0.662 0.695 0.662 0.846 0.834
M1 →OF+NORM X X X X X 0.758 0.739 0.671 0.667 0.778 0.730 0.869 0.831
M2 →DynamicImage X X X X X 0.739 0.720 0.684 0.679 0.762 0.745 0.759 0.716
M3 w/o self-supervise X X X X X 0.778 0.777 0.707 0.718 0.697 0.677 0.914 0.889

M4 X X X X X →Fu-A-Attn 0.797 0.792 0.746 0.746 0.734 0.719 0.898 0.885

M5 X →3x3 image patches X X X X 0.765 0.765 0.665 0.673 0.754 0.734 0.894 0.876
M6 X X × X X X 0.773 0.774 0.689 0.698 0.758 0.704 0.876 0.881
M7 X X X X × X 0.781 0.765 0.741 0.745 0.725 0.672 0.848 0.838
M8 X X X × X X 0.782 0.773 0.701 0.706 0.711 0.671 0.904 0.886
M9 X X X X X X 0.812 0.811 0.743 0.749 0.772 0.758 0.919 0.903

Table 2. Ablation study of our proposed network. “→X” indicates replacing the corresponding component with X. X and × represent yes
or no, respectively. The best and second best results are marked in red and blue colors, respectively.

0.713

0.108

0.179

Negative

Negative Positive Surprise
Displacement Apex Frame Local Attention with Global WeightsLocal Attention

…
…

×T

…

Onset

Apex

Figure 7. Visualization of the weights in fusion layers. (Images from CASME II ©Xiaolan Fu)

4.3. Ablation Study

Displacement Generating Module. The superiority of
DGM over the two conventional methods is demonstrated
in Table 2, where DynamicImage stands for dynamic imag-
ing method and OpticalFlow stands for optical flow method.
The ME performance by replacing DGM with optical flow
or dynamic imaging is lower than that of FRL-DGT, which
is an end-to-end network combining DGM and Transformer
Fusion. We also replace DGM with the normalized Opti-
calFlow (OF+NORM), except for the boost of accuracy on
SAMM by NORM, the overall performance is still inferior
to that of DGM. The dynamic features obtained by the three
approaches are visualized in Figure 3. It can be seen that
all the three dynamic features can highlight the changing
regions, but the displacement generated by DGM can be
automatically adjusted according to the classification loss,
obtaining additional hidden information. Thus, the follow-
ing Transformer Fusion module can carry on more objective
learning and get more reliable classification results. From
M3 and M9 in Table 2, we can also find that self-supervised
learning is very useful for DGM, helps improve the full UF1
score significantly from 0.778 to 0.812 by 4.37%, and the
UAR score significantly from 0.777 to 0.811 by 4.38%.

Transformer Fusion. The fusion layer with linear fu-
sion before attention (Fu-B-Attn) of M9 is replaced with
a normal linear fusion after attention (Fu-A-Attn) of M4.
Comparison between M4 and M9 in Table 2 demonstrates
that our Fu-B-Attn merges embedding vectors in a more ef-
fective way. For runtime, Fu-A-Attn takes 50.8ms while Fu-

B-Attn only needs 47.6ms to run all fusions, which proves
that our Fu-B-Attn can simplify computation.

Based on the results of M6, M7, and M8, there are contri-
butions from three fusion modules in Transformer Fusion,
i.e., local fusion module, global fusion module, and full-
face fusion module, respectively. Figure 7 plots the original
weight distribution in local fusion layer with each AU re-
gion and the weight distribution after global fusion, which
shows that the global fusion further adjusts the attention to
make it more focused on the eyes and mouth regions. Note
that we compress the global fusion weights while maintain-
ing the comparison order to facilitate visualization.

AU Regions. We explore the difference between using 9
different AUs and using 3×3 image patches divided evenly
as input. From M5 and M9 shown in Table 2, we can clearly
see that using specific AUs allows the Transformer Fusion
to perform more targeted learning, where the lower layers
can focus on extracting features from individual AUs, while
the higher layers can classify based on information of all
AU regions, resulting in better performance.

4.4. Discussions

Extension of FRL-DGT on the Whole Sequence. For
the classification of an expression sequence, we extend our
FRL-DGT to FRL-DGT-S, in which the input data has an
additional time dimension and the sequence is converted to
T frames by the Temporal-Interpolation-Model (TIM) [53].
The onset frame is concatenated with all other frames sep-
arately to obtain a sequence containing T − 1 onset-other



(a) 4 classes (b) 5 classes
Figure 8. The confusion matrices of our proposed FRL-DGT and FRL-DGT-S on CASME II dataset with 4 and 5 ME classes.

image pairs as input to DGM-S. Then the output displace-
ment concatenated with its corresponding frame is input to
sequenced Transformer Fusion (TransFu-S) for classifica-
tion, and TransFu-S requires a further fusion step to model
the temporal dependencies between T frames in addition to
the two-level fusion of TransFu. In our experiments, image
sequences are interpolated to 10 frames using TIM, with the
batch size 5 and same optimizer setting as FRL-DGT.

For the comparison of FRL-DGT-S and the SOTA meth-
ods which take image sequences as input, we conduct ex-
periments on CASME II dataset. However, the classes used
by ELRCN and STRCN-A are different, ELRCN uses 5
classes (i.e., Happiness, Disgust, Repression, Surprise and
Others) while STRCN-A uses 4 classes (i.e., Positive, Neg-
ative, Surprise and Others), so we conduct experiments sep-
arately and compare with the corresponding methods.

The comparison results are listed in Table 3, where we
cite the results from papers of ELRCN and STRCN-A, and
our FRL-DGT-S outperforms them under the correspond-
ing settings. We can also find from Table 3 that FRL-DGT
has higher precision than FRL-DGT-S for both 4 classes
and 5 classes, which is previously proved by related works
and illustrated with confusion matrices in Figure 8. To in-
vestigate the reason why FRL-DGT-S is not as effective as
FRL-DGT, we compare the interpolated frames after TIM
and the original apex frame, which indicates that TIM may
miss apex information, resulting in less good performance.

Method #(Classes)
CASME II

UF1 UAR Acc

Pa
ir

FRL-DGT 4 0.750 0.732 0.780
FRL-DGT 5 0.748 0.735 0.757

Se
qu

en
ce STRCN-A [41] 4 0.542 - 0.560

FRL-DGT-S 4 0.562 0.549 0.643
ELRCN [16] 5 0.500 0.440 0.524
FRL-DGT-S 5 0.543 0.539 0.594

Table 3. Results of FRL-DGT on more ME classes and FRL-DGT-
S taking image sequences as input.

Sensitivity To Onset and Apex. Perturbations on on-
set/apex frames of CASME II include 10/20/30% deviation
between onset and apex, e.g., onset+10% is about 3 frames

Figure 9. Failure cases of our FRL-DGT. GT stands for Ground
Truth. (Images from CASME II ©Xiaolan Fu)

after onset. The averaged UF1/UAR from onset deviations
are 0.848/0.838, 0.817/0.808, 0.786/0.769, while the results
are 0.866/0.858, 0.830/0.834, 0.814/0.795 for apex.

Automatic Detection on Apex. Without using the la-
beled frames, we automatically detect apex frames with the
algorithm of [33], causing the averaged UF1/UAR decrease
from 0.812/0.811 to 0.658/0.648 for all the three datasets.

Running Time. All experiments are performed on 3080
Ti GPU with 12GB memory, and i9 CPU with 2.8GHz. The
average time of reading one picture from dataset, detecting
the face, and outputting classification result is 0.416s, while
the average time is 0.384s only for ME recognition.

Failure Cases. There are some failure cases that are dif-
ficult to be accurately classified by the existing methods and
our FRL-DGT. As shown in Figure 9, the glasses with re-
flection can confuse the extraction and classification of dis-
placement features, leading to incorrect predictions.

5. Conclusion
For micro-expression recognition, we propose an end-to-

end FRL-DGT, which takes onset-apex image pairs as input.
The convolutional module DGM with self-supervised learn-
ing is used instead of traditional dynamic feature extrac-
tions, and the classification loss can back-propagate the gra-
dient to DGM, modifying the information contained in the
generated displacement. Our designed classification mod-
ule Transformer Fusion consists of Transformer’s basic lay-
ers and the novel fusion layer, utilizing cropped AU regions
and the full-face region as input for multi-level learning and
fusion, and using the linear fusion before attention mecha-
nism with efficient and accurate integration of embedding
vectors. The LOSO evaluation result of our FRL-DGT has
higher precision than the SOTA methods on UF1 and UAR
tested with the same datasets, and the ablation experiments
demonstrate the effectiveness of each proposed module.
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Towards reading hidden emotions: A comparative study
of spontaneous micro-expression spotting and recogni-
tion methods. IEEE transactions on affective computing,
9(4):563–577, 2017. 6

[21] Xiaobai Li, Tomas Pfister, Xiaohua Huang, Guoying Zhao,
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