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Figure 1. An overview of the proposed FLAG3D dataset, which contains 180K videos of 60 daily fitness activities. Our dataset is comprised
of (a) 3D activity sequences captured from advanced MoCap system, (b) rendered videos of different people with their SMPL parameters,
and (c) real-world videos obtained by cost-effective phones from both indoor and outdoor natural environments. FLAG3D also provides a
series of detailed and professional sentence-level language instructions for each fitness activity. All figures are best viewed in color.

Abstract

With the continuously thriving popularity around the
world, fitness activity analytic has become an emerging re-
search topic in computer vision. While a variety of new
tasks and algorithms have been proposed recently, there
are growing hunger for data resources involved in high-
quality data, fine-grained labels, and diverse environments.
In this paper, we present FLAG3D, a large-scale 3D fit-
ness activity dataset with language instruction containing
180K sequences of 60 categories. FLAG3D features the
following three aspects: 1) accurate and dense 3D hu-
man pose captured from advanced MoCap system to handle
the complex activity and large movement, 2) detailed and
professional language instruction to describe how to per-
form a specific activity, 3) versatile video resources from
a high-tech MoCap system, rendering software, and cost-
effective smartphones in natural environments. Extensive
experiments and in-depth analysis show that FLAG3D con-
tributes great research value for various challenges, such

as cross-domain human action recognition, dynamic human
mesh recovery, and language-guided human action genera-
tion. Our dataset and source code are publicly available at
https://andytang15.github.io/FLAG3D.

1. Introduction
With the great demand of keeping healthy, reducing high

pressure from working and staying in shape, fitness activity
has become more and more important and popular during
the past decades [22]. According to the statistics1, there are
over 200,000 fitness clubs and 170 million club members all
over the world. More recently, because of the high expense
of coaches and out-breaking of COVID-19, increasing peo-
ple choose to exclude gym membership and do the work-
out by watching the fitness instructional videos from fitness
apps or YouTube channels (e.g., FITAPP, ATHLEAN-X,
The Fitness Marshall, etc.).

1https://policyadvice.net/insurance/insights/fitness-industry-statistics
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Table 1. Comparisons of FLAG3D with the relevant datasets. FLAG3D consists of 180K sequences (Seqs) of 60 fitness activity categories
(Cats). It contains both low-level features, including 3D key points (K3D) and SMPL parameters, as well as high-level language annotation
(LA) to instruct trainers, sharing merits of multiple resources from MoCap system in laboratory (Lab), synthetic (Syn.) data by rendering
software and natural (Nat.) scenarios. We evaluate various tasks in this paper, including human action recognition (HAR), human mesh
recovery (HMR), and human action generation (HAG), while more potential applications like human pose estimation (HPE), repetitive action
counting (RAC), action quality assessment and visual grounding could be explored in the future (see Section 5 for more details.).

Dataset Subjs Cats Seqs Frames LA K3D SMPL Resource Task

PoseTrack [7] - - 550 66K × × × Nat. HPE
Human3.6M [33] 11 17 839 3.6M × X - Lab HAR,HPE,HMR
CMU Panoptic [37] 8 5 65 594K × X - Lab HPE
MPI-INF-3DHP [57] 8 8 - >1.3M × X - Lab+Nat. HPE,HMR
3DPW [96] 7 - 60 51k × × X Nat. HMR
ZJU-MoCap [68] 6 6 9 >1k × X X Lab HAR,HMR
NTU RGB+D 120 [51] 106 120 114k - × X - Lab HAR,HAG
HuMMan [11] 1000 500 400K 60M × X X Lab HAR,HMR

HumanML3D [26] - - 14K - X X X Lab HAG
KIT Motion Language [71] 111 - 3911 - X X - Lab HAG
HumanAct12 [28] 12 12 1191 90K × × X Lab HAG
UESTC [35] 118 40 25K > 5M × X - Lab HAR,HAG

Fit3D [22] 13 37 - > 3M × X X Lab HPE,RAC
EC3D [115] 4 3 362 - × X - Lab HAR
Yoga-82 [95] - 82 - 29K × × × Nat. HAR,HPE

FLAG3D (Ours) 10+10+4 60 180K 20M X X X Lab+Syn.+Nat. HAR,HMR,HAG

Therefore, it is desirable to advance current intelligent
vision systems to assist people to perceive, understand and
analyze various fitness activities.

In recent years, a variety of datasets have been proposed
in the field [22, 95, 115], which have provided good bench-
marks for preliminary research. However, these datasets
might have limited capability to model complex poses,
describe a fine-grained activity, and generalize to differ-
ent scenarios. We present FLAG3D in this paper, a 3D
Fitness activity dataset with LAnGuage instruction. Fig-
ure 1 presents an illustration of our dataset, which con-
tains 180K sequences of 60 complex fitness activities ob-
tained from versatile sources, including a high-tech MoCap
system, professional rendering software, and cost-effective
smartphones. In particular, FLAG3D advances current re-
lated datasets from the following three aspects:

Highly Accurate and Dense 3D Pose. For fitness activ-
ity, there are various poses within lying, crouching, rolling
up, jumping etc., which involve heavy self-occlusion and
large movements. These complex cases bring inevitable ob-
stacles for conventional appearance-based or depth-based
sensors to capture the accurate 3D pose. To address this, we
set up an advanced MoCap system with 24 VICON cam-
eras [5] and professional MoCap clothes with 77 motion
markers to capture the trainers’ detailed and dense 3D pose.

Detailed Language Instruction. Most existing fitness
activity datasets merely provide a single action label or
phase for each action [95,115]. However, understanding fit-

ness activities usually requires more detailed descriptions.
We collect a series of sentence-level language instructions
for describing each fine-grained movement. Introducing
language would also facilitate various research regarding
emerging multi-modal applications.

Diverse Video Resources. To advance the research di-
rectly into a more general field, we collect versatile videos
for FLAG3D. Besides the data captured from the expensive
MoCap system, we further provide the synthetic sequences
with high realism produced by rendering software and the
corresponding SMPL parameters. In addition, FLAG3D
also contains videos from natural real-world environments
obtained by cost-effective and user-friendly smartphones.

To understand the new challenges in FLAG3D, we eval-
uate a series of recent advanced approaches and set a
benchmark for various tasks, including skeleton-based ac-
tion recognition, human mesh recovery, and dynamic ac-
tion generation. Through the experiments, we find that 1)
while the state-of-the-art skeleton-based action recognition
methods have attained promising performance with highly
accurate MoCap data under the in-domain scenario, the re-
sults drop significantly under the out-domain scenario re-
garding the rendered and natural videos. 2) Current 3D pose
and shape estimation approaches easily fail on some poses,
such as kneeling and lying, owing to the self-occlusion.
FLAG3D provides accurate ground truth for these situa-
tions, which could improve current methods’ performance
in addressing challenging postures. 3) Motions generated
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by state-of-the-art methods appear to be visually plausible
and context-aware at the beginning. However, they cannot
follow the text description faithfully as time goes on.

To summarize, our contributions are twofold: 1) We
present a new dataset named FLAG3D with highly accu-
rate and dense 3D poses, detailed language instruction, and
diverse video resources, which could be used for multiple
tasks for fitness activity applications. 2) We conduct vari-
ous empirical studies and in-depth analyses of the proposed
FLAG3D, which sheds light on the future research of activ-
ity understanding to devote more attention to the generality
and the interaction with natural language.

2. Related Work
Table 1 presents a comparison of our FLAG3D with the

related datasets. FLAG3D provides detailed language in-
structions for text-driven action generation compared with
other datasets. Here we briefly review numbers of relevant
datasets and methods regarding the three tasks we focus on.
Human Action Recognition. As the foundation of video
understanding, pursuing diverse datasets has never stopped
in action recognition. Existing works have explored various
modalities in this area, such as RGB videos [14, 43, 76, 83],
optical flows [80], audio waves [100], and skeletons [105].
Among these modalities, skeleton data draws increasing at-
tention because of its robustness to environmental noises
and action-focusing nature. During the past few years, vari-
ous network architectures have been exploited to model the
spatio-temporal evolution of the skeleton sequences, such as
different variants of RNNs [19, 82, 111], CNNs [18, 20, 50,
104] and GCNs [16,47,52,77,90,105]. In terms of skeletal
keypoint, current action recognition datasets can be divided
into two classes: one is 2D keypoint datasets [20, 105] ex-
tracted by pose estimation methods [13, 15, 56, 84], and the
other is 3D keypoint datasets [33, 51, 61, 75] collected by
sensors or other sophisticated equipment. However, most
existing datasets are limited to a single domain of natu-
ral scenes. FLAG3D dataset takes a different step towards
cross-domain action recognition between rendered videos
and real-world scenario videos.
Human Mesh Recovery. Human mesh recovery obtains
well-aligned and physically plausible mesh results that hu-
man models can parametrize, such as SMPL [53], SMPL-
X [66], STAR [62] and GHUM [101]. Current meth-
ods take keypoints [9, 66, 114], images [24, 25, 41, 42, 46,
61, 67], videos [17, 39, 54, 58, 60, 86] and point clouds
[8, 30, 36, 49, 97] as inputs to recover the parametric hu-
man model under optimization [9, 44, 109] or regression
[38,42,61,67,93] paradigm. Besides the above input modal-
ities, there are ground-truth SMPL parameters provided by
human datasets. They are registered by marker-less multi-
view MoCap [57, 59, 66, 68, 108, 113], or marker/sensor
based Mocap [33, 79, 96]. SMPL can also be fitted with the

rendered human scan in synthesis datasets [12, 65, 94, 107].
Easily recovered human poses of existing datasets cause
the performance of human mesh recovery algorithms not to
be fairly evaluated [63], whereas FLAG3D provides human
poses with heavy self-occlusion and large movements. The
work most related to ours is HuMMan [11], which contains
large-scale and comprehensive multi-modal resources cap-
tured in a single MoCap room. In comparison, FLAG3D is
complementary with rendered and natural videos, as well as
more detailed language instructions to describe the activity.
Human Action Generation. In the past several years, var-
ious works have utilized multiple forms of information to
guide the generation of human actions. Among these, one
direction [10, 27, 28, 69, 98, 106] is to explore the under-
lying data structure of action sequences based on action
categories. As real-life movements are often accompanied
by audio messages, another direction [32, 45, 78, 87, 88]
is to use the audio and motion timing alignment feature.
Translating text descriptions to human motion is an emerg-
ing topic as well. Several works [6, 23, 26, 29, 70, 72, 74,
81, 91, 92, 103, 110] try to match semantic information and
high-dimensional features of action sequences so that it
could pursue natural motion sequences guided by language.
For traditional motion generation tasks, HumanAct12 [28],
UESTC [34] and NTU RGB+D [51] are three commonly
used benchmarks. However, the above datasets do not pro-
vide paired sophisticated semantic labels to the motion se-
quences. Moreover, there are not enough motions for the
exact text in the language-motion dataset KIT [71]. Re-
cently, BABEL [73] and HumanML3D [26] re-annotates
AMASS [55] with English language labels. Nonetheless,
they focus on simple actions with uncomplicated descrip-
tions. FLAG3D provides long sequences of actions with
detailed and professional language instructions.

3. The FLAG3D Dataset

3.1. Taxonomy

The first challenge to construct FLAG3D is establishing
a systematic taxonomy to organize various fitness activities.
In previous literature, most existing fitness datasets [22, 95,
115] mix up all the activities. We present a deeper hierar-
chical lexicon as shown in Figure 2, which contains three
levels from roots to leaves, including body parts, fitness ac-
tivity, and language instructions.

(1) Body Part. For the first level, we share our thoughts
with HuMMan [11] which uses the driving muscles as basic
categories. However, numerous fine-grained muscles exist
in the human body, and one activity might be driven by dif-
ferent muscles. We follow the suggestions of our fitness
training coaches and choose ten parts of the human body
with rich muscles as chest, back, shoulder, arm, neck, ab-
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Figure 2. An illustration of the taxonomy of our FLAG3D dataset, which is systematically organized in three levels as body part, fitness
activity and language instruction. This figure details a concrete example of the “Squat With Alternate Knee Lift” activity that is mainly
driven by the quadriceps femoris muscle of the “Leg”, while the corresponding language instructions are shown in the left.

domen, waist, hip, leg and multiple parts2.
(2) Fitness Activity. Sixty everyday fitness activities are

selected for the second level, linked to the corresponding
body parts of the first level. For example, the activity
“Squat With Alternate Knee Lift” is associated with the
quadriceps femoris muscle of the “Leg”. We include the
complete list of the 60 fitness activities in the Appendix.

(3) Language Instruction. We compose the third level
of the lexicon with a set of language descriptions from the
guidance of the training coaches to instruct users to accom-
plish the fitness activity. As an example shown in Figure 2,
the fitness activity “Squat With Alternate Knee Lift” is de-
tailed as “Stand with feet slightly wider than shoulder-width
apart, bend your elbows and put your hands in front of your
chest. Flex your hips and squat until your thighs are paral-
lel to the ground, and keep your knees in the same direction
as your toes when squatting...”. There are about 3 sentences
and 57 words for each fitness activity on average.

3.2. Data Collection

We deploy high-precision MoCap equipment in an open
lab to capture accurate human motion information. To
obtain the rendered videos, we purchase kinds of virtual
scenes and character models to make full use of the col-
lected 3D skeleton sequences. In different environments,
we record real-world natural videos. We agree with the vol-
unteers and ensure that researchers can use these data. More
details can be found in the supplementary materials. We de-
tail the data collection process below.
Data from MoCap System. Our MoCap system is
equipped in a lab of 20 meters long, 8 meters wide, and 7
meters high. The lab uses the high-tech VICON [5] MoCap

2Some activities are driven by muscles of various body parts.

system to capture the actors’ body part movements through
optical motion capture. Cameras used in this system have a
maximum resolution of 4096×4096. It is capable of 120fps
while maintaining maximum resolution sampling. Ten vol-
unteers perform the actions in the motion capture field. In-
frared cameras transmit the high frame rate IR gray-scale
images captured over the fiber optic cable to the data switch.
They are clock aligned and finally sent to a device with
specialized processing software. Through the professional
machine, we can monitor the movements of volunteers in
various forms, including masks, bones, and marker points.
Moreover, we hire professional technicians to perform data
restoration and motion retargeting based on high-precision
original data so that we can ensure the accuracy and diver-
sity of provided 3D motion data. Meanwhile, we ask each
performer to wear MoCap clothes with 77 motion markers
listed on a Table in supplementary materials. Dense marker
points are also a safeguard for our 3D motion data. Be-
fore performing the activity, we ask them to watch the in-
structional video and read the language instructions. For
each action, eight males and two females will perform three
times, each containing over eight repetitions. In total, we
have 7200 motion sequences, where 7200 = 10(people) ×
3(times)× 60(actions)× 4(motion retargeting).

Data from Rendering Software. To fully utilize the 3D
MoCap data, we use the rendering software Unity3D [4]
to produce synthetic 2D videos with RGB color. For 2D
videos, we purchase realistic scene models in Unity Asset
Store [3], including indoor and outdoor scenes. As well, we
select 6 camera positions in each scene. Our camera posi-
tions are dispersed around the avatar. However, we change
parameters such as the focal length of each camera to ensure
that the viewfinder fits and that the camera parameters are
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Figure 3. A process of producing the rendered videos and the SMPL parameters. First, we apply the MoCap data to get the dynamic human
poses in virtual scenes and render RGB videos with camera parameters. Then we use this joint information from dynamic human models
to recover the human mesh in SMPL format. Finally, we combined the SMPL mesh and RGB videos to display the output.

diverse. Specifically, we are greatly appreciated that Ren-
derpeople [2] provides several free character models. We
select 4 avatars, import the skeleton information into these
avatars and record the motion of the avatars in all direc-
tions. The resolution of these videos is 854 × 480, and the
frame rate is 30fps. Totally, we have 172,800 videos, where
172, 800 = 1800(mocap sequence)×6(camera position)×
4(avatar)× 4(virtual scences).
Data from Real-world Environment. To obtain versatile
data resources and add diverse scenes, we ask 10 extra peo-
ple to record videos in different real-world scenarios. The
recording process is executed using smartphones that can
capture 1080p videos from the front view and side view si-
multaneously, to ensure the diversity of shooting angles. As
well, before performing the activity, volunteers are asked
to watch the instructional video and read the language in-
structions carefully. We have 7200 videos, where 7200 =
10(people)×3(times)×60(actions)×2(views)×2(scenes).

Therefore, we have 24 subjects in all of the videos, where
24 = 10(mocap) + 10(real-world) + 4(render-people).

3.3. The Body Model

To facilitate different applications (e.g., human mesh re-
covery and human action generation), FLAG3D adopts the
SMPL [53] parametric model because of its ubiquity and
generality in various downstream tasks.

Specifically, the SMPL parameters comprise pose pa-
rameters θ ∈ RN×72, shape parameters β ∈ RN×10 and
translation parameters t ∈ RN×3, where N is the number
of frames for each video.

We obtain the SMPL parameters based on the captured
keypoints and an optimization algorithm. In particular, the
optimization process is composed of two stages, where the

first stage is to get the shape parameter β ∈ RN×10, and
the second stage is to gain the pose θ ∈ RN×72 as well as
translation parameter t ∈ RN×3. We denote the Es and
Ep as two objective functions for shape and pose optimiza-
tion. In the first stage, the objective function is formulated
as follows:

Es(β) =
λ1
N

∑
(i,j)∈L

||Ji(M(β))− Jj(M(β))− P(gi − gj)||22

+ λ2||β||22.

Here Ji is the joint regressor for joint i, g is the ground
truth skeleton, and M is the parametric model [53]. L and
J represent the body limbs and joint sets, respectively. P
is the projection function that projects the gi − gj in the
direction of Ji− Jj . Similarly, the objective function in the
second stage is as follows:

Ep(θ, t) = λ3
1

N

∑
j∈J

λp1||Jj(M(θ, t))− gj ||22 + λ4||θ||22.

In the equations above, different weights of λk(k =
1, 2, 3, ...) are denoted for each loss term (see supplemen-
tary materials for details). We adopt the L-BFGS [48]
method where the search step-length satisfies the strong
Wolfe conditions [99] for solving this optimization problem
because of its memory and time efficiency.

4. Experiments
4.1. Human Action Recognition

FLAG3D contains both RGB videos and 3D skeleton se-
quences, maintaining abundant resources for 2D and 3D
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Table 2. Action recognition accuracy on the FLAG3D dataset.

Method In-domain Out-domain

ST-GCN [105] 97.8 69.9
2s-AGCN [77] 98.6 81.6
MS-G3D [52] 97.7 73.6
CTR-GCN [16] 97.5 77.2
PoseC3D [20] - 79.9

Table 3. Results of transfer learning on FineGym and NTU60.

Method FineGym NTU60-XSub

ST-GCN 91.4 / 92.0 (+0.6) 89.0 / 89.0 (+0.0)
2s-AGCN 91.8 / 92.1 (+0.3) 89.7 / 91.0 (+1.3)
MS-G3D 92.7 / 93.4 (+0.7) 92.2 / 92.3 (+0.1)

CTR-GCN 92.9 / 93.5 (+0.6) 90.6 / 90.8 (+0.2)
PoseC3D 95.4 / 95.8 (+0.4) 93.7 / 93.9 (+0.2)

skeleton-based action recognition. Moreover, FLAG3D
also provides videos from different domains, allowing us to
evaluate different models’ generalized abilities. We first re-
port human action recognition accuracy with the 3D skele-
ton data captured from the MoCap system. Then we use
the 2D skeleton data extracted from both rendered and real-
world videos to test the transferable ability of the models.
Experiment Setup. For the in-domain evaluation, we use
the 5040 skeleton sequences of 7 subjects for training, while
the other 2160 skeleton sequences of 3 subjects for test-
ing. For the cross-domain evaluation, we follow [20] to
use the Top-Down approach for 2D pose extraction in both
rendered and real-world videos. For data selection, we se-
lect the rendered videos from the front and side view in one
scene (7200× 3) for training samples and take all 7200 real-
world videos for testing. We evaluate five state-of-the-art
methods as ST-GCN [105], 2s-AGCN [77], MS-G3D [52],
CTR-GCN [16] and PoseC3D [20]. We exclude PoseC3D
from in-domain experiments since it only supports 2D key-
point input. Table 2 presents the compared results. We also
test our model using the Mindspore [1].
Result and Analysis. For the in-domain experiments, the
Top-1 accuracy of all models is high, which shows that our
3D skeleton data is effective with recently advanced algo-
rithms. Regarding the out-domain experiments, the accu-
racy drops drastically when transferring the models from
rendered to real-world scenarios. On the widely used NTU
RGB+D 60 [75] and 120 benchmark [51], Top-1 accuracy
achieves and 96.6% and 89.6% respectively with PoseC3D
[20], but 79.9% only on FLAG3D. Unlike NTU RGB+D,
which has a large proportion of daily actions in the in-
door environment, FLAG3D focuses more on the classifi-
cation of fitness actions, which requires more attention to
fine-grained action distinctions. Figure 4 shows these ac-

Figure 4. Case study of 2s-AGCN prediction results. The blue
boxes are the selected frames of the target category, and the yellow
boxes are the confusing categories. From top to bottom are “Bent-
over Dumbbell Tricep Extension”, “Right-side Bent-over Tricep
Extension With Resistance Band”, “Bent-over W-shape Stretch”
and “Bent-over Y-shape Stretch”.

tions share sufficient similarities in motion patterns, such as
bending over and swinging arms. As for “Lying Shoulder
Joint Downward Round”, the counterpart - “Lying Shoulder
Joint Upward Round” challenges the model in the aspect
of temporal modeling. These categories require the models
to focus on fine-grained action differences. The FLAG3D
dataset can be served as a new benchmark for out-domain
and fine-grained action understanding. Moreover, we fine-
tune the models (pre-trained on FLAG3D) on FineGym
and NTU60. In Table 3, pre-trained models achieved bet-
ter performance (in bold), especially on FineGym, which
shares some common grounds with FLAG3D such as the
fine-grained nature of sports. Promising results show that
our FLAG3D dataset can transfer beneficial signals for pre-
trained models to boost the performance of other datasets.

4.2. Human Mesh Recovery

FLAG3D provides the SMPL [53] annotations, which
are the prevalent ground truth in human mesh recovery. It
is available to perform and evaluate popular methods for es-
timating 3D human poses and shapes. In this section, we
first evaluate deep learning-based regression algorithms to
verify that our dataset is qualified as a benchmark. Then we
use the SMPL [53] annotation data to train ROMP [21] to
improve its performance on our test set.
Experiment Setup. To ensure diversity in the subset, we
opt for 300K frames for each scene and view during data
selection. In order to avoid potential continuity issues and
information leakage (e.g., two videos with the same action
and human model but different repetitions are in different
datasets), we select the first 20% videos for each scene
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Figure 5. Examples of SMPL prediction results. The top activity is prostrating and the bottom one is taking the knee. ROMP-ft ( i.e.,
fine-tuning ROMP on the training set of FLAG3D ) improves its ability to correctly estimate complex postures like kneeling.

Table 4. Human mesh recovery accuracy on the FLAG3D dataset.
“↓” indicates that the lower value is better. “ft” represents that we
have fine-tuned this method on our trainset.

Method MPJPE ↓ PA-MPJPE ↓
VIBE [40] 376.67 106.27
BEV [85] 382.77 117.62
ROMP [21] 379.44 100.48

ROMP-ft [21] 114.73 62.29

and view them as the test set. We benchmark three typ-
ical methods: VIBE [40], BEV [85], and ROMP [21] on
FLAG3D using MPJPE (mean per joint position error) and
PA-MPJPE (Procrustes-aligned mean per joint position er-
ror) metrics. Results are presented in Table 4.

Table 5. Performance on challenging cases using two protocols.

P1 P2
MPJPE PA-MPJPE MPJPE PA-MPJPE

w/o 260.918 132.574 490.248 111.654
w. ft-FLAG3D 119.109 81.179 131.001 75.428

Result and Analysis. These methods without train-
ing achieved unsatisfactory MPJPE and PAMPJPE on the
dataset. One of the most important reasons is that when
the person in the rendered video is kneeling or lying, the
task could be challenging because of the occlusion in the
visual view. As displayed in Figure 5, ROMP [21] inter-
prets kneeling as lying and interprets taking on the knee as
squatting on the ground. For the evaluation part, VIBE [40]
and ROMP [21] achieved the best MPJPE and PA-MPJPE,
respectively. But these metrics are still high, indicating
that there is still much room for improvement of 3D shape
estimation methods on the FLAG3D dataset. Therefore,
FLAG3D can be served as a new benchmark for 3D pose
and shape estimation tasks. Since ROMP [21] achieved the

Table 6. Results of MDM in KIT dataset.

R-Precision ↑ FID ↓
w/o FLAG3D 0.396 0.497
w. FLAG3D 0.407 0.491

top-1 PA-MPJPE, we fine-tuned it on FLAG3D with HR-
Net [84] backbone. ROMP [21] could handle challenging
cases and reach better MPJPE and PA-MPJPE after being
fine-tuned on our dataset. It indicates that our dataset could
benefit 3D pose estimation approach to improve their per-
formance. To verify our ideas, we also test videos involving
challenging actions in protocol 1 and challenging views in
protocol 2 as shown in table 5. Both situations with self-
occlusion can be mitigated after fine-tuning on FLAG3D.

4.3. Human Action Generation

Detailed language instructions and 3D skeleton-based
motion sequences with SMPL [53] annotations are in-
cluded in FLAG3D, which facilitate the application of hu-
man action generation. This section reports the results of
action-conditioned 3D human motion synthesis under both
category-based settings and language-based settings.
Experiment Setup. For category-based action generation,
we test the results in ACTOR [69]. We first selected skele-
ton sequences of 5 subjects for training, while the other 5
subjects were for testing. Same as UESTC [34] in AC-
TOR [69], we use ST-GCN [105] as the feature extrac-
tor. For language-based action generation, we evaluate the
methods of Guo et al. [26] and TEMOS [70]. We use 90%
language-motion pairs for training and 10% for testing.
Result and Analysis. Owing to the different architectural
designs of algorithms, we carry over the metrics set of the
original paper in each method. Results are shown in Ta-
ble 7. For category-based settings, the FID of FLAG3D is
14.77, and the Multimod index is 6.53. In some cases, AC-
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Table 7. Results of human action generation. Multi.: MultiModality. APE: Average Position Error. AVE: Average Variance Error.

Method FID ↓ Acc. ↑ Multi.↑ Method APEroot ↓ AVEroot ↓ Method FID ↓ R-precision↑ Multi.↑
ACTOR [69] 14.77 94.50 6.53 TEMOS [70] 0.61 0.66 Guo et al. [26] 15.12 0.10 1.20

Figure 6. Qualitative results in FLAG3D. (a) “Squat With Arm
Lift” visualization results in the category-based method. (b) Small
Dumbbell Floor Flies: “Lie flat on your yoga mat, bend your
knees, spread your legs shoulder-width apart, and keep your feet
firmly planted on the ground. Sink your shoulder blades so that
your upper back is flat against the mat...” At first, the avatar bent
the knee correctly, however, it fails to faithfully follow the text de-
scription as time goes on. (c) Chest Fly: “Raise your head, keep
your chest out, and tighten your abdominal muscles. Keep your
palms forward and open your arms alternately at the same time...”
When comes to the word “alternately”, Guo et al. [26] fails to cap-
ture the semantic information and comes to a standstill. ( Due to
the different forms of data organization in different methods. In
Guo et al. [26], we use skeletons to demonstrate effects. )

TOR [69] provides satisfactory results as shown in Figure 6
(a). For language-based settings, due to the different com-
plexity of actions in FLAG3D, the action durations are rel-
atively long and they do not satisfy a uniform distribution.
As shown in Figure 6 (b), TEMOS [70] appears to be visu-
ally plausible and context-aware at the beginning. However,
it fails to follow the text description faithfully as time goes
on. More structure about characterization in temporal de-
pendencies should be designed. Guo et al. [26] designed a
list to record keywords such as body parts and movements.
So that the model could focus on specific words. FLAG3D
is semantically informative and has many professional de-
scriptions. As shown in Figure 6 (c), Guo et al. [26] cannot

capture the information of the word “alternately” after the
execution of movement “keep your palms forward”. These
cases require models of more generalization so that they
could suffer from out-of-distribution descriptions. More-
over, Flag3D increased the performance of existing meth-
ods. As shown in Table 6, MDM [92] achieved a better
effect in KIT [71] after pretraining on FLAG3D. Results
show that the FLAG3D dataset contains beneficial informa-
tion that can transfer to other datasets.

5. Future Works and Discussion
Based on the high-quality and versatile data resources of

FLAG3D, some other potential directions could be further
explored. We discuss some of them below:
Visual Grounding. The language instructions of FLAG3D
involve the critical steps of specific body parts to accom-
plish an activity. Grounding these key phases with the cor-
responding spatial-temporal regions could better bridge the
domain gap between linguistic and visual inputs.
Repetitive Action Counting. Counting the occurring times
of the repetitive actions benefits users for fitness train-
ing [22,31]. While it requires more fine-grained annotations
of the temporal boundary, it is desirable to explore unsuper-
vised or semi-supervised learning methods in this direction.
Action Quality Assessment. This task aims to assess how
well a fitness activity is performed and give feedback to
users to avoid injury and improve the training effect. Unlike
previous works [64,89,102,112], the future effort could be
devoted to FLAG3D by evaluating whether a 3D activity
meets the rule described by the language instruction.

6. Conclusion
In this paper, we have proposed FLAG3D, a large-scale

comprehensive 3D fitness activity dataset which shares the
merits over previous datasets from various aspects, includ-
ing highly accurate skeleton, fine-grained language descrip-
tion, and diverse resources. Both qualitative and quantita-
tive experimental results have shown that FLAG3D poses
new challenges for multiple tasks like cross-domain hu-
man action recognition, dynamic human mesh recovery, and
language-guided human action generation. We hope the
FLAG3D will promote in-depth research and more appli-
cations on fitness activity analytics for the community.
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