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Abstract

The task of reconstructing 3D human motion has wide-
ranging applications. The gold standard Motion capture
(MoCap) systems are accurate but inaccessible to the gen-
eral public due to their cost, hardware and space constraints.
In contrast, monocular human mesh recovery (HMR) meth-
ods are much more accessible than MoCap as they take
single-view videos as inputs. Replacing the multi-view Mo-
Cap systems with a monocular HMR method would break the
current barriers to collecting accurate 3D motion thus mak-
ing exciting applications like motion analysis and motion-
driven animation accessible to the general public. However,
performance of existing HMR methods degrade when the
video contains challenging and dynamic motion that is not
in existing MoCap datasets used for training. This reduces
its appeal as dynamic motion is frequently the target in 3D
motion recovery in the aforementioned applications. Our
study aims to bridge the gap between monocular HMR and
multi-view MoCap systems by leveraging information shared
across multiple video instances of the same action. We in-
troduce the Neural Motion (NeMo) field. It is optimized to
represent the underlying 3D motions across a set of videos
of the same action. Empirically, we show that NeMo can re-
cover 3D motion in sports using videos from the Penn Action
dataset, where NeMo outperforms existing HMR methods in
terms of 2D keypoint detection. To further validate NeMo
using 3D metrics, we collected a small MoCap dataset mim-
icking actions in Penn Action,and show that NeMo achieves
better 3D reconstruction compared to various baselines.

1. Introduction

Reconstruction of 3D human motion has wide-ranging
applications from the production of animation movies like
Avatar [4], realistic motion synthesis [15, 39, 40] and biome-
chanical motion analysis [3, 9, 14, 36]. Existing MoCap sys-
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Figure 1. By leveraging the shared 3D information across videos,
NeMo can accurately recover the dynamic ranges of athletic motion,
where existing 3D human mesh recovery (HMR) methods struggle.
To illustrate, VIBE, a baseline video-based HMR method, fails to
capture the large step taken by the subject in the “Baseball Pitch”
example, and swaps the arms in “Tennis Serve” (in subfigure A).
Furthermore, NeMo recovers global root trajectory more accurately
than existing global HMR method, GLAMR [41] (in subfigure B).

tems are predominantly marker-based and work by record-
ing 2D infrared images of light reflected by markers placed
on the human subject. However, placing, calibrating and
labelling the markers are all tedious processes, and the mark-
ers can potentially restrict the range-of-motion of the sub-
ject. There has been a recent development of “markerless”
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MoCap systems based on computer vision methods. For
example, given a set of synchronized video captures from
multiple views, one can run 2D keypoint detection meth-
ods like OpenPose [5] and perform triangulation to recover
the 3D pose [32]. Fundamentally, both MoCap approaches,
marker-based and markerless, require multi-view video cap-
ture of the same exact instance of the motion.

On the other hand, there has been a rapid development
of 3D monocular human pose estimation (HPE) and hu-
man mesh recovery (HMR) methods. These methods aim
to recover the 3D human motion from a single-view video
capture. The accessibility of monocular HMR makes it an
attractive alternative to MoCap systems. However, monoc-
ular HMR is a challenging problem as a single-view input
only provides partial information about the underlying 3D
motion. The model needs to overcome complications like
depth ambiguity and self-occlusion. HMR models, like other
machine learning systems, overcome these difficulties by
learning from paired training data. However, paired video
and MoCap datasets are scarce, and publically available Mo-
Cap datasets are often restricted to simple everyday motions
like Human3.6M [17] and AMASS [11]. As a result, ex-
isting HMR methods generalize less well in domains with
less available MoCap data, such as motions in sports, a
dominant application domain of 3D human motion recov-
ery [8, 13,30, 31]. See Figure 1 for where existing HMR
methods struggled to capture the dynamic range of athletic
motions.

The multi-view assumption in MoCap is restrictive, but
not having information from multiple views in HMR also
makes the problem more challenging. We bridge the gap by
assuming there is shared and complementary information
in multiple instances of video captures of the same action,
similar to what is in the (same instance) multi-view setup.
These multiple video instances can be different repetitions of
the same action from the same person, or even from different
people executing the same action in different settings (See
the left side of Figure 2 for illustration). A key feature of
sports actions is that they are well-defined and structured.
For example, an athlete is also often instructed to practice
by performing many repetitions of the same action and the
variation across the repetitions is oftentimes slight. Even
when we look at the executions of the same action from
different athletes, these different motion “instances” often
contain shared information. In this work, we aim to better re-
construct the underlying 3D motion from videos of multiple
instances of the same action in sports.

We parametrize each motion as a neural network. It takes
as input a scalar phase value indicating the phase/progress
of the action and an instance code vector for variation and
outputs human joint angles, root orientation and translation.
Since the different sequences are not synchronized, and the
actions might progress at slightly different rates (e.g., a faster

versus slower pitch), we use an additional learned phase net-
work for synchronization. The neural network is shared
across all the instances while other components including
the instance codes and phase networks are instance-specific.
All the components are learned jointly. We optimize using
the 2D reprojection loss with respect to the 2D joint key-
points of the input videos and prior 3D loss w.r.t. initial
predictions from HMR methods to enforce 3D prior. We
call the resulting neural network a Neural Motion (NeMo)
field. NeMo can also be seen as a new test-time optimization
scheme for better domain adaptation of 3D HMR similar
in spirit to SMPLify [2, 33]. A key difference is that we
leverage shared 3D information at the group level of many
instances to learn a canonical motion and their variations.
To summarize, our contributions are:

* We propose the neural motion (NeMo) field and an
optimization framework that improves 3D HMR results
by jointly reasoning about different video instances of
the same action.

* We optimize NeMo fields on sports actions selected
from the Penn Action dataset [44]. Since the Penn
Action dataset only has 2D keypoint annotations, we
collected a small MoCap dataset with 3D groundtruth
where the actor was instructed to mimic these motions.
We show improved 3D motion reconstruction compared
to various baseline HMR methods using both 3D met-
rics, and also improved results on the Penn Action
dataset using 2D metrics.

* Our proposed NeMo field also recovers global root
translation. Compared to the recently proposed global
HMR method, recovered global motion from NeMo is
substantially more accurate on our MoCap dataset.

2. Related Work

In this section, we discuss related work in 3D HMR meth-
ods, multi-view 3D modelling and human motion datasets.

HMR Methods Our proposed methode NeMo bridges
the gap between monocular HMR methods [7, 12, 19, 22—

, 35, 42], and traditional multi-view MoCap systems. In a
way, it can be seen as a test-time optimization (TTO) exten-
sion for finetuning predictions from existing HMR methods,
much like the popular TTO algorithm SMPLify [33]. Com-
pared to SMPLify, NeMo leverages information across the
multiple video instances of the same action, resulting in bet-
ter 3D reconstruction. NeMo can be used in conjunction
with any existing HMR methods that are video-based like
VIBE [25] or framed-based like PARE [26]. Compared to
most HMR methods, NeMo also recovers the global root tra-
jectory, which is a central piece of MoCap data, while most



HMR methods do not. Recently, global HMR is attracting at-
tention from researchers where global root trajectory is also
recovered. This is a more challenging but also more impact-
ful version of the HMR task. Compared to GLAMR [41],
in terms of global HMR metrics, NeMo reduces the overall
error in our experiments.

Multi-view 3D Human Modeling Monocular HMR is
fundamentally challenging due to issues such as occlusions
and depth ambiguity. Multi-view 3D models aim to over-
come these issues by utilizing video captures from multiple
viewpoints to gain a holistic understanding of the scene.
These multi-view videos could be shot changes of the same
scene in movies [34], or different viewpoints recorded by
multiple synchronized cameras [16, 18, 38, 43]. In com-
parison, our approach uses different instances of the same
action performed asynchronously by one or more humans
to capture the 3D motion of a sports action. iMoCap [10]
studied a problem similar to ours by curating videos from
the internet, and also aimed to recover the 3D motion. In
contrast to our neural representation, their method fitted a
fixed set of poses over time, requiring them to additionally
enforce temporal smoothness and cannot naturally allow for
interpolations. Furthermore, their method does not lever-
age recent advances from monocular HMR, which is vital
for having good 3D motion prior. Lastly, they curated their
videos and did not use an existing video dataset, making
comparison impossible. In contrast, we apply NeMo to the
Penn Action dataset and further validated it on a MoCap
dataset we collected which we intend to open-source. !

3D Human Motion Datasets Even though datasets with
3D ground truth human motion are essential to developing
reliable models for human mesh reconstruction (HMR), col-
lecting 3D data is costly and labor-intensive. The result is
that available 3D datasets are limited in the number of sub-
jects and motions. The Human3.6M dataset [17] contains
data (3D MoCap, 2D keypoints, action labels, and videos)
for only 11 human subjects, while the 3DPW dataset [37] is
similar in having paired video and 3D groundtruth, but was
captured in an outdoor environment, using a combination of
inertial measurement units (IMUs) and vision models. Both
the Human3.6M and 3DPW datasets do not contain sports
motion. The AMASS dataset [1 1] is much larger in scale,
containing over 300 subjects and more than 11000 motions,
but still inherits the restrictions of MoCap, and does not
cover the full range of athletic motions. The lack of MoCap
data for sports makes existing HMR methods suffer from the
domain shift issue and perform poorly on sports sequences,
especially during the dynamic segment of the motion. Many

!Only the raw videos were released for their project, but not the annota-
tions, the extracted 3D motion or the code for their method. Attempts to
communicate with the authors were also unsuccessful.

sports datasets only contain 2D joint annotations and are
significantly downsampled in time [1, 6, 44].

3. Neural Motion (NeMo) Fields

In this section, we focus on the problem of extracting
the 3D human motion for specific athletic actions, such as
“baseball pitching”, given a set of videos. We assume that for
the same action, the underlying 3D human motion is similar
across the videos. Intuitively, the 3D reconstruction task
can be made easier by combining information from all the
videos into a single motion with variations. This makes the
3D reconstruction problem easier than treating all the videos
separately. See Figure 2 for an illustration of our method.

Problem Formulation Given multiple video instances of
the same action, our goal is to recover the 3D global mo-
tions; namely, sequences of 3D poses (including the root
orientation), 7., and root translations, x{,, for each of
the video instances. The superscript o™ denotes the n-th
video instance and the subscript o;.7 denotes a sequence
from time 1 to T". Our key insight is that, for many actions,
the variations across multiple instances (i.e, executions) can
be slight, which means we can improve our estimate of the
3D motion by solving for the motion instances jointly.

We first process the videos using off the shelf 2D and
3D pose estimators to get the initial estimates of the 2D
keypoints 37’ and 3D poses 87... We use tilde, o, to denote
the initial estimates. We then try to optimize for the motion
jointly using both the 2D and 3D initial predictions across all
video instances of the same action. Our method can also be
viewed as a test-time optimization algorithm for improving
3D motion like SMPLify [25, 33] that leverages the shared
information at the group level. Note, most existing 3D HMR
methods only output the pose/articulation (i.e., @) and not the
global root translation, «. In contrast, we also aim to recover
the 3D global root translation. In the following sections,
we describe how we parametrize and optimize for the set of
motions using a shared neural motion field.

Neural Motion Field We represent a 3D motion sequence
using a multi-layer perceptron (MLP) and call this repre-
sentation a Neural Motion (NeMo) field. The input to the
network is the phase of the motion sequence, ¢ € [0,1],
which can be viewed as the current progression in a time
series and an instance vector z € R¥= to account for the in-
stance variation of the motion. The instance vectors are also
learnable parameters that are optimized jointly with NeMo.
The MLP outputs 23 joint angles, the root orientation € and
3D global translation x, fg : RtV s R24X6+3 The
joints use the 6D representation for rotation proposed in
Zhou et al. [45] makes optimizing angles easier, and is com-
monly used in HMR networks [25, 27]. For convenience, we
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Figure 2. We propose a method for 3D global motion recovery that leverages shared information across multiple video instances of the
same action, which we call NeMo. Our method learns a shared canonical motion parametrized by a neural network, instance-specific phase
networks and latent vectors. Optimizing NeMo mainly relies on the 2D reprojection error. The phase networks are monotonically increasing
warping functions that help synchronize the different progressions across videos. Given the warped phases along with a learnable instance
embedding, the NeMo field outputs the joint angles and the root translation of the motion, which are rendered using the SMPL model [29].

denote the sub-network that outputs global translation as f
and the rest that outputs joint angles and orientation as fg.

Given the output of NeMo fields, the joint angles and
root translation, we use the Skinned Multi-Person Linear
(SMPL) model [29] to represent the 3D mesh of the human
body. The SMPL body model is a differentiable function
fm : RT2H10 s RO8I0XS that takes a pose parameter § €
R and shape parameter 3 € R'°, and returns the body
mesh m with 6890 vertices. In this work, we assume a
neutral shape, which is fixed to the constant vector of zeros,
i.e. B8 = 0 and drops it in what follows for simplicity. A
linear regressor W can be fitted to get the major body joints
in 3D, p € R/*3 and p = Wm, where each joint is a linear
combination of the mesh vertices. To get the 3D body joints
given an input phase ¢, the combination of the NeMo field
and SMPL is used as follows:

p=W(fm(follé:2) + fullssz)).

where [-; -] denotes concatenation.

Phase Networks Since the videos are not synchronized,
and the different motion instances can progress at different

rates, we allow the phases for the different sequences to vary.

We introduce a self-normalized monotonic neural network,
fe : R — R, which takes as input the linearly normalized
time index, t' = %, where T is the total length of a given
motion sequence and outputs the phase, ¢. A monotonic
neural network can be composed by summing K shifted and
scaled sigmoid function. The full phase network is written
as:

¢ = fo(t') = 2)

where

K
Z (freLu(ar) (' = freLu(Br))). ()
k:

We define o (-) as the logistic function, freLu(-) as the ReLU
activation function, and {ay, by, }1_, as the learnable shift
and scale parameters. To ensure the phase starts at 0 and
ends at 1, self-normalization is added (Equation 2). The
ReLU function ensures the sigmoid functions are increasing.

NeMo Optimization NeMo optimization goes through
two main stages. In both stages, optimization is done jointly
across all videos. In the first stage, the pose component
of the NeMo field (i.e., fg is optimized w.r.t the initial 3D
estimate € to mimic the prediction for the 3D pose estima-
tor). In the second stage, the warmed-up NeMo field, along
with all the other parameters, are jointly optimized using 2D
reprojection loss, which we describe below. In addition to a
NeMo field, instance vectors and phase networks, we also fit
the cameras. Each camera has its own extrinsic parameters
including a rotation matrix, R, a translation vector, ¢, and
intrinsic parameters. We fix the intrinsic parameters and
learn the extrinsic parameters; namely, how the cameras are
placed in the 3D world. The optimization of NeMo can be
written as:

3
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where,

it = (R ol )~ 7). ©
Pl =W (fm(Foll6}52"]) + fu(19732"])),  (©)
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We use P to denote the perspective projection and p(-) the
error function for 2D points. We use the Geman-McClure
error function, which is more robust to outliers than the mean
squared errors. 7'(n) indicates the length of the n-th video.

4. Experiments

In this section, we validate our proposed method NeMo
on two datasets: a MoCap dataset we collected, and the Penn
Action dataset [44]. We report standard 3D evaluation met-
rics for HMR and metrics for global HMR on our MoCap
dataset (Section 4.1). On Penn Action dataset where only 2D
groundtruth is available, we report 2D metrics and show qual-
itative results (Section 4.2). Since our work focuses on dy-
namic and athletic motion, results are best viewed in videos.
Please visit our supplemental project page for rendered re-
sults: https://sites.google.com/view/nemo—
neural-motion-field.

Methods We used VIBE [25] for our initial 3D estimate
and OpenPose [5] for our 2D psuedo-groundtruth. NeMo
used an architecture of 3 hidden layer MLP. We ran 300 steps
using the 3D loss as warmup and 2000 steps using the 2D
loss in the second stage. The same hyperparameters were
used for all motions across all datasets. For more details
please refer to Appendix A. For baselines, we compared to
the following HMR methods:

e VIBE [25] — a video-based HMR method which we
also used as our initial 3D estimate.

e VIBE+SMPLIify [25, 33] — this method combines
VIBE with SMPLIify which finetunes the results using
2D reprojection loss.

¢ PARE [26] — a framed-based HMR method that trained
on multiple datasets, including using 3D pseudo-
groundtruth extracted by EFT [20].

¢ GLAMR [41] - a state-of-the-art global HMR method
that infer global root trajectory based on initial esti-
mates from HybrIK [28].

Penn Action Dataset The Penn Action Dataset [44] con-
tains thousands of video sequences of different athletic ac-
tions with both action and 2D joint annotations for each
sequence. We use this dataset as an example where 1. 3D
groundtruth was not collected, and 2. using traditional Mo-
Cap to collect 3D groundtruth would be too expensive or

infeasible because of constraints from the environment, mo-
tion, and availability of human experts.

Specifically, we focus on five actions: “Baseball Swing”,
“Baseball Pitch”, “Tennis Serve”, “Tennis Forehand”, and
“Golf Swing”. The reason being that these actions are rep-
resentative of our targeted problem: actions that are well
defined and repeatable. Other actions like “Playing Guitar”
in the Penn Action dataset are not as well defined.

Our MoCap Dataset Since the Penn Action dataset only
contains 2D keypoint groundtruth, and not 3D groundtruth, it
is not enough for us to validate our reconstructed 3D motion.
To validate our proposed method, we collected a MoCap
dataset with their corresponding videos. We collected 8
repetitions/motion instances for each of the 5 actions above
from different camera views. The human actor is instructed
to mimic the motion shown in the Penn Action dataset. See
Figure 3 for a visualization of the data.

Metrics The following metrics were used for evaluation.

« MPJPE / MPVPE - mean per joint/vertex position
error are commonly used for evaluating 3D HMR meth-
ods. MPJPE computes the distance from a predicted
joint to the groundtruth joint in 3D and MPVPE com-
putes distances for all vertices. Results are reported in
millimeters (mm).

Global-MPJPE / MPVPE - the global version of
MPJPE/MPVPE measures the error taking into account
the predicted global root translation and orientation.
This is in contrast to the non-global version where the
prediction is root-centered.

* 2D Recon. Err. —2D reconstruction error measures the
2D error predicted predicted and groundtruth joints in
2D. Results are reported in terms of number of pixels.

* PCK - percentage of correct keypoints is a measure of
accuracy. It threholds 2D reconstruction error by 10%
of the bounding box size of the target human.

More experimental details can be found in Appendix A.

4.1. Results on our MoCap Dataset

In this section, we quantitatively evaluate the ability of
NeMo to recover global 3D motion on our MoCap dataset.
We compare NeMo to video-based HMR method with and
without test-time optimization, state-of-the-art frame-based
HMR method, and a recent global HMR method.

Evaluation with Standard HMR Metrics Table 1 shows
that NeMo outperforms baseline methods in terms of 3D
metrics (MPJPE/MPVPE) across all actions. The improve-
ment is even more pronounced during the dynamic ranges
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Method Bas.eball Baseball Tennis Ten'nis G(?lf Mean
Pitch Swing Serve Swing Swing
MPJPE (mm, )
VIBE [25] 101.2/141.3 84.5/120.7 94.4/129.9 69.5/96.5 87.5/114.1 87.4/120.5
VIBE+SMPLIify [25] | 111.3/153.8 89.9/128.7 99.5/137.7 79.4/108.7 103.5/132.7 | 96.7/132.3
GLAMR [41] 99.7/131.8 100.4/139.3 116.0/155.1 80.2/106.3 114.0/150.2 | 102.1/136.5
PARE [20] 97.7/134.8 84.5/129.9 89.5/118.0 73.2/97.6 96.7/132.4 88.3/122.5
NeMo (Ours) 85.8/108.7 65.3/91.3 80.6/97.9 65.4/85.4 78.9/94.2 75.2/95.5
MPVPE (mm, |)
VIBE [25] 126.7/178.8 101.1/149.2 117.6/1644 86.5/122.4 108.9/141.7 | 108.2/151.3
VIBE+SMPLIify [25] | 139.5/196.2 108.8/160.1 124.8/174.5 101.5/141.7 123.9/157.6 | 119.7/166.0
GLAMR [41] 129.0/168.6 126.9/182.1 149.7/201.6 107.5/142.8 156.0/201.6 | 133.8/179.3
PARE [20] 122.8/170.4 102.5/163.9 113.5/150.8 93.6/127.8 121.2/163.6 | 110.7/155.3
NeMo (Ours) 112.5/1473 779/118.9 95.5/121.1 83.3/116.8 96.4/118.1 93.1/124.4

Table 1. 3D evaluation on our MoCap dataset. Both errors over the entire sequence (left in a cell) and over the dynamic range of a
sequence (right in a cell) are reported. The improvement is more pronounced during the dynamic range of the motions where performance

of existing HMR methods degrade.

Baseball Baseball Tennis Tennis Golf
MoCap Method Pitch Swing Serve  Swing  Swing Mean
GLAMR [41] | 144.01 11443 19871 121.87 128.26 | 141.46
Global-MPJPE (mm, 1) \(onio Ours) | 15145 9192 146.06 148.49 9546 | 126.68
GLAMR [41] | 159.78  130.42 21859 134.6 158.13 | 160.3
Global-MPVPE (mm, ) \onio Ours) | 16356 9622 149.36  147.82 100.79 | 13155

Table 2. Corrected global 3D evaluation on our MoCap dataset.

Figure 3. Example rollout of our MoCap dataset. Top is “Baseball Pitch” and bottom is “Tennis Swing”. The rendered motions are from

our learned NeMo fields. For rendered videos, please see the website.

of the motion . This validates our original hypothesis that
existing HMR methods are less robust for videos containing
dynamic and athletic motion, which is an important applica-
tion domain for 3D human motion recovery. In the dynamic
ranges of the motion, NeMo improve MPJPE from the best
performing baseline VIBE from 120.5 mm to 95.5 mm, a
20.8% improvement. Also worthnoting is the comparison
with VIBE+SMPLify which also performs test-time opti-
mization using 2D reprojection loss. In a way, it can be seen
as an ablation of NeMo that does not learn from multiple
instances jointly. Interesting, while VIBE+SMPLIify does
not always improve the results from VIBE since the 2D key-

2See Appendix A for the definition of dynamic range.

point predicted from OpenPose from a single video might
not add more information. This stresses the importance of
using the joint optimization proposed for NeMo.

In Appendix B, we include results using 2D evaluation
metrics for the same experiment. Note, while NeMo still
performed the best overall, the performance between NeMo
and baselines were much closer than they were in 3D eval-
uation because 2D projection is a lossy process and many
erroneous 3D poses can be projected to the same 2D pose.
This speaks to the importance of using 3D evaluation for 3D
motion recovery and our collected MoCap dataset.
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Figure 4. Visualization of 3D global root trajectory on our Mo-
Cap dataset. The brightness of the color denotes temporal progres-
sion (from dark to bright).

Evaluation with Global HMR Metrics An important ad-
ditional benefit of using NeMo is that the recovered motion
contains global root information. This is essential for appli-
cations like animation, viewpoint-free synthesis, and motion
analysis. Global HMR is a recent task, and most of the base-
lines do not perform global HMR. Comparing to GLAMR,
a recent method for global HMR [4 1], NeMo improves the
global MPJPE from 141 mm to 127 mm (see Table 2). In
Figure 4 and 1B, we show example comparisons between
recovered global root trajectory from NeMo and GLAMR.
The results from NeMo is much less jittery and better repre-
sents the motion. For example, in Figure 1B, the trajectory
for the tennis serve captures the jump in the serving mo-
tion (i.e., the large increase and decrease in the z-axis). In
Figure 4, we can see smooth and large steps taken during
both of the actions from the NeMo motion, but not from the
recovered motion using GLAMR. Being able to capture the
global movement is critical in the eventual goal of replacing
MoCap systems with HMR methods. Additional qualita-
tive comparisons using rendered videos between NeMo and
baselines are included in the website.

4.2. Results on Penn Action

2D Evaluation The Penn Action dataset only has 2D key-
point annotations but not 3D groundtruth MoCap. This is
commonly the case as 2D annotations can be done post-hoc
for most videos, but 3D MoCap can only be captured in a
laboratory. We use the Penn Action dataset as a demonstra-
tion that NeMo can be applied to existing real world video
captures. While we cannot validate the results using 3D met-
rics, Table 3 shows that in terms of 2D metrics, the NeMo
outperformed existing 2D and 3D pose estimators overall.
To examine the realism of the recovered motion in 3D, we
show qualitative results in the next paragraph.

Baseball Swing

MoCap

Penn

MoCap

Penn

Figure 5. Comparison of learned NeMo fields from our MoCap
dataset and Penn Action. Action in Penn Action is often executed
by an advanced athlete whose motion is dynamic and exaggerated.
Differences are highlighted by the green box.
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Figure 6. Qualitative results on Penn Action. Motion rollout
from optimized NeMo fields on 4 actions from Penn Action. Ac-
tions progress from left to right.

Qualitative Results Figure 6 contains four instances of
optimized NeMo fields on four distinct sports actions. Quali-
tatively, the optimized NeMo fields conform with our expec-
tations of their respective actions and capture many details



Penn Action Method Bas.eball Basctball Tennis Teqnls G(?lf Mean
Pitch Swing Serve  Swing  Swing
OpenPose [5] 12.71 12.93 11.64 10.19 8.98 11.29
Recon. Err. (]) VIBE [25] 14.2 7.35 20.74 8.65 5.04 11.2
T VIBE+SMPLIfy [25] 16.15 20.56 9.74 20.15 7.23 14.77
NeMo (Ours) 13.31 9.85 4.99 4.36 7.97 8.1
OpenPose [5] 88.25 88.91 92.1 93.93 93.81 91.4
PCK (1) VIBE [25] 83.42 89.63 80.92 89.4 94.69 87.61
VIBE+SMPLIfy [25] 79.67 82.23 88.58 88.86 93.13 86.5
NeMo (Ours) 80.16 90.93 95.99 97.46 95.37 91.98
Table 3. 2D evaluation on the Penn Action dataset.
MPIPE MPIPE 7D PCK 5. Limitations & Future Directions
D .
S (Dynamic, J) ™ One limitation of the NeMo model is the assumption of a
NeMo (full) 77.96 95.7 99.08 fixed camera. While there are many sport videos that have
-3D HMR 125.22 161.82 98.4 an almost still camera where NeMo is applicable, as shown
- Instance-specific | 134.85 194.6 89.57 in Section 4, many sports videos are captured with a moving

Table 4. Ablations. The second row removes 3D supervision from
the HMR initial estimates. The last row removes the instance-
specific learnable parameters.

in their execution. Combined with the better performance in
terms of 2D metrics in the previous paragraph, these results
demonstrate the NeMo can be applied to real world videos
like those in the Penn Action dataset and recover realistic 3D
motion. In Figure 5, we visualize the learned NeMo fields
from Penn Action and our MoCap dataset beside each other.
One can qualitatively observe the difference in recovered
motion. Penn Action videos often capture advanced athletes
whose motions are more dynamic and exaggerated compared
to an amateur. Such as in the Baseball Swing motion, many
players in Penn Action let go of their hands at the end of the
swing whereas in our MoCap dataset the subject human did
not. In the Baseball Pitch motion, the player from Penn Ac-
tion keeps their throwing arm back while they step forward,
which gives their pitch more power. These results highlight
the importance of being able to achieve motion recovery
from in-the-wild videos. Additional results that show more
variations of the learned motion in 3D can be found in the
Appendix B.

Ablations Table 4 shows that removing 3D loss using the
initial predictions from the existing 3D HMR method hurts
3D reconstruction but the 2D metric can still appear good.
This shows the importance of using an initial 3D estimate
to enforce a good 3D prior. Removing the instance-specific
parameters degrades the accuracy of the 3D reconstruction
which is reflected in both the 3D and 2D metrics.

camera. This is especially true for motion that covers a lot of
grounds, like a volleyball spike, or a basketball layup. Often
the full action can only be captured by moving a camera to
track the athlete. Extending NeMo to account for a moving
camera will further improve its applicability. Another wor-
thy future direction is in using the learned NeMo fields as
a data augmentation tools for improving regression-based
HMR methods, similar to what was proposed in EFT [21].
Currently, NeMo works with multiple video instances of the
same action and is a test-time optimization algorithm. While
it produces more accurate 3D results than existing HMR
methods, it is slow and limited to repeatable actions. Using
it as a data collection tool to then finetune HMR methods
can potentially lead to a more accurate HMR methods that
is also efficient.

6. Conclusion

We proposed NeMo, a neural motion representation and
an optimization framework for extracting 3D motions given
a set of different videos instances of the same sports action.
Compared to existing HMR methods whose performance
degrade in sports videos due to domain shift, NeMo can
better recover the 3D motion of athletic motion by leverag-
ing shared information across different video instances. To
validate NeMo, we collected a MoCap dataset mimicking
the Penn Action dataset and show that NeMo outperformed
arange of HMR baselines — frame-based, video-based, test-
time optimization algorithm, and global HMR method. We
also evaluated NeMo on the Penn Action dataset using 2D
metrics, and show qualitative results. Furthermore, NeMo
can recover a much more faithful 3D root trajecotry when
compared to a recently proposed global HMR method.



This project falls under the umbrella of works that aim
to improve 3D reconstruction in the wild using computer
vision. Collectively, our society has already built a massive
database of videos that capture the human experience in
the form of movies, sports event broadcasts, news media
and more. Technology that can transform this existing data
to their 3D reconstruction will take us closer to a realistic
virtual experience. By using existing videos, we might even
reconstruct events in the past, like Michael Jordan winning
his first NBA title in 1991, and see it happen from anywhere
on the basketball court.
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Appendix

A. Experimental Details

Model Details We used VIBE [25] for our initial 3D estimate and OpenPose [5] for our 2D psuedo-groundtruth. NeMo
used an architecture of 3 hidden layer MLP with 1000 hidden units. The phase networks consists of 100 sigmoids nodes. The
instance code dimension was 5. In addition to 2D reprojection loss, during the optimization a regularization w.r.t. the VPoser
and GMM pose prior were also used similar to SMPLIify [33]. We ran 300 steps using the 3D loss as warmup and 2000 steps
using the 2D loss in the second stage. The optimizer used for our optimization was Adam with a learning rate of 0.0001 using
the default second order hyperparameters in PyTorch.

“Dynamic Range” Dynamic range is defined as the segment of motion where the maximum joint velocity in 3D is above 2
m/s. A contiguous segment is selected based on the first and last frame of the video that satisfied this criterion.

Metrics For the standard MPJPE and MPVPE, the evaluation is done in a root-centered fashion at the frame-level, meaning
that the root translation and orientation were aligned with the groundtruth at every frame. For global MPJPE and MPVPE,
since each prediction resides in a different frame-of-reference, results were first aligned using rigid-body transformation (i.e.,
translation and orientation) with the groundtruth using vertices of the entire sequences. Unlike Procrustes alignment which is
sometimes used for HMR studies, we did not perform “scaling”.

Penn Action Dataset We annotated each action with a “left-handed” or “right-handed” label, and only put action with the
same handedness in the same batch. In the following experiments, for each action we sampled 40 batches of 3 sequences
randomly from the training set of each action label. For each sequence, we uniformly sampled 50 frames from the beginning to
the end of action. The 2D annotations in the Penn Action dataset is noisy. The joints are sometimes mislabelled. To alleviate
this issue, we run OpenPose [5] on the videos. If the OpenPose prediction of a joint and the groundtruth label are more further
than a threshold, we drop that keypoint in our optimization. The threshold is set to 10% of the image dimension.

B. Additional Results

Baseball Baseball Tennis Tennis Golf
MoCap Method Pitch Swing Serve  Swing  Swing Mean
OpenPose [5] 32.74 25.7 50.5 25.46 37.54 34.39

VIBE [25] 18.17 15.28 20.08 13.88 14.5 16.38

Recon. Err. () VIBE+SMPLIfy [25] 18.09 15.46 26.61 13.89 15.04 17.82
PARE [26] 16.06 15.19 16.26 13.16 15.45 15.23

NeMo (Ours) 15.7 14.67 16.48 13.81 15.12 | 15.16

OpenPose [5] 95.77 97.62 94.26  98.12  96.15 | 96.38
VIBE [25] 97.64 98.51 96.96  99.55 99.34 98.4
PCK (1) VIBE+SMPLify [25] 97.65 98.56 95.93  99.51  99.25 | 98.18
PARE [26] 99.33 98.92  99.23 99.71  98.51 99.14
NeMo (Ours) 98.46 99.61 98.81 99.88 99.16 | 99.18

Table 5. 2D evaluation of our MoCap dataset.

Table 5 shows 2D evaluation on our MoCap dataset. While NeMo still performed the best overall, the trend is not as clear
as in using 3D metrics (Table 1). This is because many incorrect 3D poses can be reprojected to the same 2D joint locations.
First, it is worth noting that NeMo improves in terms of 3D evaluation while still outperforming baselines in terms of 2D
metrics overall. Second, the discrepancy between the 2D and 3D evaluations speaks to the importance of using 3D evaluation
for quantitative results, and also checking results visually.
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